Sequential Nonrecursive
Fast Fourier Transform

(PSC §3.3)
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Pros and cons of recursive computations

Pros:

» display a natural splitting into subproblems, thus pointing to
possible parallelism

» provide a concise formulation of the algorithm
> reduce the amount of bookkeeping
Cons:

> the corresponding computational tree is traversed sequentially,
thus making parallelisation more difficult

> the corresponding tree may obscure potential shortcuts to
parallelisation
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Matrix decompositions

> If we decompose the matrix F, into F, = A,_1--- A1 Ao,
where each factor Ay is an n X n matrix, we can obtain F,x
by repeatedly multiplying a matrix Ax and a vector:

an = Ar—l s A1AOX.

» Different decompositions represent different algorithms.
» Can the FFT be formulated as a matrix decomposition?

» Yes! Van Loan (Computational Frameworks for the FFT,
SIAM, 1992) has formulated many variants of the FFT in
terms of matrix decompositions.
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Matrix and vector language for the FFT

» Define the n x n diagonal matrix

Q, = diag(l,wgn,wgn, . ,wgn_l),
so that
Qo = diag(1, wp, w2, ... ,w,r,’/z_l).

§2,/> contains exactly the powers of w, needed in the FFT.

> The recursive algorithm can now neatly be expressed by
Fx = [ 2 Qa2 ] [ Fnj2x(0:2: n—1) ]
In/2 _Qn/2 F,,/QX(].Z 2:n— 1)

. In/2 Qn/2 Fn/2 0 X(OZZZ n—1)
o =252 0 Fop x(1:2:n—=1) |
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Even-odd sort matrix

The even-odd sort matrix S, is the n X n permutation matrix

containing rows 0,2,...,n — 2 of /, followed by rows
1,3,...,n—1,
(1.0 0 0 0 0 0]
0010 0 00O
s _ 0 000 010
" 10100 0 0O
0 001 0 0O
|00 00 0 0 1]

| x(0:2:n—1)
Thus,S,,x—[X o n )] ‘
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Kronecker matrix product

» Let A be a g xr matrix and B an m x n matrix. The
Kronecker product (or tensor product, or direct product) of A
and B is the gm X rn matrix

apoB -+ ap,-1B
A®B = :
ag-10B -+ ag-1,-1B
01 1 0 2
>LetA—[2 4}and8_[0 1 0].Then
0 0010 2
0 B 0 00O0OT1O
A®B_{23 45]_ 20440 8
020040
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Useful properties

» Lemma 3.3 (Associativity) Let A, B, C be matrices. Then
(AB)@ C=A® (B ().

» Lemma 3.4 Let A, B, C, D be matrices such that AC and BD
are defined. Then

(A® B)(C ® D) = (AC) ® (BD).
» Lemma 3.5 Let m,n € N. Then

Im @ Iy = Imp.
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Commutativity?
» Lemma (Commutativity) Let A, B be matrices. Then

AR B=B®A.
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Commutativity?
» Lemma (Commutativity) Let A, B be matrices. Then
AR B=B® A.

This lemma is not very useful, because it is false.

10
>LetA:[2 4]andB:[0 1].Then
2 0 4 0
A®B = |[2B 48]_[0 5 0 4},
A O 2 4 00
Bed = [o A]_[O 0 2 4]

Thus,

Sequential nonrecursive FFT *L %

8/19



Use of Kronecker product for FFT

» Matrix notation and Kronecker products are powerful tools in
modern Fourier transform research.

» Here, we use these tools to derive a nonrecursive variant of
the FFT.

» Concise notation:

Fojo o]_

/2®Fn/2:[ 0 Frp
n
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Butterfly operation

X Xivns2
!/ !/
X Xivns2
(©Sarai Bisseling, 2002
X=X Wi
Xf+n/2 = ><j—w{,xj+,,/2;
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Butterfly matrix

» The n x n butterfly matrix is

B, = |: In/2 Qn/2 :| .

b2 =22
» B, involves 5, which contains powers of wsq = e 2mi/4 — _j.
10 1 O
Bi= 110 1 o
01 0

» The butterfly matrix is sparse since it has only 2n nonzeros
out of n? elements.
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T-shirt formula

Using the new notation gives
FnX = Bn(/2 & Fn/2)5nx.

