
Lecture 2.5–2.6 Experiments with bsplu

Experiments with bsplu

(PSC §2.5–2.6)

1 / 15

Lecture 2.5–2.6 Experiments with bsplu

Broadcast function

void bsp_broadcast(double *x, int n, int src,

int s0, int stride, int p0,

int s, int phase){

/* Broadcast the vector x of length n

from processor src to processors s0+t*stride,

0 <= t < p0. x has already been registered.

s = local processor identity.

phase= phase of two-phase broadcast (0 or 1)

Only one phase is performed, without sync. */

I Standard 1D–2D identification P(s, t) ≡ P(s + tM).

I stride = 1, p0 = M: broadcast within processor column.
stride = M, p0 = N: broadcast within processor row.

I No sync to allow combining supersteps.

2 / 15

Lecture 2.5–2.6 Experiments with bsplu

Phase 0: source processor spreads the data

b= (n%p0==0 ? n/p0 : n/p0+1); /* block size */

if (phase==0 && s==src){

for (t=0; t<p0; t++){

dest= s0+t*stride;

nbytes= MIN(b,n-t*b)*SZDBL;

if (nbytes>0)

bsp_put(dest,&x[t*b],x,t*b*SZDBL,nbytes);

}}

Data is put in the same location t · b of array x in the destination
processor as in the source processor.

3 / 15

Lecture 2.5–2.6 Experiments with bsplu

Phase 1: participating processors perform broadcast

if (phase==1 && s%stride==s0%stride){

t=(s-s0)/stride; /* s = s0+t*stride */

if (0<=t && t<p0){

nbytes= MIN(b,n-t*b)*SZDBL;

if (nbytes>0){

for (t1=0; t1<p0; t1++){

dest= s0+t1*stride;

if (dest!=src)

bsp_put(dest,&x[t*b],x,

t*b*SZDBL,nbytes);

}}}}

Data is not sent back to the source. No influence on BSP cost,
but it reduces the communication volume. This cannot be bad.

4 / 15

Lecture 2.5–2.6 Experiments with bsplu

Local and global indices for cyclic distribution

12

12

–1

–1

3

3

0

0

2

2

–2

–2

4

4

15

15

7

7

11

11

P(2) P(3)P(1)P(0)

0 1 2

0 1 2 0 1 2 0 1 0 1

3 4 5 6 7 8 9

Global

Local

Global index: i Local index on P(s): i

Relation: i = i · p + s

/* Initialise permutation vector pi */

nlr= nloc(M,s,n); /* number of local rows */

if (t==0)

for(i=0; i<nlr; i++)

pi[i]= i*M+s; /* global row index */

5 / 15

Lecture 2.5–2.6 Experiments with bsplu

Putting data directly into a 2D array

a = matallocd(nlr, nlc); /* in bsplu_test.c */

void bsplu(..., int *pi, double **a){

double *pa= NULL;

if (nlr>0)

pa= a[0];

bsp_push_reg(pa,nlr*nlc*SZDBL);

bsp_push_reg(pi,nlr*SZINT);

...

if (k%M==s){

/* Store pi(k) in pi(r) on P(r%M,0) */

if (t==0)

bsp_put(r%M,&pi[k/M],pi,(r/M)*SZINT,SZINT);

/* Store row k of A in row r on P(r%M,t) */

bsp_put(r%M+t*M,a[k/M],pa,

(r/M)*nlc*SZDBL,nlc*SZDBL);

} ...

6 / 15

Lecture 2.5–2.6 Experiments with bsplu

Two-phase broadcast of column k

double *lk;

nlr= nloc(M,s,n); /* number of local rows */

kr= nloc(M,s,k); /* first local row

with global index >= k */

kc= nloc(N,t,k);

kr1= nloc(M,s,k+1);

lk= vecallocd(nlr); bsp_push_reg(lk,nlr*SZDBL);

...

if (k%N==t) /* Store new column k in lk */

for(i=kr1; i<nlr; i++)

lk[i-kr1]= a[i][kc];

bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,s,M,N,s+t*M,0);

bsp_sync();

bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,s,M,N,s+t*M,1);

bsp_sync();

7 / 15

Lecture 2.5–2.6 Experiments with bsplu

Time (in s) of LU decomposition

n one-phase two-phase

1 000 1.21 1.33
2 000 7.04 7.25
3 000 21.18 21.46
4 000 47.49 47.51
5 000 89.90 89.71
6 000 153.23 152.79
7 000 239.21 238.25
8 000 355.84 354.29
9 000 501.92 499.74

10 000 689.91 689.56

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, l = 2718
(measured by bspbench). 8× 8 cyclic distribution.

