
Lecture 2.3 Parallel LU

Parallel LU Decomposition
(PSC §2.3)

1 / 20

Lecture 2.3 Parallel LU

Designing a parallel algorithm

I Main question: how to distribute the data?

I What data? The matrix A and the permutation π.

I Data distribution + sequential algorithm
−→ computation supersteps.

I Design backwards: insert preceding communication supersteps
following the need-to-know principle.

2 / 20

Lecture 2.3 Parallel LU

Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .

3 / 20

Lecture 2.3 Parallel LU

Matrix update by operation aij := aij − aikakj

0

1

2

3

4

5

6

aik aij

akj

0 1 2 3 4 5 6

Update of row i uses only one value, aik , from column k . If we
distribute row i over only N processors, then aik needs to be sent
to at most N − 1 processors.

4 / 20

Lecture 2.3 Parallel LU

Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering!

I Processor numberings have no physical meaning. BSPlib
randomly renumbers the processors at the start.

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.

5 / 20

Lecture 2.3 Parallel LU

Cartesian matrix distribution

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

A matrix distribution is called Cartesian if φ0(i , j) is independent of
j and φ1(i , j) is independent of i :

φ(i , j) = (φ0(i), φ1(j)).

6 / 20

Lecture 2.3 Parallel LU

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;

7 / 20

Lecture 2.3 Parallel LU

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;

7 / 20

Lecture 2.3 Parallel LU

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);

8 / 20

Lecture 2.3 Parallel LU

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);

8 / 20

Lecture 2.3 Parallel LU

Two parallelisation methods

I The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

I Matrix update uses first parallelisation method: look at lhs
(left-hand side) of assignment, owner computes.

I Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

I In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

I Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

9 / 20

Lecture 2.3 Parallel LU

Distribution for permutation π

I Store πk together with row k, somewhere in processor row
P(φ0(k), ∗).

I We choose P(φ0(k), 0). This gives a true distribution.

I We could also have chosen to replicate πk in processor row
P(φ0(k), ∗). This would save some if-statements in our
programs.

10 / 20

Lecture 2.3 Parallel LU

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;

11 / 20

Lecture 2.3 Parallel LU

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;

11 / 20

Lecture 2.3 Parallel LU

Optimising the matrix distribution

I We have chosen a Cartesian matrix distribution φ to limit the
communication.

I We now specify φ further to achieve a good computational
load balance and to minimise the communication.

I Maximum number of local matrix rows with index ≥ k :

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k :

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

I The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.

12 / 20

Lecture 2.3 Parallel LU

Example

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

R0 = 4,C0 = 3 and R4 = 2,C4 = 2

13 / 20

Lecture 2.3 Parallel LU

Bound for Rk

Rk ≥
⌈
n − k

M

⌉
.

Proof: Assume this is untrue, so that Rk < dn−k
M e. Because Rk is

integer, we even have Rk <
n−k
M . Hence all M processor rows

together hold less than M · n−k
M = n − k matrix rows. But they

hold all matrix rows k ≤ i < n. Contradiction. �

14 / 20

Lecture 2.3 Parallel LU

2D cyclic distribution attains bound

t = 0 1 2 0 1 2 0

00 000000 00000s =

1

0

1

0

1

0

01 02 00 01 02

00 01 02 00 01 02 00

11 12 121110 10

00

00

00

00 00

00

10

10

10 10

10 10

10

01

01 01

01

11

11 11

1112

12 12

12

02

0202

02

φ0(i) = i mod M, φ1(j) = j mod N.

Rk =

⌈
n − k

M

⌉
, Ck =

⌈
n − k

N

⌉
.

15 / 20

Lecture 2.3 Parallel LU

Cost of main computation superstep (matrix update)

T(11),cyclic = 2

⌈
n − k − 1

M

⌉ ⌈
n − k − 1

N

⌉
≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(
n − k − 1

M
+ 1

)(
n − k − 1

N
+ 1

)
=

2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

The upper bound is minimal for M = N =
√
p. The second-order

term 4(n − k − 1)/
√
p is the additional computation cost caused

by load imbalance.

16 / 20

Lecture 2.3 Parallel LU

Load balance for the square block distribution

For k ≥ 4, only the yellow processors works.
17 / 20

Lecture 2.3 Parallel LU

Load balance for the square cyclic distribution

For k = 4, 5, 6, all processors work.
18 / 20

Lecture 2.3 Parallel LU

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉
(N − 1) +

⌈
n − k − 1

N

⌉
(M − 1)

)
g

= T(10),cyclic.

T(10),cyclic <

((
n − k − 1

M
+ 1

)
N +

(
n − k − 1

N
+ 1

)
M

)
g

=

(
(n − k − 1)

(
N

M
+

M

N

)
+ M + N

)
g .

The upper bound is again minimal for M = N =
√
p. The

resulting communication cost is about 2(n − k − 1)g .

19 / 20

Lecture 2.3 Parallel LU

Summary

I We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square

√
p ×√p distribution is best.

I Developing the algorithm goes hand in hand with the cost
analysis.

I We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see
. . .

20 / 20

