Sequential Nonrecursive Fast Fourier Transform (PSC §3.3)

Pros and cons of recursive computations

Pros:

- display a natural splitting into subproblems, thus pointing to possible parallelism
- provide a concise formulation of the algorithm
- reduce the amount of bookkeeping

Cons:

- the corresponding computational tree is traversed sequentially, thus making parallelisation more difficult
- the corresponding tree may obscure potential shortcuts to parallelisation

Matrix decompositions

- If we decompose the matrix F_{n} into $F_{n}=A_{r-1} \cdots A_{1} A_{0}$, where each factor A_{k} is an $n \times n$ matrix, we can obtain $F_{n} \mathbf{x}$ by repeatedly multiplying a matrix A_{k} and a vector:

$$
F_{n} \mathbf{x}=A_{r-1} \cdots A_{1} A_{0} \mathbf{x}
$$

- Different decompositions represent different algorithms.
- Can the FFT be formulated as a matrix decomposition?
- Yes! Van Loan (Computational Frameworks for the FFT, SIAM, 1992) has formulated many variants of the FFT in terms of matrix decompositions.

Matrix and vector language for the FFT

- Define the $n \times n$ diagonal matrix

$$
\Omega_{n}=\operatorname{diag}\left(1, \omega_{2 n}, \omega_{2 n}^{2}, \ldots, \omega_{2 n}^{n-1}\right)
$$

so that

$$
\Omega_{n / 2}=\operatorname{diag}\left(1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n / 2-1}\right)
$$

$\Omega_{n / 2}$ contains exactly the powers of ω_{n} needed in the FFT.

- The recursive algorithm can now neatly be expressed by

$$
\begin{aligned}
F_{n} \mathbf{x} & =\left[\begin{array}{rr}
I_{n / 2} & \Omega_{n / 2} \\
I_{n / 2} & -\Omega_{n / 2}
\end{array}\right]\left[\begin{array}{r}
F_{n / 2} \times(0: 2: n-1) \\
F_{n / 2} \times(1: 2: n-1)
\end{array}\right] \\
& =\left[\begin{array}{rr}
I_{n / 2} & \Omega_{n / 2} \\
I_{n / 2} & -\Omega_{n / 2}
\end{array}\right]\left[\begin{array}{rr}
F_{n / 2} & 0 \\
0 & F_{n / 2}
\end{array}\right]\left[\begin{array}{r}
x(0: 2: n-1) \\
x(1: 2: n-1)
\end{array}\right] .
\end{aligned}
$$

Even-odd sort matrix

The even-odd sort matrix S_{n} is the $n \times n$ permutation matrix containing rows $0,2, \ldots, n-2$ of I_{n} followed by rows $1,3, \ldots, n-1$,

$$
S_{n}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
& & \vdots & & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
& & \vdots & & & & \vdots & \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

Thus, $S_{n} \mathbf{x}=\left[\begin{array}{c}x(0: 2: n-1) \\ x(1: 2: n-1)\end{array}\right]$.

Kronecker matrix product

- Let A be a $q \times r$ matrix and B an $m \times n$ matrix. The Kronecker product (or tensor product, or direct product) of A and B is the $q m \times r n$ matrix

$$
A \otimes B=\left[\begin{array}{ccc}
a_{00} B & \cdots & a_{0, r-1} B \\
\vdots & & \vdots \\
a_{q-1,0} B & \cdots & a_{q-1, r-1} B
\end{array}\right] .
$$

- Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$. Then

$$
A \otimes B=\left[\begin{array}{rr}
0 & B \\
2 B & 4 B
\end{array}\right]=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 \\
2 & 0 & 4 & 4 & 0 & 8 \\
0 & 2 & 0 & 0 & 4 & 0
\end{array}\right]
$$

Useful properties

- Lemma 3.3 (Associativity) Let A, B, C be matrices. Then

$$
(A \otimes B) \otimes C=A \otimes(B \otimes C)
$$

- Lemma 3.4 Let A, B, C, D be matrices such that $A C$ and $B D$ are defined. Then

$$
(A \otimes B)(C \otimes D)=(A C) \otimes(B D)
$$

- Lemma 3.5 Let $m, n \in \mathbf{N}$. Then

$$
I_{m} \otimes I_{n}=I_{m n}
$$

Commutativity?

- Lemma (Commutativity) Let A, B be matrices. Then

$$
A \otimes B=B \otimes A
$$

Commutativity?

- Lemma (Commutativity) Let A, B be matrices. Then

$$
A \otimes B=B \otimes A .
$$

This lemma is not very useful, because it is false.

