Parallel LU Decomposition (PSC §2.3)

Designing a parallel algorithm

- Main question: how to distribute the data?
- What data? The matrix A and the permutation π.
- Data distribution + sequential algorithm \longrightarrow computation supersteps.
- Design backwards: insert preceding communication supersteps following the need-to-know principle.

Data distribution for the matrix A

- The bulk of the work in the sequential computation is the update

$$
a_{i j}:=a_{i j}-a_{i k} a_{k j}
$$

for matrix elements $a_{i j}$ with $i, j \geq k+1$, taking $2(n-k-1)^{2}$ flops.

- The other operations take only $n-k-1$ flops. Thus, the data distribution is chosen mainly by considering the matrix update.
- Elements $a_{i j}, a_{i k}, a_{k j}$ may not be on the same processor. Who does the update?
- Many elements $a_{i j}$ must be updated in stage k, but only few elements $a_{i k}, a_{k j}$ are used, all from column k or row k of the matrix. Moving those elements around causes less traffic.
- Therefore, the owner of $a_{i j}$ computes the new value $a_{i j}$ using communicated values of $a_{i k}, a_{k j}$.

Matrix update by operation $a_{i j}:=a_{i j}-a_{i k} a_{k j}$

Update of row i uses only one value, $a_{i k}$, from column k. If we distribute row i over only N processors, then $a_{i k}$ needs to be sent to at most $N-1$ processors.

Matrix distribution

- A matrix distribution is a mapping

$$
\phi:\{(i, j): 0 \leq i, j<n\} \rightarrow\{(s, t): 0 \leq s<M \wedge 0 \leq t<N\}
$$

from the set of matrix index pairs to the set of processor identifiers. The mapping function ϕ has two coordinates,

$$
\phi(i, j)=\left(\phi_{0}(i, j), \phi_{1}(i, j)\right) .
$$

- Here, we number the processors in 2D fashion, with $p=M N$. This is just a numbering!
- Processor numberings have no physical meaning. BSPlib randomly renumbers the processors at the start.
- A processor row $P(s, *)$ is a group of N processors $P(s, t)$ with $0 \leq t<N$. A processor column $P(*, t)$ is a group of M processors $P(s, t)$ with $0 \leq s<M$.

Cartesian matrix distribution

$s=0$	00	02	01	02	00	01	00
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10

A matrix distribution is called Cartesian if $\phi_{0}(i, j)$ is independent of j and $\phi_{1}(i, j)$ is independent of i :

$$
\phi(i, j)=\left(\phi_{0}(i), \phi_{1}(j)\right) .
$$

Parallel matrix update

(8) if $\phi_{0}(k)=s \wedge \phi_{1}(k)=t$ then put $a_{k k}$ in $P(*, t)$;
(9) if $\phi_{1}(k)=t$ then for all $i: k<i<n \wedge \phi_{0}(i)=s$ do

$$
a_{i k}:=a_{i k} / a_{k k}
$$

Parallel matrix update

(8) if $\phi_{0}(k)=s \wedge \phi_{1}(k)=t$ then put $a_{k k}$ in $P(*, t)$;
(9) if $\phi_{1}(k)=t$ then for all $i: k<i<n \wedge \phi_{0}(i)=s$ do

$$
a_{i k}:=a_{i k} / a_{k k}
$$

(10) if $\phi_{1}(k)=t$ then for all $i: k<i<n \wedge \phi_{0}(i)=s$ do put $a_{i k}$ in $P(s, *)$;
if $\phi_{0}(k)=s$ then for all $j: k<j<n \wedge \phi_{1}(j)=t$ do put $a_{k j}$ in $P(*, t)$;
(11) for all $i: k<i<n \wedge \phi_{0}(i)=s$ do

$$
\begin{aligned}
& \text { for all } j: k<j<n \wedge \phi_{1}(j)=t \text { do } \\
& \qquad a_{i j}:=a_{i j}-a_{i k} a_{k j} ;
\end{aligned}
$$

