
Sequential FFT

Sequential Fast Fourier Transform
(PSC §3.1–3.2)

1 / 18



Sequential FFT

Applications of Fourier analysis

I Fourier analysis studies the decomposition of functions into
their frequency components.

I Piano Concerto no. 9 by Mozart: enhance high frequencies.

I Chest picture by Computerised Tomography: reconstruct your
interior without slicing you up.

I Star picture by pre-repair Hubble Space Telescope: remove
blur.

2 / 18



Sequential FFT

Fourier series

I Let f : R→ C be a T -periodic function:
f (t + T ) = f (t) for all t ∈ R.

I Fourier series associated with f :

f̃ (t) =
∞∑

k=−∞
cke

2πikt/T .

I Fourier coefficients ck are given by

ck =
1

T

∫ T

0
f (t)e−2πikt/T dt.

I i is the complex number with i2 = −1.

I Series converges if f is piecewise smooth (continuously
differentiable).

3 / 18



Sequential FFT

Fourier series for real-valued function

I Complex Fourier coefficients ck and corresponding real
coefficients ak , bk for T -periodic f : R→ R are given by

ck = ak − ibk =
1

T

∫ T

0
f (t)

(
cos

2πkt

T
− i sin

2πkt

T

)
dt.

I Since c−k = ck , ak = (ck + ck)/2, and bk = (ck − ck)i/2:

f̃ (t) =
∞∑

k=−∞
cke

2πikt/T =
∞∑
k=1

cke
−2πikt/T + c0 +

∞∑
k=1

cke
2πikt/T

= c0 +
∞∑
k=1

(ck + ck) cos
2πkt

T
+
∞∑
k=1

(−ck + ck)i sin
2πkt

T

= a0 + 2
∞∑
k=1

ak cos
2πkt

T
+ 2

∞∑
k=1

bk sin
2πkt

T
.

4 / 18



Sequential FFT

It’s a discrete world

One second of audio on a compact disc contains 44,100 function
values f (tj) in regularly spaced sample points

tj =
jT

n
, 0 ≤ j < n.

5 / 18



Sequential FFT

Approximation of Fourier coefficients

I Trapezoidal rule on interval [tj , tj+1] =
[
jT
n ,

(j+1)T
n

]
:

∫ tj+1

tj

f (t) dt ≈
f (tj) + f (tj+1)

2
· T
n
.

I On the whole interval [0,T ]:

ck =
1

T

∫ T

0
f (t)e−2πikt/Tdt

≈ 1

T
· T
n

 f (0)

2
+

n−1∑
j=1

f (tj)e
−2πiktj/T +

f (T )

2


=

1

n

n−1∑
j=0

f (tj)e
−2πijk/n (since f (0) = f (T ) = f (t0)).

6 / 18



Sequential FFT

Discrete Fourier transform

I The discrete Fourier transform (DFT) of a vector
x = (x0, . . . , xn−1)T is the vector y = (y0, . . . , yn−1)T with

yk =
n−1∑
j=0

xje
−2πijk/n =

n−1∑
j=0

xjωn
jk , for 0 ≤ k < n.

Here, ωn = e−2πi/n.

I Compare:

ck ≈
1

n

n−1∑
j=0

f (tj)e
−2πijk/n

Thus c ≈ DFT (x), where xj = f (tj)/n.

7 / 18



Sequential FFT

Inverse DFT

I Easy to prove: the inverse DFT (IDFT) of a vector
x = (x0, . . . , xn−1)T is the vector y = (y0, . . . , yn−1)T with

yk =
1

n

n−1∑
j=0

xje
+2πijk/n, for 0 ≤ k < n.

Same as DFT formula, except for the scaling 1/n and the sign
of the exponent.

8 / 18



Sequential FFT

Roots of unity

ω
ω

ω

ω
ωω

ω

ω04

= i

= 1

2

13

5

6

7

I ω8 = e−2πi/8 = e−πi/4 = 1
2

√
2− 1

2

√
2i .

I ωn
n = e−2πin/n = e−2πi = 1.

I ωn
n/2 = e−2πi(n/2)/n = e−πi = −1.

I ωn
2 = e−4πi/n = e−2πi/(n/2) = ωn/2.

9 / 18



Sequential FFT

Matrix–vector multiplication

I Define the n × n Fourier matrix Fn by

(Fn)jk = ωn
jk , for 0 ≤ j , k < n.

I Hence Fnx = DFT (x):

(Fnx)j =
n−1∑
k=0

(Fn)jkxk =
n−1∑
k=0

xkωn
jk = (DFT (x))j .

I Because ω4 = e−2πi/4 = e−πi/2 = −i :

F4 =


ω4

0 ω4
0 ω4

0 ω4
0

ω4
0 ω4

1 ω4
2 ω4

3

ω4
0 ω4

2 ω4
4 ω4

6

ω4
0 ω4

3 ω4
6 ω4

9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

10 / 18



Sequential FFT

Cost of straightforward DFT

I Complex multiplication

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

requires 1 real addition, 1 real subtraction, 4 real
multiplications, hence a total of 6 flops.

