## Weights for the FFT (PSC §3.5)

## Sequential computation of weights

- The weights of the FFT are the powers of $\omega_{n}$ that are needed in the FFT computation: $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n / 2-1}$.
- We can compute these powers by

$$
\omega_{n}^{j}=e^{-2 \pi i j / n}=\cos \frac{2 \pi j}{n}-i \sin \frac{2 \pi j}{n} .
$$

- Computing the weights by successive multiplication $\omega_{n}^{j+1}=\omega_{n} \cdot \omega_{n}^{j}$ is less accurate and not recommended.
- Typically, computing a sine or cosine costs 10 flops in double precision accuracy. If we compute a weight each time we need it, we perform 20 flops extra for every 10 flops (complex $*,+,-)$ in the inner loop of the FFT. This would triple the total cost.
- Alternative: compute weights once, store them in a table.


## Using symmetry to compute weights faster

- We can save half the computations by using

$$
\omega_{n}^{n / 2-j}=e^{-2 \pi i(n / 2-j) / n}=e^{-\pi i} e^{2 \pi i j / n}=-\overline{\left(\omega_{n}^{j}\right)}
$$

Thus, we only need to compute $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n / 4}$.

- Taking negatives and complex conjugates is extremely cheap.
- Similarly, we can halve the work again by using

$$
\omega_{n}^{n / 4-j}=-i \overline{\left(\omega_{n}^{j}\right)}
$$

Now, we only need to compute $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n / 8}$.

- The total cost of the weight initialisations is thus about $20 \cdot n / 8=2.5 n$ flops.


## Weights for parallel computation

- A brute-force approach: store the complete table of weights on every processor.
- This approach is nonscalable in memory: in the sequential case, we store $n$ vector components and $n / 2$ weights. In the parallel case, $n / p$ vector components and $n / 2$ weights per processor.
- Furthermore, for small $n$ or large $p$, the $2.5 n$ flops of the weight initialisation may be much more than the $\left(5 n \log _{2} n\right) / p$ local flops of the FFT.
- Some replication of weights is inevitable: stages $k=2,4, \ldots, n / p$ are the same on all processors and hence need the same weights.
- Our goal is to find a memory-scalable approach that adds only a few flops to the overall count.


## Generalised Discrete Fourier Transform

- The Generalised Discrete Fourier Transform (GDFT) is defined by

$$
y_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{j(k+\alpha)}, \text { for } 0 \leq k<n,
$$

where $\alpha$ is a fixed real parameter.

- GDFT $=$ DFT for $\alpha=0$.
- We can derive a GFFT, similar to the FFT.
- We can also generalise our matrix notation and obtain a generalised Cooley-Tukey decomposition for the matrix $F_{n}^{\alpha}$ defined by

$$
\left(F_{n}^{\alpha}\right)_{j k}=\omega_{n}^{j(k+\alpha)}
$$

## Generalised results-without words

$$
\begin{gathered}
\Omega_{n}^{\alpha}=\operatorname{diag}\left(\omega_{2 n}^{\alpha}, \omega_{2 n}^{1+\alpha}, \omega_{2 n}^{2+\alpha}, \ldots, \omega_{2 n}^{n-1+\alpha}\right) \\
B_{n}^{\alpha}=\left[\begin{array}{rr}
I_{n / 2} & \Omega_{n / 2}^{\alpha} \\
I_{n / 2} & -\Omega_{n / 2}^{\alpha}
\end{array}\right] \\
F_{n}^{\alpha}=B_{n}^{\alpha}\left(I_{2} \otimes F_{n / 2}^{\alpha}\right) S_{n} \\
F_{n}^{\alpha}=\left(I_{1} \otimes B_{n}^{\alpha}\right)\left(I_{2} \otimes B_{n / 2}^{\alpha}\right)\left(I_{4} \otimes B_{n / 4}^{\alpha}\right) \cdots\left(I_{n / 2} \otimes B_{2}^{\alpha}\right) R_{n}
\end{gathered}
$$

## Aim: reformulating the parallel FFT

We try to express the parallel FFT in sequential GFFTs with suitable $\alpha$. The $\alpha$-values may be different on different processors.