Parallel pivot search

(0) if $\phi_{1}(k)=t$ then $r_{s}:=\operatorname{argmax}\left(\left|a_{i k}\right|: k \leq i<n \wedge \phi_{0}(i)=s\right)$;
(1) if $\phi_{1}(k)=t$ then put r_{s} and $a_{r_{s}, k}$ in $P(*, t)$;

Parallel pivot search

(0) if $\phi_{1}(k)=t$ then $r_{s}:=\operatorname{argmax}\left(\left|a_{i k}\right|: k \leq i<n \wedge \phi_{0}(i)=s\right)$;
(1) if $\phi_{1}(k)=t$ then put r_{s} and $a_{r_{s}, k}$ in $P(*, t)$;
(2) if $\phi_{1}(k)=t$ then

$$
\begin{aligned}
& s_{\max }:=\operatorname{argmax}\left(\left|a_{r_{q}, k}\right|: 0 \leq q<M\right) ; \\
& r:=r_{s_{\max }} ;
\end{aligned}
$$

(3) if $\phi_{1}(k)=t$ then put r in $P(s, *)$;

Two parallelisation methods

- The need-to-know principle: exactly those nonlocal data that are needed in a computation superstep should be fetched in preceding communication supersteps.
- Matrix update uses first parallelisation method: look at Ihs (left-hand side) of assignment, owner computes.
- Pivot search uses second method: look at rhs of assignment, compute what can be done locally, reduce the number of data to be communicated.
- In pivot search: first a local search, then communication of the local winner to all processors, finally a redundant (replicated) search for the global winner.
- Broadcast of r in (3) is needed later in (4). Designing backwards, we formulate (4) first and then insert (3).

Distribution for permutation π

- Store π_{k} together with row k, somewhere in processor row $P\left(\phi_{0}(k), *\right)$.
- We choose $P\left(\phi_{0}(k), 0\right)$. This gives a true distribution.
- We could also have chosen to replicate π_{k} in processor row $P\left(\phi_{0}(k), *\right)$. This would save some if-statements in our programs.

Index and row swaps

(4) if $\phi_{0}(k)=s \wedge t=0$ then put π_{k} as $\hat{\pi}_{k}$ in $P\left(\phi_{0}(r), 0\right)$; if $\phi_{0}(r)=s \wedge t=0$ then put π_{r} as $\hat{\pi}_{r}$ in $P\left(\phi_{0}(k), 0\right)$;
(5) if $\phi_{0}(k)=s \wedge t=0$ then $\pi_{k}:=\hat{\pi}_{r}$; if $\phi_{0}(r)=s \wedge t=0$ then $\pi_{r}:=\hat{\pi}_{k}$;

Index and row swaps

(4) if $\phi_{0}(k)=s \wedge t=0$ then put π_{k} as $\hat{\pi}_{k}$ in $P\left(\phi_{0}(r), 0\right)$; if $\phi_{0}(r)=s \wedge t=0$ then put π_{r} as $\hat{\pi}_{r}$ in $P\left(\phi_{0}(k), 0\right)$;
(5) if $\phi_{0}(k)=s \wedge t=0$ then $\pi_{k}:=\hat{\pi}_{r}$;
if $\phi_{0}(r)=s \wedge t=0$ then $\pi_{r}:=\hat{\pi}_{k}$;
(6) if $\phi_{0}(k)=s$ then for all $j: 0 \leq j<n \wedge \phi_{1}(j)=t$ do put $a_{k j}$ as $\hat{a}_{k j}$ in $P\left(\phi_{0}(r), t\right)$;
if $\phi_{0}(r)=s$ then for all $j: 0 \leq j<n \wedge \phi_{1}(j)=t$ do put $a_{r j}$ as $\hat{a}_{r j}$ in $P\left(\phi_{0}(k), t\right)$;
(7) if $\phi_{0}(k)=s$ then for all $j: 0 \leq j<n \wedge \phi_{1}(j)=t$ do

$$
a_{k j}:=\hat{a}_{r j} ;
$$

if $\phi_{0}(r)=s$ then for all $j: 0 \leq j<n \wedge \phi_{1}(j)=t$ do

$$
a_{r j}:=\hat{a}_{k j} ;
$$

Optimising the matrix distribution

- We have chosen a Cartesian matrix distribution ϕ to limit the communication.
- We now specify ϕ further to achieve a good computational load balance and to minimise the communication.
- Maximum number of local matrix rows with index $\geq k$:

$$
R_{k}=\max _{0 \leq s<M}\left|\left\{i: k \leq i<n \wedge \phi_{0}(i)=s\right\}\right| .
$$

