
Weights

Weights for the FFT
(PSC §3.5)

1 / 19



Weights

Sequential computation of weights

I The weights of the FFT are the powers of ωn that are needed

in the FFT computation: 1, ωn, ω
2
n, . . . , ω

n/2−1
n .

I We can compute these powers by

ωj
n = e−2πij/n = cos

2πj

n
− i sin

2πj

n
.

I Computing the weights by successive multiplication
ωj+1

n = ωn · ωj
n is less accurate and not recommended.

I Typically, computing a sine or cosine costs 10 flops in double
precision accuracy. If we compute a weight each time we need
it, we perform 20 flops extra for every 10 flops (complex
∗,+,−) in the inner loop of the FFT. This would triple the
total cost.

I Alternative: compute weights once, store them in a table.

2 / 19



Weights

Using symmetry to compute weights faster

I We can save half the computations by using

ω
n/2−j
n = e−2πi(n/2−j)/n = e−πie2πij/n = −(ωj

n).

Thus, we only need to compute 1, ωn, ω
2
n, . . . , ω

n/4
n .

I Taking negatives and complex conjugates is extremely cheap.

I Similarly, we can halve the work again by using

ω
n/4−j
n = −i(ωj

n).

Now, we only need to compute 1, ωn, ω
2
n, . . . , ω

n/8
n .

I The total cost of the weight initialisations is thus about
20 · n/8 = 2.5n flops.

3 / 19



Weights

Weights for parallel computation

I A brute-force approach: store the complete table of weights
on every processor.

I This approach is nonscalable in memory: in the sequential
case, we store n vector components and n/2 weights. In the
parallel case, n/p vector components and n/2 weights per
processor.

I Furthermore, for small n or large p, the 2.5n flops of the
weight initialisation may be much more than the (5n log2 n)/p
local flops of the FFT.

I Some replication of weights is inevitable: stages
k = 2, 4, . . . , n/p are the same on all processors and hence
need the same weights.

I Our goal is to find a memory-scalable approach that adds only
a few flops to the overall count.

4 / 19



Weights

Generalised Discrete Fourier Transform

I The Generalised Discrete Fourier Transform (GDFT) is
defined by

yk =
n−1∑
j=0

xjω
j(k+α)
n , for 0 ≤ k < n,

where α is a fixed real parameter.

I GDFT = DFT for α = 0.

I We can derive a GFFT, similar to the FFT.

I We can also generalise our matrix notation and obtain a
generalised Cooley-Tukey decomposition for the matrix Fα

n

defined by

(Fα
n )jk = ω

j(k+α)
n .

5 / 19



Weights

Generalised results—without words

Ωα
n = diag(ωα

2n, ω
1+α
2n , ω2+α

2n , . . . , ωn−1+α
2n )

Bα
n =

[
In/2 Ωα

n/2

In/2 −Ωα
n/2

]

F α
n = Bα

n (I2 ⊗ F α
n/2)Sn

Fα
n = (I1 ⊗ Bα

n )(I2 ⊗ Bα
n/2)(I4 ⊗ Bα

n/4) · · · (In/2 ⊗ Bα
2 )Rn

6 / 19



Weights

Aim: reformulating the parallel FFT

We try to express the parallel FFT in sequential GFFTs with
suitable α. The α-values may be different on different processors.

7 / 19



Weights

Inner loop in GDFT lingo

for j := j0 to k
2 − 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

This loop takes a local subvector x(rk + k/2 + j0 : c : (r + 1)k − 1)
of length k

2c , multiplies it by the diagonal matrix

diag(ωj0
k , ωc+j0

k , ω2c+j0
k , . . . , ω

k/2−c+j0
k )

= diag(ω
j0/c
k/c , ω

1+j0/c
k/c , ω

2+j0/c
k/c , . . . , ω

k/(2c)−1+j0/c
k/c )

= Ω
j0/c
k/(2c),

adds it to x(rk + j0 : c : rk + k/2− 1), and subtracts it.

8 / 19



Weights

In matrix notation

for r := j2 · nblocks to (j2 + 1) · nblocks − 1 do
for j := j0 to k

2 − 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

I In the inner loop, the local subvector

x(rk + j0 : c : (r + 1)k − 1) is multiplied by B
j0/c
k/c .

I In the outer loop, the same generalised butterfly is performed
for all nblocks = nc

kp local subvectors, thus computing

(I nc
kp
⊗ B

j0/c
k/c ) · x(j2

nc

p
+ j0 : c : (j2 + 1)

nc

p
− 1).

This is a local computation.

9 / 19



Weights

Real butterflies

10 / 19



Weights

Butterflies form an unordered GFFT

I A complete sequence of butterfly stages is a sequence of
maximal length, k = 2c , 4c , . . . , n

p c .

I If we multiply the corresponding matrices I nc
kp
⊗ B

j0/c
k/c from

right to left, we obtain

(I1 ⊗ B
j0/c
n/p )(I2 ⊗ B

j0/c
n/(2p)) · · · (I n

2p
⊗ B

j0/c
2 ) = F

j0/c
n/p Rn/p,

which is an unordered GFFT with parameter
α = j0/c = (s mod c)/c .