## Inner loop in GDFT lingo

for $j:=j_{0}$ to $\frac{k}{2}-1$ step $c$ do

$$
\begin{aligned}
& \tau:=\omega_{k}^{j} x_{r k+j+k / 2} \\
& x_{r k+j+k / 2}:=x_{r k+j}-\tau \\
& x_{r k+j}:=x_{r k+j}+\tau
\end{aligned}
$$

This loop takes a local subvector $x\left(r k+k / 2+j_{0}: c:(r+1) k-1\right)$ of length $\frac{k}{2 c}$, multiplies it by the diagonal matrix

$$
\begin{aligned}
& \operatorname{diag}\left(\omega_{k}^{j_{0}}, \omega_{k}^{c+j_{0}}, \omega_{k}^{2 c+j_{0}}, \ldots, \omega_{k}^{k / 2-c+j_{0}}\right) \\
= & \operatorname{diag}\left(\omega_{k / c}^{j_{0} / c}, \omega_{k / c}^{1+j_{0} / c}, \omega_{k / c}^{2+j_{0} / c}, \ldots, \omega_{k / c}^{k /(2 c)-1+j_{0} / c}\right) \\
= & \Omega_{k /(2 c)}^{j_{0} / c}
\end{aligned}
$$

adds it to $x\left(r k+j_{0}: c: r k+k / 2-1\right)$, and subtracts it.

## In matrix notation

$$
\begin{gathered}
\text { for } r:=j_{2} \cdot n b l o c k s \text { to }\left(j_{2}+1\right) \cdot n b l o c k s-1 \text { do } \\
\text { for } j:=j_{0} \text { to } \frac{k}{2}-1 \text { step } c \text { do } \\
\\
\tau:=\omega_{k}^{j} x_{r k+j+k / 2} \\
\\
x_{r k+j+k / 2}:=x_{r k+j}-\tau ; \\
\\
x_{r k+j}:=x_{r k+j}+\tau ;
\end{gathered}
$$

- In the inner loop, the local subvector
$x\left(r k+j_{0}: c:(r+1) k-1\right)$ is multiplied by $B_{k / c}^{j_{0} / c}$.
- In the outer loop, the same generalised butterfly is performed for all nblocks $=\frac{n c}{k p}$ local subvectors, thus computing

$$
\left(\frac{I_{n c} c p}{k p} B_{k / c}^{j_{0} / c}\right) \cdot x\left(j_{2} \frac{n c}{p}+j_{0}: c:\left(j_{2}+1\right) \frac{n c}{p}-1\right)
$$

This is a local computation.

## Real butterflies



## Butterflies form an unordered GFFT

- A complete sequence of butterfly stages is a sequence of maximal length, $k=2 c, 4 c, \ldots, \frac{n}{p} c$.
- If we multiply the corresponding matrices $\frac{I_{k c}}{k p} \otimes B_{k / c}^{j_{0} / c}$ from right to left, we obtain

$$
\left(I_{1} \otimes B_{n / p}^{j_{0} / c}\right)\left(I_{2} \otimes B_{n /(2 p)}^{j_{0} / c}\right) \cdots\left(I_{2 p} \otimes B_{2}^{j_{0} / c}\right)=F_{n / p}^{j_{0} / c} R_{n / p}
$$

which is an unordered GFFT with parameter $\alpha=j_{0} / c=(s \bmod c) / c$.

- Note the dependence on the processor number $s$.


## An incomplete sequence is OK at the start

- For $c=1$, we have $j_{0}=s \bmod c=0$, so that all factors have the form $I_{\frac{n c}{k p}} \otimes B_{k / c}^{j_{0} / c}=I_{\frac{n}{k p}} \otimes B_{k}$.
- Now we do not need a complete sequence to obtain a simple formula: if we multiply the matrices for $k=2,4, \ldots, k_{1}$ from right to left we get

$$
\begin{aligned}
& \left(I_{\frac{n}{k_{1} p}} \otimes B_{k_{1}}\right) \cdots\left(I_{\frac{n}{4 p}} \otimes B_{4}\right)\left(I_{\frac{n}{2 p}} \otimes B_{2}\right) \\
= & I_{\frac{n}{k_{1} p}} \otimes\left(\left(I_{1} \otimes B_{k_{1}}\right) \cdots\left(I_{\frac{k_{1}}{4}} \otimes B_{4}\right)\left(I_{\frac{k_{1}}{2}} \otimes B_{2}\right)\right) \\
= & I_{\frac{n}{k_{1} p}} \otimes\left(F_{k_{1}} R_{k_{1}}\right) .
\end{aligned}
$$

- We restructure our algorithm, modifying the c-loop so that we start with one incomplete sequence, and then execute the remainder with complete sequences.


