
Lecture 2.3 Parallel LU

Parallel LU Decomposition
(PSC §2.3)
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Lecture 2.3 Parallel LU

Designing a parallel algorithm

I Main question: how to distribute the data?

I What data? The matrix A and the permutation π.

I Data distribution + sequential algorithm
−→ computation supersteps.

I Design backwards: insert preceding communication supersteps
following the need-to-know principle.
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Data distribution for the matrix A

I The bulk of the work in the sequential computation is the
update

aij := aij − aikakj

for matrix elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2

flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor. Who
does the update?

I Many elements aij must be updated in stage k , but only few
elements aik , akj are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .

3 / 20
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Matrix update by operation aij := aij − aikakj
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Update of row i uses only one value, aik , from column k . If we
distribute row i over only N processors, then aik needs to be sent
to at most N − 1 processors.
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Matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering!

I Processor numberings have no physical meaning. BSPlib
randomly renumbers the processors at the start.

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N. A processor column P(∗, t) is a group of M
processors P(s, t) with 0 ≤ s < M.
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Cartesian matrix distribution
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A matrix distribution is called Cartesian if φ0(i , j) is independent of
j and φ1(i , j) is independent of i :

φ(i , j) = (φ0(i), φ1(j)).
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Lecture 2.3 Parallel LU

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P(∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk ;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P(s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P(∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;
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Lecture 2.3 Parallel LU

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars ,k in P(∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

(3) if φ1(k) = t then put r in P(s, ∗);
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Lecture 2.3 Parallel LU

Two parallelisation methods

I The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

I Matrix update uses first parallelisation method: look at lhs
(left-hand side) of assignment, owner computes.

I Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

I In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

I Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).
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Distribution for permutation π

I Store πk together with row k, somewhere in processor row
P(φ0(k), ∗).

I We choose P(φ0(k), 0). This gives a true distribution.

I We could also have chosen to replicate πk in processor row
P(φ0(k), ∗). This would save some if-statements in our
programs.
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Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P(φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P(φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r ;
if φ0(r) = s ∧ t = 0 then πr := π̂k ;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P(φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P(φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;
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Lecture 2.3 Parallel LU

Optimising the matrix distribution

I We have chosen a Cartesian matrix distribution φ to limit the
communication.

I We now specify φ further to achieve a good computational
load balance and to minimise the communication.

I Maximum number of local matrix rows with index ≥ k :

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k :

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

I The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.
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Example
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R0 = 4,C0 = 3 and R4 = 2,C4 = 2
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Bound for Rk

Rk ≥
⌈
n − k

M

⌉
.

Proof: Assume this is untrue, so that Rk < dn−k
M e. Because Rk is

integer, we even have Rk <
n−k
M . Hence all M processor rows

together hold less than M · n−k
M = n − k matrix rows. But they

hold all matrix rows k ≤ i < n. Contradiction. �
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2D cyclic distribution attains bound
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φ0(i) = i mod M, φ1(j) = j mod N.
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Cost of main computation superstep (matrix update)

T(11),cyclic = 2

⌈
n − k − 1

M

⌉ ⌈
n − k − 1

N

⌉
≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(
n − k − 1

M
+ 1

)(
n − k − 1

N
+ 1

)
=

2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

The upper bound is minimal for M = N =
√
p. The second-order

term 4(n − k − 1)/
√
p is the additional computation cost caused

by load imbalance.
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Load balance for the square block distribution

For k ≥ 4, only the yellow processors works.
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Load balance for the square cyclic distribution

For k = 4, 5, 6, all processors work.
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Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉
(N − 1) +

⌈
n − k − 1

N

⌉
(M − 1)

)
g

= T(10),cyclic.

T(10),cyclic <

((
n − k − 1

M
+ 1

)
N +

(
n − k − 1

N
+ 1

)
M

)
g

=

(
(n − k − 1)

(
N

M
+

M

N

)
+ M + N

)
g .

The upper bound is again minimal for M = N =
√
p. The

resulting communication cost is about 2(n − k − 1)g .
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Summary

I We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square

√
p ×√p distribution is best.

I Developing the algorithm goes hand in hand with the cost
analysis.

I We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see
. . .
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