Parallel Fast Fourier Transform

(PSC §3.4)

Parallel FFT &k %

1/17

Data distributions for butterflies of FFT

butterfly distance

v

n, p must be powers of two with p < n.

v

In stage k, component pair (x;, Xj1x/2) at distance k/2 is
combined.
Block distribution works for k =2,4,...,n/p.

v

v

Cyclic distribution works for k = 2p,4p, ..., n.

Parallel FFT &k

2/17

Block distribution works for small butterflies

Let n =28, p = 2. In stage k = 2, the vector x is multiplied by

101 - - T

Iy @ By =

» The first two butterfly blocks x(0: 1), x(2: 3) are contained
in processor block x(0: 3).

» The last two butterfly blocks x(4: 5), x(6: 7) are contained in
processor block x(4: 7).

Parallel FFT &k %

Cyclic distribution works for large butterflies

In stage k = 8, the vector x is multiplied by

h ® Bg = Bg =

where w = wg = e /4 — %\f — % 2i.
» The pairs (xp, xa) and (x2, xs) are combined on P(0).

» The pairs (x1,x5) and (x3, x7) are combined on P(1).

Parallel FFT &k %

4/17

Parallelisation strategy: use different distributions

» At the start, for k < n/p, we use the block distribution.
» Near the end, for k > 2p, the cyclic distribution.

» This suffices if p < n/p, i.e. p < +/n. For example: p < 32
for n = 1024.

» If p > \/n, we need an intermediate distribution, a
generalisation of the block and cyclic distribution.

» Split the vector into blocks. Each block is owned by a group
of processors and is distributed by the cyclic distribution over
the processors of that group.

Parallel FFT &k %

Group-cyclic distribution

v

Let ¢ be fixed such that 1 < ¢ < p and p mod ¢ =0. The
group-cyclic distribution with cycle ¢ is defined by

x; — P((j div ﬁﬂ)cﬂj mod [‘ﬂ) mod c).

v

¢ is the number of processors in a group and {%W = { n W is
the size of a block owned by a group.

v

If n mod p =0, as happens in the FFT, this reduces to

xj — P((j div %)c +j mod c).

v

For ¢ = 1, we get the block distribution.
For ¢ = p, we get the cyclic distribution.

Parallel FFT &k %

6/17

From block to cyclic distribution

(block) o 1 2 3 4 5 6 7

© c=4
(eyclic) o 1 2 3 4 5 6 7

n=38, p=4,sothat p> /n.
In (b), we have p/c = 2 groups of ¢ = 2 processors.

Parallel FFT &k

7/17

Global and local indices

» n,p and hence c are powers of two. We have 1 < c < %.
» Thus, we can write the global index j as
.o.cno .
J=J—+jc+jo,
p
where 0 < jo < cand 0 < j; < n/p.

» The processor that owns component x; is
. ... €Cn . . .
P((j div ;)C +j mod ¢) = P(jac + jo)-

» Processors in the same group have the same j, but jy differs.

> We obtain the local index j by ordering the local components
by increasing global index j, so that j = ji.

Parallel FFT &k

Which operations are local?

Butterfly operation on (x;, xj14/2) is local if
> Xj, Xjyk/2 are in the same group, i.e. k < %’;
» distance k/2 is a multiple of ¢, i.e. k> 2c.

We can use the group-cyclic distribution with cycle ¢ for

2c< k< —c.

n
p
Outline of algorithm:

» start with ¢ = 1, perform stages k = 2,4,...,n/p;

> increase c to ¢ = n/p, perform stages
k=2n/p,4n/p,...,(n/p)*

|

» finish with ¢ = p, instead of ¢ = (n/p)! > p.