Since this holds for all vectors x, we obtain an important T-shirt
formula:

Fn — Bn(IQ 020 Fn/2)5n
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Size reduction of the Fourier matrix

We try to reduce the size of the remaining Fourier matrix F, .
Thus we manipulate the factor , ® F, />, or more in general,
Ik ® Fn/k-

e ® Foe = Ukllid ® [Bryk(le ® Fryaky) Snyi]
= (@ B )] @ [(k ® Fry26))Sn/k])
= (k®Bn/)(lk ® @ Fpyu)) Ik @ Spyi)
= (I ® Bnyi)(lk @ Fryan)) Ik @ Spyic)-
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Burn at both ends
Repeatedly applying the factorisation of /x ® F,
Ik @ Frojic = (I @ Bnyi) (i @ Fryor)) Ik @ Spji) =

(Ik®Br/ic) 2k @ Bpyaky)(lak @ Fryqan)) 2k @ Spyar)) (Ik®@Spyic) =« -
This ends when [, ® Fn/,, =1, ®F =1,® L = I, is reached.

Starting with F, = 1 ® F,, gives the Cooley-Tukey theorem (1965):
Fn = (/1 ® Bn)(/2 X Bn/2)(l4 ® Bn/4) to (In/2 & B2)Rn7
where

Rn = (In/2 ® 52) T (I4 ® Sn/4)(/2 ® 5n/2)(ll ® Sn)
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Binary digits

» We can write an index j, 0 < j < n, as

where by € {0,1} is the kth bit and n = 2".
> bg is the least significant bit; b,;,,—1 the most significant bit.

» We use the notation
(bm—1---bibo)a =) b2k

» Example: (10100101)p = 27 + 25 + 22 4+ 20 = 165.
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Bit-reversal permutation

Let n = 2™, with m > 1. The bit-reversal permutation
pn:{0,...,n—1} = {0,...,n— 1} is defined by

pr((bm—1---bo)2) = (bo - - bm_1)2.

For n = 8:
J (b2bibo)y  (bobib2)2  ps())
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Bit-reversal algorithm

x : vector of length n =27, m > 1, x = xo.

input:
output:  x: vector of length n, such that x = R,Xp.
call: bitrev(x, n).

forj:=0ton—1do
{ Compute r := p,(j) }

q:=/

r:=0;

for k:=0tolog,n—1do
by := g mod 2;
q = q div 2;
r:=2r+ by;

if j < r then swap(x;, x);

Based on Theorem 3.10: R, = P, = permutation matrix

corresponding to p,. For a proof, see pp. 110-111, e e
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Unordered FFT

input: x : vector of length n =2 m>1, x = xp.
output: X : vector of length n, such that x = F,R,xo.
call: UFFT(x, n).

k= 2;
while kK < n do
{ Compute x := (I,/, ® By)x }
for r:=0to 7 —1do
{ Compute x(rk: rk + k — 1) := Byx(rk: rk + k —1) }
forj::0to§—1do
{ Compute xyk+; + Wi Xrk-tj+k/2}
T 1= W Xk j k25
Xrkj4+k/2 = Xrk+j — T,
Xrk+j 1= Xrk+j + T,
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Summary

» We have derived a nonrecursive fast Fourier transform (FFT)
by using matrix notation and the Kronecker matrix product.

» The result is the Cooley-Tukey Decimation In Time (DIT)
formula

Fn= (/1 ® Bn)(/2 ® Bn/2)(l4 ® Bn/4) T (ln/2 ® B2)Rn-

> R, is the permutation matrix that corresponds to the
bit-reversal permutation pj.

» Each of the log, n matrix factors Iy @ B/, has 2n nonzero
elements, and each corresponding matrix—vector multiplication
requires 5n flops. Total number of flops: bnlog, n. Same as
for the recursive FFT.

» The nonrecursive variant is a good basis for parallelisation.
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