I Note the dependence on the processor number s.

11 / 19



Weights

An incomplete sequence is OK at the start

I For c = 1, we have j0 = s mod c = 0, so that all factors have

the form I nc
kp
⊗ B

j0/c
k/c = I n

kp
⊗ Bk .

I Now we do not need a complete sequence to obtain a simple
formula: if we multiply the matrices for k = 2, 4, . . . , k1 from
right to left we get

(I n
k1p

⊗ Bk1) · · · (I n
4p
⊗ B4)(I n

2p
⊗ B2)

= I n
k1p

⊗ ((I1 ⊗ Bk1) · · · (I k1
4

⊗ B4)(I k1
2

⊗ B2))

= I n
k1p

⊗ (Fk1Rk1).

I We restructure our algorithm, modifying the c-loop so that we
start with one incomplete sequence, and then execute the
remainder with complete sequences.

12 / 19



Weights

Number of iterations at the start

I We have t + 1 iterations, where

c = 1, k1, k1
n

p
, . . . , k1

(
n

p

)t−1

= p.

I Thus, k1 is given by

k1 =
n

(n/p)t
.

13 / 19



Weights

Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s : p : n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)e; k1 := n

(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do

UFFT(x(rk1 : (r + 1)k1 − 1), k1);

c0 := 1; c := k1;
while c ≤ p do

(1) redistr(x, n, p, c0, c , rev);
{ distr(x) = group-cyclic with cycle c }

(2) j0 := s mod c ; j2 := s div c ; rev := false;
UGFFT(x(j2

nc
p + j0 : c : (j2 + 1)nc

p − 1), n/p, j0/c);

c0 := c ; c := n
p c ;

{ distr(x) = cyclic }

14 / 19



Weights

Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s : p : n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)e; k1 := n

(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do

UFFT(x(rk1 : (r + 1)k1 − 1), k1);
c0 := 1; c := k1;
while c ≤ p do

(1) redistr(x, n, p, c0, c , rev);
{ distr(x) = group-cyclic with cycle c }

(2) j0 := s mod c ; j2 := s div c ; rev := false;
UGFFT(x(j2

nc
p + j0 : c : (j2 + 1)nc

p − 1), n/p, j0/c);

c0 := c ; c := n
p c ;

{ distr(x) = cyclic }

14 / 19



Weights

A different way of computing the GDFT

I We can rewrite the ordered GDFT as

yk =
n−1∑
j=0

(xjω
jα
n )ωjk

n .

I Thus, we can multiply the components of the input vector
first by scalar factors and then perform a DFT.

I In matrix language, define the twiddle matrix

Tα
n = diag(1, ωα

n , ω2α
n , . . . , ω

(n−1)α
n ),

giving Fα
n = FnT

α
n .

I For an unordered GDFT, we twiddle with RnT
α
n Rn.

I Twiddling costs n/p extra complex multiplications, or 6n/p
flops, in every computation superstep except the first.

15 / 19



Weights

Memory needed by the parallel FFT

I The total amount of memory space per processor in reals used
by the parallel FFT is

MFFT =

(
2 ·

⌈
log2 p

log2(n/p)

⌉
+ 3

)
· n

p
.

I This is for:
I n/p complex vector components;
I n/(2p) complex weights of an FFT of length n/p;
I n/p complex twiddle factors for each of the d log2 p

log2(n/p)e GFFTs

performed locally.

16 / 19



Weights

Memory scalability

I We call the memory requirements of a BSP algorithm scalable
if

M(n, p) = O
(

Mseq(n)

p
+ p

)
.

I Motivation of the O(p) term: BSP algorithms are based on
all-to-all communication supersteps, where each processor
deals with p − 1 others, and needs already O(p) buffer
memory for storing communication meta-data.

17 / 19



Weights

The parallel FFT is memory-scalable

I For p ≤ n/p, only one twiddle array has to be stored, so that
the total memory requirement is M(n, p) = 5n/p, which is of
the right order.

I For p > n/p, we need t − 1 additional iterations, each
requiring a twiddle array. Fortunately, the total extra twiddle
memory is at most

2(t − 1)n

p
= 2

(
n

p
+

n

p
+ · · ·+ n

p

)
≤ 2

n

p
· n

p
· · · n

p

= 2

(
n

p

)t−1

=
2p

k1
≤ p.

18 / 19



Weights

Summary

I We have introduced the Generalised Discrete Fourier
Transform defined by

yk =
n−1∑
j=0

xjω
j(k+α)
n .

I We have restructured our parallel algorithm, expressing the
local computations as sequential GFFTs.

I The sequential GFFTs can be performed at little extra cost by
multiplying the local vector first by a diagonal twiddle matrix,
and then performing an unordered FFT.

I The restructured algorithm is memory-scalable, with

M(n, p) = O
(

Mseq(n)

p
+ p

)
.

19 / 19