- Let $A=\left[\begin{array}{ll}2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then

$$
\begin{aligned}
& A \otimes B=\left[\begin{array}{ll}
2 B & 4 B
\end{array}\right]=\left[\begin{array}{llll}
2 & 0 & 4 & 0 \\
0 & 2 & 0 & 4
\end{array}\right], \\
& B \otimes A=\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]=\left[\begin{array}{llll}
2 & 4 & 0 & 0 \\
0 & 0 & 2 & 4
\end{array}\right] .
\end{aligned}
$$

Thus,
$A \otimes B \neq B \otimes A$.

Use of Kronecker product for FFT

- Matrix notation and Kronecker products are powerful tools in modern Fourier transform research.
- Here, we use these tools to derive a nonrecursive variant of the FFT.
- Concise notation:

$$
I_{2} \otimes F_{n / 2}=\left[\begin{array}{rr}
F_{n / 2} & 0 \\
0 & F_{n / 2}
\end{array}\right] .
$$

Butterfly operation

(C)Sarai Bisseling, 2002

$$
\begin{aligned}
x_{j}^{\prime} & :=x_{j}+\omega_{n}^{j} x_{j+n / 2} \\
x_{j+n / 2}^{\prime} & :=x_{j}-\omega_{n}^{j} x_{j+n / 2}
\end{aligned}
$$

Butterfly matrix

- The $n \times n$ butterfly matrix is

$$
B_{n}=\left[\begin{array}{rr}
I_{n / 2} & \Omega_{n / 2} \\
I_{n / 2} & -\Omega_{n / 2}
\end{array}\right] .
$$

- B_{4} involves Ω_{2}, which contains powers of $\omega_{4}=e^{-2 \pi i / 4}=-i$:

$$
B_{4}=\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -i \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & i
\end{array}\right]
$$

- The butterfly matrix is sparse since it has only $2 n$ nonzeros out of n^{2} elements.

T-shirt formula

Using the new notation gives

$$
F_{n} \mathbf{x}=B_{n}\left(I_{2} \otimes F_{n / 2}\right) S_{n} \mathbf{x}
$$

Since this holds for all vectors \mathbf{x}, we obtain an important T-shirt formula:

$$
F_{n}=B_{n}\left(I_{2} \otimes F_{n / 2}\right) S_{n}
$$

Size reduction of the Fourier matrix

We try to reduce the size of the remaining Fourier matrix $F_{n / 2}$. Thus we manipulate the factor $I_{2} \otimes F_{n / 2}$, or more in general, $I_{k} \otimes F_{n / k}$.

$$
\begin{aligned}
I_{k} \otimes F_{n / k} & =\left[I_{k} I_{k} I_{k}\right] \otimes\left[B_{n / k}\left(I_{2} \otimes F_{n /(2 k)}\right) S_{n / k}\right] \\
& =\left(I_{k} \otimes B_{n / k}\right)\left(\left[I_{k} I_{k}\right] \otimes\left[\left(I_{2} \otimes F_{n /(2 k)}\right) S_{n / k}\right]\right) \\
& =\left(I_{k} \otimes B_{n / k}\right)\left(I_{k} \otimes I_{2} \otimes F_{n /(2 k)}\right)\left(I_{k} \otimes S_{n / k}\right) \\
& =\left(I_{k} \otimes B_{n / k}\right)\left(I_{2 k} \otimes F_{n /(2 k)}\right)\left(I_{k} \otimes S_{n / k}\right) .
\end{aligned}
$$

Burn at both ends

Repeatedly applying the factorisation of $I_{k} \otimes F_{n / k}$:

$$
I_{k} \otimes F_{n / k}=\left(I_{k} \otimes B_{n / k}\right)\left(I_{2 k} \otimes F_{n /(2 k)}\right)\left(I_{k} \otimes S_{n / k}\right)=
$$

$\left(I_{k} \otimes B_{n / k}\right)\left(I_{2 k} \otimes B_{n /(2 k)}\right)\left(I_{4 k} \otimes F_{n /(4 k)}\right)\left(I_{2 k} \otimes S_{n /(2 k)}\right)\left(I_{k} \otimes S_{n / k}\right)=\cdots$
This ends when $I_{n} \otimes F_{n / n}=I_{n} \otimes F_{1}=I_{n} \otimes I_{1}=I_{n}$ is reached.

