Parallel Fast Fourier Transform (PSC §3.4)

Data distributions for butterflies of FFT

butterfly distance

4
 cyclic

$$
p=4, n=16
$$

- n, p must be powers of two with $p<n$.
- In stage k, component pair $\left(x_{j}, x_{j+k / 2}\right)$ at distance $k / 2$ is combined.
- Block distribution works for $k=2,4, \ldots, n / p$.
- Cyclic distribution works for $k=2 p, 4 p, \ldots, n$.

Block distribution works for small butterflies

Let $n=8, p=2$. In stage $k=2$, the vector \mathbf{x} is multiplied by

- The first two butterfly blocks $x(0: 1), x(2: 3)$ are contained in processor block $x(0: 3)$.
- The last two butterfly blocks $x(4: 5), x(6: 7)$ are contained in processor block $x(4: 7)$.

Cyclic distribution works for large butterflies

In stage $k=8$, the vector \mathbf{x} is multiplied by

$$
I_{1} \otimes B_{8}=B_{8}=\left[\begin{array}{rrrrrrrr}
1 & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \omega & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \omega^{2} & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \omega^{3} \\
1 & \cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & -\omega & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & -\omega^{2} & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & -\omega^{3}
\end{array}\right]
$$

where $\omega=\omega_{8}=e^{-\pi i / 4}=\frac{1}{2} \sqrt{2}-\frac{1}{2} \sqrt{2} i$.

- The pairs $\left(x_{0}, x_{4}\right)$ and $\left(x_{2}, x_{6}\right)$ are combined on $P(0)$.
- The pairs $\left(x_{1}, x_{5}\right)$ and $\left(x_{3}, x_{7}\right)$ are combined on $P(1)$.

Parallelisation strategy: use different distributions

- At the start, for $k \leq n / p$, we use the block distribution.
- Near the end, for $k \geq 2 p$, the cyclic distribution.
- This suffices if $p \leq n / p$, i.e. $p \leq \sqrt{n}$. For example: $p \leq 32$ for $n=1024$.
- If $p>\sqrt{n}$, we need an intermediate distribution, a generalisation of the block and cyclic distribution.
- Split the vector into blocks. Each block is owned by a group of processors and is distributed by the cyclic distribution over the processors of that group.

Group-cyclic distribution

- Let c be fixed such that $1 \leq c \leq p$ and $p \bmod c=0$. The group-cyclic distribution with cycle c is defined by

$$
x_{j} \longmapsto P\left(\left(j \operatorname{div}\left\lceil\frac{c n}{p}\right\rceil\right) c+\left(j \bmod \left\lceil\frac{c n}{p}\right\rceil\right) \bmod c\right) .
$$

- c is the number of processors in a group and $\left\lceil\frac{c n}{p}\right\rceil=\left\lceil\frac{n}{p / c}\right\rceil$ is the size of a block owned by a group.
- If $n \bmod p=0$, as happens in the FFT, this reduces to

$$
x_{j} \longmapsto P\left(\left(j \operatorname{div} \frac{c n}{p}\right) c+j \bmod c\right)
$$

- For $c=1$, we get the block distribution. For $c=p$, we get the cyclic distribution.

From block to cyclic distribution

(b) $c=2 \quad$| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

$n=8, p=4$, so that $p>\sqrt{n}$.
In (b), we have $p / c=2$ groups of $c=2$ processors.

Global and local indices

- n, p and hence c are powers of two. We have $1 \leq c<\frac{c n}{p}$.
- Thus, we can write the global index j as

$$
j=j_{2} \frac{c n}{p}+j_{1} c+j_{0}
$$

where $0 \leq j_{0}<c$ and $0 \leq j_{1}<n / p$.

- The processor that owns component x_{j} is

$$
P\left(\left(j \operatorname{div} \frac{c n}{p}\right) c+j \bmod c\right)=P\left(j_{2} c+j_{0}\right)
$$

- Processors in the same group have the same j_{2}, but j_{0} differs.
- We obtain the local index j by ordering the local components by increasing global index j, so that $j=j_{1}$.

Which operations are local?

Butterfly operation on $\left(x_{j}, x_{j+k / 2}\right)$ is local if

- $x_{j}, x_{j+k / 2}$ are in the same group, i.e. $k \leq \frac{c n}{p}$;
- distance $k / 2$ is a multiple of c, i.e. $k \geq 2 c$.

We can use the group-cyclic distribution with cycle c for

$$
2 c \leq k \leq \frac{n}{p} c .
$$

Outline of algorithm:

- start with $c=1$, perform stages $k=2,4, \ldots, n / p$;
- increase c to $c=n / p$, perform stages

$$
k=2 n / p, 4 n / p, \ldots,(n / p)^{2}
$$

- finish with $c=p$, instead of $c=(n / p)^{t} \geq p$.

Warning: difficult slides ahead

Parallel FFT

Parallel unordered FFT

$\{\operatorname{distr}(\mathbf{x})=$ block $\} k:=2 ; c:=1$;
while $k \leq n$ do
$j_{0}:=s \bmod c ; j_{2}:=s \operatorname{div} c ;$
while $k \leq \frac{n}{p} c$ do
nblocks $:=\frac{n c}{k p} ;\{n / k$ butterfly blocks, p / c groups $\}$ for $r:=j_{2} \cdot n$ blocks to $\left(j_{2}+1\right) \cdot n b l o c k s-1$ do $\{$ Compute part of $x(r k:(r+1) k-1)\}$ for $j:=j_{0}$ to $\frac{k}{2}-1$ step c do
$\tau:=\omega_{k}^{j} x_{r k+j+k / 2} ;$
$x_{r k+j+k / 2}:=x_{r k+j}-\tau$;
$x_{r k+j}:=x_{r k+j}+\tau ;$

