Parallel LU Decomposition
(PSC §2.3)

Lecture 2.3 Parallel LUtk

Designing a parallel algorithm

» Main question: how to distribute the data?
What data? The matrix A and the permutation 7.

v

Data distribution + sequential algorithm
—> computation supersteps.

v

v

Design backwards: insert preceding communication supersteps
following the need-to-know principle.

Lecture 2.3 Parallel LUtk

2/20

Data distribution for the matrix A

» The bulk of the work in the sequential computation is the
update
djj := ajj — ajkdkj
for matrix elements aj with i,j > k + 1, taking 2(n — k — 1)?
flops.
» The other operations take only n— k — 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

» Elements aj;, ajx, ax; may not be on the same processor. Who
does the update?

» Many elements a;; must be updated in stage k, but only few
elements aj, ax; are used, all from column k or row k of the
matrix. Moving those elements around causes less traffic.

» Therefore, the owner of a;; computes the new value a;; using
communicated values of aj, a;.

Lecture 2.3 Parallel LU *

Matrix update by operation a;; := aj; — ajcay;

01 2 3 4 5 6

AN B WD = O

Update of row i uses only one value, aj, from column k. If we
distribute row i over only N processors, then aj needs to be sent
to at most N — 1 processors.

Lecture 2.3 Parallel LU &k %

4/20

Matrix distribution
» A matrix distribution is a mapping
o {(,j)):0<i,j<n} —={(s,t):0<s<MAO<t<N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function ¢ has two coordinates,

¢(ivj) = (¢0(iaj)7 (bl(’?J))

» Here, we number the processors in 2D fashion, with p = MN.
This is just a numbering!

» Processor numberings have no physical meaning. BSPIlib
randomly renumbers the processors at the start.

» A processor row P(s,x) is a group of N processors P(s, t)
with 0 < t < N. A processor column P(x,t) is a group of M
processors P(s,t) with 0 < s < M.

Lecture 2.3 Parallel LU

Cartesian matrix distribution

t=0 2 1 2 0 1 O

00{02]01|02|00| 01|00

10| 12| 11| 12| 10| 11| 10
00| 02{01|02]|00|01|00
101 12| 11| 12| 10| 11| 10
00| 02|01]02{00|01|00

- O = O = o O

A matrix distribution is called Cartesian if ¢o(/,/) is independent of
J and ¢1(i,J) is independent of i

¢(i,J) = (¢o(i), 91()))-

Lecture 2.3 Parallel LU *

Parallel matrix update

(8) if ¢o(k) =5 A ¢1(k) =t then put akx in P(x,t);

(9) if qSl(k) =tthenforall/i:k<i<nA qbo(i) = s do
ajk = aik/akk;

Lecture 2.3 Parallel LUtk

7/20

Parallel matrix update

(8) if ¢o(k) =5 A ¢1(k) =t then put akx in P(x,t);

(9) if qSl(k) =tthenforall/i:k<i<nA qbo(i) = s do
ajk = aik/akk;

(10) if ¢1(k) =t thenforall i: k <i<n A ¢o(i) =s do
put ajx in P(s,x*);

if po(k) =sthenforallj:k<j<nA ¢1(j) =t do
put agj in P(x, t);

(11) forall i: k <i<n A ¢o(i) =s do

forall j: k<j<nA ¢1(j) =t do
ajj := ajj — ajkakj,

Lecture 2.3 Parallel LU

Parallel pivot search

(0) if ¢1(k) =t then rs ;= argmax(|aj| : k < i< n A ¢o(i) =s);

(1) if ¢1(k) =t then put rs and a,_x in P(x,t);

Lecture 2.3 Parallel LUtk

8/20

Parallel pivot search

(0) if ¢1(k) =t then rs ;= argmax(|aj| : k < i< n A ¢o(i) =s);
(1) if ¢1(k) =t then put rs and a,_x in P(x,t);
(2) if ¢1(k) =t then

Smax 1= argmax(|a, k| : 0 < g < M);

ri= rsmax;

(3) if ¢1(k) =t then put r in P(s,x*);

Lecture 2.3 Parallel LUtk

8/20

Two parallelisation methods

» The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

» Matrix update uses first parallelisation method: look at |hs
(left-hand side) of assignment, owner computes.

» Pivot search uses second method: look at rhs of assignment,
compute what can be done locally, reduce the number of data
to be communicated.

> In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant
(replicated) search for the global winner.

» Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

Lecture 2.3 Parallel LU *

Distribution for permutation 7

» Store 7y together with row k, somewhere in processor row
P(¢o(k),*).

» We choose P(¢o(k),0). This gives a true distribution.

» We could also have chosen to replicate 7y in processor row

P(¢o0(k),*). This would save some if-statements in our
programs.