I Complex addition

(a + bi) + (c + di) = (a + c) + (b + d)i

requires 2 real additions.

I To compute yk , we need n complex multiplications and n − 1
complex additions, so 6n + 2(n − 1) = 8n − 2 flops.

I To compute the n components of y, we need 8n2 − 2n flops.

11 / 18



Sequential FFT

Splitting into even and odd components

yk =
n−1∑
j=0

xjω
jk
n =

n/2−1∑
j=0

x2jω
2jk
n +

n/2−1∑
j=0

x2j+1ω
(2j+1)k
n .

Using ω2
n = ωn/2 gives

yk =

n/2−1∑
j=0

x2jω
jk
n/2 + ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n.

I Each sum is a DFT of length n/2, for 0 ≤ k < n/2.

I Thus, we can compute the first half of the DFT by a DFT on
the even components of x and a DFT on the odd
components, and then combining the results.

I Cost is 2 ·
[
8(n/2)2 − 2(n/2)

]
+ 8(n/2) = 4n2 + 2n flops.

12 / 18



Sequential FFT

Computing the second half of the DFT

Let n/2 ≤ k < n. Substituting k = k ′ + n/2 into

yk =

n/2−1∑
j=0

x2jω
jk
n/2 + ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2

gives 0 ≤ k ′ < n/2 and

yk ′+n/2 =

n/2−1∑
j=0

x2jω
j(k ′+n/2)
n/2 + ω

k ′+n/2
n

n/2−1∑
j=0

x2j+1ω
j(k ′+n/2)
n/2

=

n/2−1∑
j=0

x2jω
jk ′

n/2 − ωk ′
n

n/2−1∑
j=0

x2j+1ω
jk ′

n/2,

because ω
n/2
n/2 = 1 and ω

n/2
n = −1. Now drop the primes.

13 / 18



Sequential FFT

Cost reduction of one split

yk+n/2 =

n/2−1∑
j=0

x2jω
jk
n/2 − ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n/2.

I This is the same formula as for the first half, except for the
subtraction.

I Thus, we can compute the second half of the DFT almost
without extra work, performing just n/2 complex subtractions,
i.e., n flops.

I The total cost for the whole DFT with one split is 4n2 + 3n
flops, thus saving about half the flops from the original
8n2 − 2n.

14 / 18



Sequential FFT

Recursive computation of DFT

0

0

0

0

1

1

1

1

2

2

3

3

3

3

4

4

2

24

4

5

5

5

5

6

6

6

6

7

7

7

7

The problem is split repeatedly, until the problem size is 1.

15 / 18



Sequential FFT

Recursive fast Fourier transform (FFT) algorithm

input: x : vector of length n.
output: y : vector of length n, y = Fnx.
call: y := FFT(x, n).

if n mod 2 = 0 then
xe := x(0 : 2 : n − 1); ye := FFT(xe, n/2);
xo := x(1 : 2 : n − 1); yo := FFT(xo, n/2);
for k := 0 to n/2− 1 do

τ := ωk
ny

o
k ;

yk := y ek + τ ;
yk+n/2 := y ek − τ ;

else y := DFT(x, n);

yk =

n/2−1∑
j=0

x2jω
jk
n/2 + ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n/2.

16 / 18



Sequential FFT

Cost of fast Fourier transform

I Loop has complex multiplication, addition, subtraction,
together 6 + 2 + 2 = 10 flops.

I n/2 iterations of loop, hence a total of n/2 · 10 = 5n flops.

I Perform 2 FFT(n/2) operations and 5n flops for FFT(n):

T (n) = 2T (
n

2
) + 5n

= 2
(

2T (
n

4
) + 5

n

2

)
+ 5n = 4T (

n

4
) + 2 · 5n

= · · · = nT (1) + (log2 n) · 5n = 5n log2 n.

I Much faster than 8n2 time for direct computation of DFT.

I For n = 227 = 134, 217, 728 (50 min 43 s audio, an average
CD), an FFT can be done in 18 s on a 1 Gflop/s PC, but it
would take over 4.5 years using the straightforward DFT.

17 / 18



Sequential FFT

Summary

I The fast Fourier transform (FFT) idea was discovered by
Gauss (1805), rediscovered by Danielson and Lanczos (1942),
and is commonly attributed to Cooley and Tukey (1965), who
rediscovered it in the digital era.

I The FFT is the computational workhorse in many applications,
from weather forecasting to signal and image processing.
Without the FFT, modern medicine would be impossible.

I The cost of an FFT of length n is 5n log2 n flops.

I We have derived a recursive FFT algorithm, i.e., an algorithm
that calls itself with a smaller problem size.

18 / 18