$$
k:=2 k
$$

Parallel unordered FFT

$\{\operatorname{distr}(\mathbf{x})=$ block $\} k:=2 ; c:=1$;
while $k \leq n$ do
(1)

$$
\begin{equation*}
j_{0}:=s \bmod c ; j_{2}:=s \operatorname{div} c \tag{0}
\end{equation*}
$$

while $k \leq \frac{n}{p} c$ do
nblocks $:=\frac{n c}{k p} ;\{n / k$ butterfly blocks, p / c groups $\}$ for $r:=j_{2} \cdot n$ blocks to $\left(j_{2}+1\right) \cdot n b l o c k s-1$ do
$\{$ Compute part of $x(r k:(r+1) k-1)\}$ for $j:=j_{0}$ to $\frac{k}{2}-1$ step c do
$\tau:=\omega_{k}^{j} x_{r k+j+k / 2} ;$
$x_{r k+j+k / 2}:=x_{r k+j}-\tau$;

$$
x_{r k+j}:=x_{r k+j}+\tau ;
$$

$$
k:=2 k
$$

if $c<p$ then

$$
c_{0}:=c ; c:=\min \left(\frac{n}{p} c, p\right)
$$

$\{\operatorname{distr}(\mathbf{x})=$ cyclic $\}$

Parallel bit reversal

$p=8, n=256$

Start in cyclic distribution for index j with local bit reversal. Then swap the data between processors $P(s)$ and $P\left(\rho_{p}(s)\right)$. We end up in the block distribution for the reversed index $\rho_{n}(j)$.

Postponing the processor swaps

- The distribution just before the swaps is the block distribution with bit-reversed processor numbering.
- All processors perform the same operations in FFT stages $k=2,4, \ldots, n / p$, multiplying local blocks of \mathbf{x} by B_{k}.
- I'll scratch your back if you scratch mine: processors perform the work of their partner.
- The data swap can be postponed until the first redistribution, immediately after stage $k=n / p$.
- Buy 2, Pay 1: two permutations can be done at the cost of one by combining them. Hence no extra communication is incurred by the data swaps.

Redistribution with possible proc-number reversal

input: $\quad \mathbf{x}:$ vector of length $n=2^{m}$, $\operatorname{distr}(\mathbf{x})=$ group-cyclic with cycle c_{0} over $p=2^{q}$ procs. If rev is true, processor numbering is bit-reversed.
output: $\quad \operatorname{distr}(\mathbf{x})=$ group-cyclic with cycle c_{1}.
call: \quad redistr($\left.\mathbf{x}, n, p, c_{0}, c_{1}, r e v\right)$;
(1) if rev then

$$
\begin{aligned}
& j_{0}:=\rho_{p}(s) \bmod c_{0} ; \\
& j_{2}:=\rho_{p}(s) \operatorname{div} c_{0} ;
\end{aligned}
$$

else

$$
\begin{aligned}
& j_{0}:=s \bmod c_{0} \\
& j_{2}:=s \operatorname{div} c_{0}
\end{aligned}
$$

for $j:=j_{2} \frac{c_{0} n}{p}+j_{0}$ to $\left(j_{2}+1\right) \frac{c_{0} n}{p}-1$ step c_{0} do dest $:=\left(j \operatorname{div} \frac{c_{1} n}{p}\right) c_{1}+j \bmod c_{1} ;$ put x_{j} in $P($ dest $)$;

Last iteration of main loop

- The last iteration is determined by the smallest integer t such that $(n / p)^{t} \geq p$.
- The cycles of the iterations are
$c=(n / p)^{0},(n / p)^{1}, \ldots,(n / p)^{t-1}, p$.
- The total number of iterations is therefore $t+1$.
- Since

$$
\begin{aligned}
(n / p)^{t} \geq p & \Longleftrightarrow n^{t} \geq p^{t+1} \Longleftrightarrow 2^{m t} \geq 2^{q(t+1)} \\
& \Longleftrightarrow m t \geq q(t+1) \Longleftrightarrow m t-q t \geq q \\
& \Longleftrightarrow t \geq \frac{q}{m-q},
\end{aligned}
$$

it follows that

$$
t=\left\lceil\frac{q}{m-q}\right\rceil .
$$

BSP cost

- Every iteration has a computation superstep and a communication superstep, except the last, which has no data redistribution. Therefore,

$$
T_{\mathrm{sync}}=(2 t+1) /=\left(2\left\lceil\frac{q}{m-q}\right\rceil+1\right) /
$$

- Every redistribution moves at most all the local data in and out, i.e., n / p complex numbers, or $2 n / p$ real data words. Therefore,

$$
T_{\mathrm{comm}}=t \cdot \frac{2 n}{p} g=\left\lceil\frac{q}{m-q}\right\rceil \cdot \frac{2 n}{p} g
$$

- Look mama, without counting!

$$
T_{\text {comp }}=\left(5 n \log _{2} n\right) / p
$$

Summary

- We have used different distributions in different parts of the algorithm, trying to make our operations local.
- The algorithm starts and finishes in the cyclic distribution.
- If we split a vector into p / c blocks and distribute each block over c processors by the cyclic distribution, then we obtain the group-cyclic distribution with cycle c.
- The total BSP cost of the parallel FFT algorithm is

$$
T_{\mathrm{FFT}}=\frac{5 n \log _{2} n}{p}+2 \cdot\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil \cdot \frac{n}{p} g+\left(2\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil+1\right) I .
$$

- For practical p, we need only one data redistribution:

$$
T_{\mathrm{FFT}, 1<p \leq \sqrt{n}}=\frac{5 n \log _{2} n}{p}+2 \frac{n}{p} g+3 /
$$