Lecture 2.3 Parallel LU

10/20

Index and row swaps

(4) if ¢o(k) =s A t =0 then put 7, as Tx in P(¢o(r),0);
if ¢o(r) =s A t =0 then put 7, as @, in P(¢o(k),0);
(5) if ¢o(k) = t =0 then 1y = 7;

S A
s At =0 then 7, := 7y;

if ¢o(r)

Lecture 2.3 Parallel LUtk

11/20

Index and row swaps

(4)

(5)

if po(k) =s A t =0 then put 7x as T in P(¢po(r),0);
if go(r) =s A t =0 then put 7, as 7, in P(¢o(k),0);
if oo(k) =s A t =0 then 7y := 7,;
if ¢o(r) =s A t =0 then 7, ;= 7;

if go(k) =sthenforallj:0<j<nA ¢1(j)=1tdo
put ayj as dyj in P(¢o(r), t);

if ¢o(r)=sthenforallj:0<j<nA ¢1(j) =1t do
put a, as , in P(¢o(k), t);

if po(k) =sthenforallj:0<j<nA ¢1(j) =t do
agj = é\,j;

if po(r) =sthenforallj:0<j<nA ¢1(j)=tdo
arj = §kj;

Lecture 2.3 Parallel LU

11

20

Optimising the matrix distribution

» We have chosen a Cartesian matrix distribution ¢ to limit the
communication.

> We now specify ¢ further to achieve a good computational
load balance and to minimise the communication.

» Maximum number of local matrix rows with index > k:

— k<) = sY.
Ry 02’1523<XM H{i:k<i<nA ¢o(i) = s}

Maximum number of local matrix columns with index > k:

C = k<) =t}
o2, Uk <j<nnA ¢i(j) =t}

» The computation cost of the largest superstep, the matrix
update (11), is then 2R, 1 Cy11-

Lecture 2.3 Parallel LU *

12/20

Example

t=0 2 1 2 0 1 O

00{02]01|02|00| 01|00
00| 02{01|02]| 00| 01|00
10| 12| 11| 12| 10| 11| 10
00| 02{01|02]|00|01]00
10 12| 11| 12| 10| 11| 10
00| 02|01]02{00| 01|00
10} 12} 11| 12| 10| 11| 10

S = O = O O

f?o = 4, Cb =3 and f?4 = 2, C}_:Z 2

Lecture 2.3 Parallel LU 3k

13/20

Bound for Ry

Proof: Assume this is untrue, so that R, < [2-X]. Because Ry is

”A_/,k. Hence all M processor rows

together hold less than M - ”A_/,k = n — k matrix rows. But they

hold all matrix rows k < i < n. Contradiction. O

integer, we even have Ry <

Lecture 2.3 Parallel LU *

14 /20

2D cyclic distribution attains bound

bo(i)

2

0o 1 2 0

01

02

00| 01|02| 00

11

12

10| 11] 12| 10

01

02

00| 01|02 00

11

12

10| 11] 12| 10

01

02

00| 01|02 00

11

12

10| 11] 12| 10

S = O = O = O
—_
S

01

02

00| 01|02 00

G = hﬂ.

Lecture 2.3 Parallel LU *k ™

15/20

Cost of main computation superstep (matrix update)

n—k—1 n—k—1 2(n— k —1)2
L= > .
T(ll),cychc 2 ’7 M —‘ ’7 N —‘ p

n—k-—1 n—k—1
T(ll),cyclic < 2 (M+1) (N_|_]_)

_ 2(n—k—1)2+2(n—k—1)(M+N)+2
P p '

The upper bound is minimal for M = N = ,/p. The second-order
term 4(n — k — 1)/,/p is the additional computation cost caused
by load imbalance.

Lecture 2.3 Parallel LUtk

16 /20

Load balance for the square block distribution

For k > 4, only the yellow processors works. Lecture 2.3 Parallel LU R

17/20

Load balance for the square cyclic distribution

For k =4,5,6, all processors work. Lecture 2.3 Parallel LU T

18 /20

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

Taoy = (Reyr(N—=1)+ CGea(M—1))g

- ([i)

- T(lO),cycliC'

n—k—-1 n—k—-1
T(lO),cyclic < <<M‘|‘1> N + <N+1> M)g

= ((h—k-1) ﬂ—i-M +M+N)g.
M N

The upper bound is again minimal for M = N = /p. The
resulting communication cost is about 2(n — k — 1)g.

Lecture 2.3 Parallel LUtk

19/20

Summary

» We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing the 2D cyclic distribution,
based on a careful analysis of the main computation and
communication supersteps, and finally by showing that a
square ,/p X ,/p distribution is best.

> Developing the algorithm goes hand in hand with the cost
analysis.

» We now have a correct algorithm and a good distribution, but
the overall BSP cost may not be minimal yet. Wait and see

Lecture 2.3 Parallel LU *

20/20

