Weights for the FFT
(PSC §3.5)

Sequential computation of weights

» The weights of the FFT are the powers of w, that are needed

in the FFT computation: 1,w,,w?, .. wg/z !

» We can compute these powers by

. ; i o
wl = e 2/ = cos < jsin <.
n

» Computing the weights by successive multiplication
wh™ = W, - wh is less accurate and not recommended.

» Typically, computing a sine or cosine costs 10 flops in double
precision accuracy. If we compute a weight each time we need
it, we perform 20 flops extra for every 10 flops (complex
%, 4+, —) in the inner loop of the FFT. This would triple the
total cost.

» Alternative: compute weights once, store them in a table.

Weights I

N)

19

Using symmetry to compute weights faster

» We can save half the computations by using

wpl? — e 2miln/2n _ g=migamifn _ _(])

4
Thus, we only need to compute 1,w,, w?, ... ,w;,’/

» Taking negatives and complex conjugates is extremely cheap.

» Similarly, we can halve the work again by using

8
Now, we only need to compute 1,w,,w?, ... ,w,';/ .

» The total cost of the weight initialisations is thus about
20 - n/8 = 2.5n flops.

Weights =k =

Weights for parallel computation

» A brute-force approach: store the complete table of weights
on every processor.

» This approach is nonscalable in memory: in the sequential
case, we store n vector components and n/2 weights. In the
parallel case, n/p vector components and n/2 weights per
processor.

» Furthermore, for small n or large p, the 2.5n flops of the
weight initialisation may be much more than the (5nlog, n)/p
local flops of the FFT.

» Some replication of weights is inevitable: stages
k =2,4,...,n/p are the same on all processors and hence
need the same weights.

» Qur goal is to find a memory-scalable approach that adds only 3
a few flops to the overall count. '

Weights I

Generalised Discrete Fourier Transform

» The Generalised Discrete Fourier Transform (GDFT) is
defined by

n—1
Vi = ijw{,(Ha), for 0 < k < n,
j=0

where « is a fixed real parameter.
» GDFT = DFT for a = 0.
» We can derive a GFFT, similar to the FFT.

» We can also generalise our matrix notation and obtain a
generalised Cooley-Tukey decomposition for the matrix Fy
defined by

(Fa)k = w2,

Weights =% ™

Generalised results—without words

QY = diag(w5,, w%jo‘, w%ffo‘, . ,wé’n_lJro‘)
Ba — In/2 Q?:/2
! Iy =255

Fo = B2 (h® FS))S,

Fi=(h©By) (k@ By,)(lh©Bp,) - (2@ By)Rn

Weights &

Aim: reformulating the parallel FFT

We try to express the parallel FFT in sequential GFFTs with
suitable a. The a-values may be different on different processors.

Weights =% ™

7/19

Inner loop in GDFT lingo

forj::jotog—lstepcdo
T 1= Wi Xkt k2
Xrk+j+k/2 = Xrk+j — T,
Xrk+j "= Xrk+j + T,

This loop takes a local subvector x(rk + k/2 + jo: c: (r+ 1)k —1)
of length % multiplies it by the diagonal matrix

dlag(wf, ctho icﬂo,...,wf/%cﬂo)

c 1 c 2+jo/c k/(2c)—1+jo/c
= d1ag(wf//c, k;rcjo/ ,wk;rio/ ,...,wk%) +JO/)
_ /e
= Qf/(zc

adds it to x(rk + jo: c¢: rk + k/2 — 1), and subtracts it.

Weights =k =

In matrix notation

for r := j - nblocks to (jo» + 1) - nblocks — 1 do
forj::jotog—lstepcdo
T 1= W Xk k25
Xrk+j+kj2 = Xrk+j — T,
Xrk+j = Xrk+j + T,

» In the inner loop, the local subvector '
x(rk+jo: c: (r+ 1)k — 1) is multiplied by Bf/cc.

» In the outer loop, the same generalised butterfly is performed
for all nblocks = Z—; local subvectors, thus computing

ne 4

o/cy L MC
(/;—,‘;@Bf/c)'x(Jz;ﬂLJo-C-(Jz+1)p)-

This is a local computation.