Parallel FFT &k

Warning: difficult slides ahead

Parallel FFT &k

10/17

Parallel unordered FFT

{ distr(x) = block } k:=2; c:=1;
while kK < n do
(0) Jo:=smod c; jo» :=s div c;
while k < gc do
nblocks := ¢=; { n/k butterfly blocks, p/c groups }
for r := jo - nblocks to (j2 + 1) - nblocks — 1 do
{ Compute part of x(rk: (r +1)k — 1) }
forj::jotog—lstepcdo
T = WLerJerrk/z;
Xrk4-j+k/2 = Xrk+j — T
Xrk+j = Xrk+j + T
k = 2k;

Parallel FFT &k

11 /17

Parallel unordered FFT

{ distr(x) = block } k:=2; c:=1;
while kK < n do
(0) Jo:=smod c; jo» :=s div c;
while k < gc do
nblocks := ¢=; { n/k butterfly blocks, p/c groups }
for r := jo - nblocks to (j2 + 1) - nblocks — 1 do
{ Compute part of x(rk: (r +1)k — 1) }
forj::jotog—lstepcdo
T = WLerJerrk/z;
Xrk4-j+k/2 = Xrk+j — T
Xrk+j = Xrk+j + T

k = 2k;
if ¢ < p then
R . R H n .
Co:=¢, c:= mm(EC’ p);
(1) redIStr(x’ n, p’ CO’ C)v Parallel FFT

{ distr(x) = cyclic }

11 /17

Parallel bit reversal

p=28, n=256

local index = 20 procnr= 6

j=166=[L]OTTTOTO WFM cyclic distribution

L[OfT] block distribution with
bit—reversed processor numbering

p(j)=101=[MBNOTOTT]OTT] block distribution

procnr=3 local index = 5

i

Start in cyclic distribution for index j with local bit reversal.
Then swap the data between processors P(s) and P(pp(s)).
We end up in the block distribution for the reversed index p,(J).

Parallel FFT &l ™

12 /17

Postponing the processor swaps

» The distribution just before the swaps is the block distribution
with bit-reversed processor numbering.

» All processors perform the same operations in FFT stages
k=2,4,... n/p, multiplying local blocks of x by B.

» I'll scratch your back if you scratch mine: processors perform
the work of their partner.

» The data swap can be postponed until the first redistribution,
immediately after stage k = n/p.

» Buy 2, Pay 1: two permutations can be done at the cost of
one by combining them. Hence no extra communication is
incurred by the data swaps.

Parallel FFT &k

13 /17

Redistribution with possible proc-number reversal

input: x : vector of length n =27,
distr(x) = group-cyclic with cycle ¢y over p = 29 procs.
If rev is true, processor numbering is bit-reversed.
output: distr(x) = group-cyclic with cycle ¢;.
call: redistr(x, n, p, o, c1, rev);

(1) if rev then

Jo = pp(s) mod cp;
J2 = pp(s) div cp;

else
Jo := s mod cp;
Jjo := s div ¢p;

for j ::jg%" +joto (o + 1)% — 1 step ¢y do
dest := (j div §%)cy +j mod cy;
put x; in P(dest);

Parallel FFT &k

14 /17

Last iteration of main loop

» The last iteration is determined by the smallest integer t such
that (n/p)t > p.

> The cycles of the iterations are
c=(n/p)% (n/p)},....(n/P)" Y,

> The total number of iterations is therefore t+1.

» Since

(n/p)t >

= mt> (t—|—1)<:>mt—qt>q
=

3

o =

t>

it follows that

Parallel FFT &k %

15 /17

BSP cost

» Every iteration has a computation superstep and a
communication superstep, except the last, which has no data
redistribution. Therefore,

Tagne = (2t + 1)1 = (2 [qw + 1) I

m—gq

» Every redistribution moves at most all the local data in and
out, i.e., n/p complex numbers, or 2n/p real data words.
Therefore,

2n 2n
Tcornm =t-—g = ’Vq-‘ - — 8.
P P

» Look mama, without counting!

Tcomp = (5[‘1 |Og2 n)/p

Parallel FFT

16 /17

Summary

» We have used different distributions in different parts of the
algorithm, trying to make our operations local.

» The algorithm starts and finishes in the cyclic distribution.

» If we split a vector into p/c blocks and distribute each block
over ¢ processors by the cyclic distribution, then we obtain the
group-cyclic distribution with cycle c.

» The total BSP cost of the parallel FFT algorithm is

5nlog, n lo n lo
Trrr = g2 —1—2[82P —‘~g+ (2 [gzp_‘ + 1> l.
p logy(n/p) | P log,(n/p)

» For practical p, we need only one data redistribution:

5nlog, n n

TepT, 1<p<yn = + 2;g +3l.

Parallel FFT &k

17 /17