8 / 15

Lecture 2.5–2.6 Experiments with bsplu

Total broadcast time of LU decomposition

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000

Ti
m

e
(in

 s)

n

1-phase broadcast
2-phase broadcast

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, l = 2718.

9 / 15

Lecture 2.5–2.6 Experiments with bsplu

Any actual savings by two-phase broadcast?

I Not much difference in total time between one-phase and
two-phase approach.

I For n < 4000, with local broadcast length < 500, one-phase is
better.

I For n > 4000, two-phase is better. But savings are
insignificant compared to computation time. Total broadcast
time is < 5% of overall time.

I BSP analysis gives insight and explains results, even if they
are surprising/disappointing/...

I On a different machine with slower communication, such as a
PC cluster, the savings will be significant. Try it!

10 / 15

Lecture 2.5–2.6 Experiments with bsplu

Total measured and predicted time

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

Ti
m

e
(in

 s)

n

Pessimistic prediction
Optimistic prediction

Broadcast, phase 0
Broadcast, phase 1

Row swaps

11 / 15

Lecture 2.5–2.6 Experiments with bsplu

Optimistic prediction is right

I BSP model predicts: row swaps, phase 0 of the broadcast, and
phase 1 all take the same time. Measurements validate this.

I Very different communication patterns: row swaps and phase
0 are very unbalanced, phase 1 is well-balanced.

I Pessimists are usually wrong. The pessimistic g -value (for
puts of single data words) is far off.

I You need to plug the right g -value into the BSP cost formula
to obtain meaningful predictions. bsplu puts elements from
row and column k as large data packets. Therefore, we should
use the optimistic g -value.

12 / 15

Lecture 2.5–2.6 Experiments with bsplu

Profile of stages k = 0, 1, 2 of an LU decomposition

Oxford BSP Toolset [flags -O3 -prof -flibrary-level 2 -fcombi...]SP 0.232 seconds elapsed on a Cray T3E Fri Jun 15 11:57:32

62.75 63.00 63.25 63.50 63.75 64.00 64.25 64.50 64.75 65.00 milliseconds
0

500

1000

1500

2000

2500

3000

3500

4000

4500

bytes in

9

10

11

12

13

14

10

11

12

13

14

10

11

12

13

14

62.75 63.00 63.25 63.50 63.75 64.00 64.25 64.50 64.75 65.00 milliseconds
0

500

1000

1500

2000

2500

3000

3500

4000

4500

bytes out

9

10

11

12

13

14

10

11

12

13

14

10

11

12

13

14

9 bsplu.c 86

10 bsplu.c 121

11 bsplu.c 150

12 bsplu.c 168

13 bsplu.c 187

14 bsplu.c 197

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Cray T3E: n = 100, M = 8, N = 1. Obtained by bspprof.

13 / 15

Lecture 2.5–2.6 Experiments with bsplu

Game: recognise the supersteps

I M = 8, N = 1: row distribution of the matrix.

I Column broadcast is for free.

I Row swap involves two processors; each time a different pair.
This must be superstep 12.

I Phase 0 of row broadcast has 1 sender, 7 receivers. This must
be superstep 13.

I Phase 1 has 8 senders, 7 receivers, and takes about the same
time (bar width) as superstep 13. This must be superstep 14.

I The wide gap between supersteps 14 and 10 is a big
computation superstep. This must be the matrix update.

I Superstep 10 must be the exchange of local winners in the
pivot search with 8 senders and 8 receivers. Relatively costly,
because the problem size is only n = 100.

14 / 15

Lecture 2.5–2.6 Experiments with bsplu

Summary

I We use global indices in the description of an algorithm, but
local indices in an actual program.

I We understand the behaviour of our program, though we may
not always like it.

I Very different communication patterns with the same BSP
cost take about the same time on an actual parallel computer,
the Cray T3E.

I Profiling is a way of getting intimate knowledge of your
program. The superstep concept makes this very easy.

15 / 15