Weights I

Real butterflies

Weights &

10/19

Butterflies form an unordered GFFT

» A complete sequence of butterfly stages is a sequence of

maximal length, k = 2¢,4c, ..., 2c.

n
P
> If we multiply the corresponding matrices /nc @ Bf/cc from
P
right to left, we obtain

(h® B{IO/;)(/Q ® Bj;o//(;p)) el ® B — Frj;o//pcRn/p’

which is an unordered GFFT with parameter
a=jo/c=(smod c)/c.
» Note the dependence on the processor number s.

Weights =k =

11/19

An incomplete sequence is OK at the start

» For c =1, we have jp = s mod ¢ = 0, so that all factors have
the form /e © B/ = 2 ® By,
P

k/c
» Now we do not need a complete sequence to obtain a simple
formula: if we multiply the matrices for k =2,4,..., k; from

right to left we get

(I, @ By) - (I @ Ba)(l2 ® Bo)
= 2 @(h®By) - (ly ®Bi)(ly ® By))
= I?np ®(Fk1Rk1).
» We restructure our algorithm, modifying the c-loop so that we

start with one incomplete sequence, and then execute the
remainder with complete sequences.

Weights I

12 /19

Number of iterations at the start

» We have t + 1 iterations, where

n n t—1
C:].,kl,kl,...,/q() = p.
p p

» Thus, ki is given by

n

9 iy

Weights &

13/19

Restructured parallel FFT

(0)

{ distr(x) = cyclic }
bitrev(x(s: p: n—1),n/p);
{ distr(x) = block with bit-reversed processor number }

lo
t:= [Iogzg(%] ki = (e rev = true;

forri=s- g to(s+1) 5 —1do
UFFT((rkl. (r+ 1)/(1 — 1) kl)

Weights =% ™

14 /19

Restructured parallel FFT

(0)

{ distr(x) = cyclic }
bitrev(x(s: p: n—1),n/p);
{ distr(x) = block with bit-reversed processor number }

t:= [Iogg(%] ki = (n/p)t. rev = true;
forri=s- g to(s+1) 5 —1do
UFFT((rkl. (r + 1)/(1 — 1) kl)
co:=1;, c:=kq;
while ¢ < p do
redistr(x, n, p, co, c, rev);
{ distr(x) = group-cyclic with cycle ¢ }
jo:=smod c; p ;= s div c; rev := false;
UGFFT(x(j2; +Jo: ¢: (2 + 1)%F = 1),n/p,jo/c);
Co:=c¢;cC: EC
{ distr(x) = cyclic }

Weights =% ™

14 /19

A different way of computing the GDFT

» We can rewrite the ordered GDFT as

» Thus, we can multiply the components of the input vector
first by scalar factors and then perform a DFT.

» In matrix language, define the twiddle matrix

T2 = diag(L,wd, w2, ... WiV,

giving Fr = F, T,
» For an unordered GDFT, we twiddle with R, T R,,.

» Twiddling costs n/p extra complex multiplications, or 6n/p
flops, in every computation superstep except the first.

Weights I

15/19

Memory needed by the parallel FFT

» The total amount of memory space per processor in reals used
by the parallel FFT is

I
Miper — (z. [ngpw +3> n
log,(n/p) p
» This is for:

> n/p complex vector components;
» n/(2p) complex weights of an FFT of length n/p;
» n/p complex twiddle factors for each of the [lozg(;ifp)] GFFTs

performed locally.

Weights =% ™

16 /19

Memory scalability

» We call the memory requirements of a BSP algorithm scalable

o) =0 (M).

» Motivation of the O(p) term: BSP algorithms are based on
all-to-all communication supersteps, where each processor
deals with p — 1 others, and needs already O(p) buffer
memory for storing communication meta-data.

Weights I

17 /19

The parallel FFT is memory-scalable

» For p < n/p, only one twiddle array has to be stored, so that
the total memory requirement is M(n, p) = 5n/p, which is of
the right order.

» For p > n/p, we need t — 1 additional iterations, each
requiring a twiddle array. Fortunately, the total extra twiddle
memory is at most

2(t—1
At=1n _ 2<"+"+...+">
p p

Weights I

18 /19

Summary

» We have introduced the Generalised Discrete Fourier
Transform defined by

n—1
Vi = ijwé(k-i-a).

j=0
» We have restructured our parallel algorithm, expressing the
local computations as sequential GFFTs.

» The sequential GFFTs can be performed at little extra cost by
multiplying the local vector first by a diagonal twiddle matrix,
and then performing an unordered FFT.

» The restructured algorithm is memory-scalable, with

o) -0 (M)).

Weights I

19/19