Maximum number of local matrix columns with index $\geq k$:

$$
C_{k}=\max _{0 \leq t<N}\left|\left\{j: k \leq j<n \wedge \phi_{1}(j)=t\right\}\right| .
$$

- The computation cost of the largest superstep, the matrix update (11), is then $2 R_{k+1} C_{k+1}$.

Example

$s=0$	00	02	01	02	00	01	00
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10

$$
R_{0}=4, C_{0}=3 \text { and } R_{4}=2, C_{4}=2
$$

Bound for R_{k}

$$
R_{k} \geq\left\lceil\frac{n-k}{M}\right\rceil
$$

Proof: Assume this is untrue, so that $R_{k}<\left\lceil\frac{n-k}{M}\right\rceil$. Because R_{k} is integer, we even have $R_{k}<\frac{n-k}{M}$. Hence all M processor rows together hold less than $M \cdot \frac{n-k}{M}=n-k$ matrix rows. But they hold all matrix rows $k \leq i<n$. Contradiction.

2D cyclic distribution attains bound

$t=0$					1	2	0

$\phi_{0}(i)=i \bmod M, \quad \phi_{1}(j)=j \bmod N$.

$$
R_{k}=\left\lceil\frac{n-k}{M}\right\rceil, \quad C_{k}=\left\lceil\frac{n-k}{N}\right\rceil .
$$

Cost of main computation superstep (matrix update)

$$
\begin{aligned}
T_{(11), \text { cyclic }} & =2\left\lceil\frac{n-k-1}{M}\right\rceil\left\lceil\frac{n-k-1}{N}\right\rceil \geq \frac{2(n-k-1)^{2}}{p} . \\
T_{(11), \text { cyclic }} & <2\left(\frac{n-k-1}{M}+1\right)\left(\frac{n-k-1}{N}+1\right) \\
& =\frac{2(n-k-1)^{2}}{p}+\frac{2(n-k-1)}{p}(M+N)+2 .
\end{aligned}
$$

The upper bound is minimal for $M=N=\sqrt{p}$. The second-order term $4(n-k-1) / \sqrt{p}$ is the additional computation cost caused by load imbalance.

Load balance for the square block distribution

For $k \geq 4$, only the yellow processors works.

Load balance for the square cyclic distribution

For $k=4,5,6$, all processors work.

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

$$
\begin{aligned}
T_{(10)} & =\left(R_{k+1}(N-1)+C_{k+1}(M-1)\right) g \\
& \geq\left(\left\lceil\frac{n-k-1}{M}\right\rceil(N-1)+\left\lceil\frac{n-k-1}{N}\right\rceil(M-1)\right) g \\
= & T_{(10), \text { cyclic }} \\
T_{(10), \text { cyclic }} & <\left(\left(\frac{n-k-1}{M}+1\right) N+\left(\frac{n-k-1}{N}+1\right) M\right) g \\
& =\left((n-k-1)\left(\frac{N}{M}+\frac{M}{N}\right)+M+N\right) g .
\end{aligned}
$$

The upper bound is again minimal for $M=N=\sqrt{p}$. The resulting communication cost is about $2(n-k-1) g$.

Summary

- We determined the matrix distribution, first by restricting it to be Cartesian, then by choosing the 2D cyclic distribution, based on a careful analysis of the main computation and communication supersteps, and finally by showing that a square $\sqrt{p} \times \sqrt{p}$ distribution is best.
- Developing the algorithm goes hand in hand with the cost analysis.
- We now have a correct algorithm and a good distribution, but the overall BSP cost may not be minimal yet. Wait and see