Starting with $F_{n}=I_{1} \otimes F_{n}$ gives the Cooley-Tukey theorem (1965):

$$
F_{n}=\left(I_{1} \otimes B_{n}\right)\left(I_{2} \otimes B_{n / 2}\right)\left(I_{4} \otimes B_{n / 4}\right) \cdots\left(I_{n / 2} \otimes B_{2}\right) R_{n}
$$

where

$$
R_{n}=\left(I_{n / 2} \otimes S_{2}\right) \cdots\left(I_{4} \otimes S_{n / 4}\right)\left(I_{2} \otimes S_{n / 2}\right)\left(I_{1} \otimes S_{n}\right)
$$

Binary digits

- We can write an index $j, 0 \leq j<n$, as

$$
j=\sum_{k=0}^{m-1} b_{k} 2^{k}
$$

where $b_{k} \in\{0,1\}$ is the k th bit and $n=2^{m}$.

- b_{0} is the least significant bit; b_{m-1} the most significant bit.
- We use the notation

$$
\left(b_{m-1} \cdots b_{1} b_{0}\right)_{2}=\sum_{k=0}^{m-1} b_{k} 2^{k}
$$

- Example: $(10100101)_{2}=2^{7}+2^{5}+2^{2}+2^{0}=165$.

Bit-reversal permutation

Let $n=2^{m}$, with $m \geq 1$. The bit-reversal permutation
$\rho_{n}:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ is defined by

$$
\rho_{n}\left(\left(b_{m-1} \cdots b_{0}\right)_{2}\right)=\left(b_{0} \cdots b_{m-1}\right)_{2}
$$

For $n=8$:

j	$\left(b_{2} b_{1} b_{0}\right)_{2}$	$\left(b_{0} b_{1} b_{2}\right)_{2}$	$\rho_{8}(j)$
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Bit-reversal algorithm

input: $\quad \mathbf{x}$: vector of length $n=2^{m}, m \geq 1, \mathbf{x}=\mathbf{x}_{0}$.
output: $\quad \mathbf{x}$: vector of length n, such that $\mathbf{x}=R_{n} \mathbf{x}_{0}$. call: $\quad \operatorname{bitrev}(\mathbf{x}, n)$.
for $j:=0$ to $n-1$ do
$\left\{\right.$ Compute $\left.r:=\rho_{n}(j)\right\}$
$q:=j$;
$r:=0$;
for $k:=0$ to $\log _{2} n-1$ do
$b_{k}:=q \bmod 2 ;$
$q:=q \operatorname{div} 2 ;$
$r:=2 r+b_{k}$;
if $j<r$ then $\operatorname{swap}\left(x_{j}, x_{r}\right)$;

Based on Theorem 3.10: $R_{n}=P_{\rho_{n}}=$ permutation matrix corresponding to ρ_{n}. For a proof, see pp. 110-111.

Unordered FFT

input: $\quad \mathbf{x}$: vector of length $n=2^{m}, m \geq 1, \mathbf{x}=\mathbf{x}_{0}$.
output: $\quad \mathbf{x}$: vector of length n, such that $\mathbf{x}=F_{n} R_{n} \mathbf{x}_{0}$.
call: $\quad \operatorname{UFFT}(\mathbf{x}, n)$.
$k:=2$;
while $k \leq n$ do
$\left\{\right.$ Compute $\left.\mathbf{x}:=\left(I_{n / k} \otimes B_{k}\right) \mathbf{x}\right\}$
for $r:=0$ to $\frac{n}{k}-1$ do
$\left\{\right.$ Compute $\left.x(r k: r k+k-1):=B_{k} x(r k: r k+k-1)\right\}$ for $j:=0$ to $\frac{k}{2}-1$ do
$\left\{\right.$ Compute $\left.x_{r k+j} \pm \omega_{k}^{j} x_{r k+j+k / 2}\right\}$
$\tau:=\omega_{k}^{j} x_{r k+j+k / 2}$;
$x_{r k+j+k / 2}:=x_{r k+j}-\tau$;
$x_{r k+j}:=x_{r k+j}+\tau$;
$k:=2 k ;$

Summary

- We have derived a nonrecursive fast Fourier transform (FFT) by using matrix notation and the Kronecker matrix product.
- The result is the Cooley-Tukey Decimation In Time (DIT) formula

$$
F_{n}=\left(I_{1} \otimes B_{n}\right)\left(I_{2} \otimes B_{n / 2}\right)\left(I_{4} \otimes B_{n / 4}\right) \cdots\left(I_{n / 2} \otimes B_{2}\right) R_{n}
$$

- R_{n} is the permutation matrix that corresponds to the bit-reversal permutation ρ_{n}.
- Each of the $\log _{2} n$ matrix factors $I_{k} \otimes B_{n / k}$ has $2 n$ nonzero elements, and each corresponding matrix-vector multiplication requires $5 n$ flops. Total number of flops: $5 n \log _{2} n$. Same as for the recursive FFT.
- The nonrecursive variant is a good basis for parallelisation.