## Number of iterations at the start

- We have $t+1$ iterations, where

$$
c=1, k_{1}, k_{1} \frac{n}{p}, \ldots, k_{1}\left(\frac{n}{p}\right)^{t-1}=p .
$$

- Thus, $k_{1}$ is given by

$$
k_{1}=\frac{n}{(n / p)^{t}} .
$$

## Restructured parallel FFT

$\{\operatorname{distr}(\mathbf{x})=$ cyclic $\}$
(0) $\operatorname{bitrev}(x(s: p: n-1), n / p)$;
$\{\operatorname{distr}(\mathbf{x})=$ block with bit-reversed processor number $\}$
$t:=\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil ; k_{1}:=\frac{n}{(n / p)^{t}} ;$ rev $:=$ true;
for $r:=s \cdot \frac{n}{k_{1} p}$ to $(s+1) \cdot \frac{n}{k_{1} p}-1$ do
$\operatorname{UFFT}\left(x\left(r k_{1}:(r+1) k_{1}-1\right), k_{1}\right)$;

## Restructured parallel FFT

$\{\operatorname{distr}(\mathbf{x})=$ cyclic $\}$
(0) $\operatorname{bitrev}(x(s: p: n-1), n / p)$;
$\{\operatorname{distr}(\mathbf{x})=$ block with bit-reversed processor number \}
$t:=\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil ; k_{1}:=\frac{n}{(n / p)^{t}} ;$ rev $:=$ true;
for $r:=s \cdot \frac{n}{k_{1} p}$ to $(s+1) \cdot \frac{n}{k_{1} p}-1$ do $\operatorname{UFFT}\left(x\left(r k_{1}:(r+1) k_{1}-1\right), k_{1}\right)$;
$c_{0}:=1 ; c:=k_{1}$;
while $c \leq p$ do
(1) $\quad$ redistr $\left(\mathbf{x}, n, p, c_{0}, c, r e v\right)$;
$\{\operatorname{distr}(\mathbf{x})=$ group-cyclic with cycle $c\}$
(2)
$j_{0}:=s \bmod c ; j_{2}:=s$ div $c$; rev $:=$ false;
$\operatorname{UGFFT}\left(x\left(j_{2} \frac{n c}{p}+j_{0}: c:\left(j_{2}+1\right) \frac{n c}{p}-1\right), n / p, j_{0} / c\right)$;
$c_{0}:=c ; c:=\frac{n}{p} c ;$
$\{\operatorname{distr}(\mathbf{x})=$ cyclic $\}$

## A different way of computing the GDFT

- We can rewrite the ordered GDFT as

$$
y_{k}=\sum_{j=0}^{n-1}\left(x_{j} \omega_{n}^{j \alpha}\right) \omega_{n}^{j k}
$$

- Thus, we can multiply the components of the input vector first by scalar factors and then perform a DFT.
- In matrix language, define the twiddle matrix

$$
T_{n}^{\alpha}=\operatorname{diag}\left(1, \omega_{n}^{\alpha}, \omega_{n}^{2 \alpha}, \ldots, \omega_{n}^{(n-1) \alpha}\right)
$$

giving $F_{n}^{\alpha}=F_{n} T_{n}^{\alpha}$.

- For an unordered GDFT, we twiddle with $R_{n} T_{n}^{\alpha} R_{n}$.
- Twiddling costs $n / p$ extra complex multiplications, or $6 n / p$ flops, in every computation superstep except the first.


## Memory needed by the parallel FFT

- The total amount of memory space per processor in reals used by the parallel FFT is

$$
M_{\mathrm{FFT}}=\left(2 \cdot\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil+3\right) \cdot \frac{n}{p}
$$

- This is for:
- $n / p$ complex vector components;
- $n /(2 p)$ complex weights of an FFT of length $n / p$;
- $n / p$ complex twiddle factors for each of the $\left\lceil\frac{\log _{2} p}{\log _{2}(n / p)}\right\rceil$ GFFTs performed locally.


## Memory scalability

- We call the memory requirements of a BSP algorithm scalable if

$$
M(n, p)=\mathcal{O}\left(\frac{M_{\mathrm{seq}}(n)}{p}+p\right)
$$

- Motivation of the $\mathcal{O}(p)$ term: BSP algorithms are based on all-to-all communication supersteps, where each processor deals with $p-1$ others, and needs already $\mathcal{O}(p)$ buffer memory for storing communication meta-data.


## The parallel FFT is memory-scalable

- For $p \leq n / p$, only one twiddle array has to be stored, so that the total memory requirement is $M(n, p)=5 n / p$, which is of the right order.
- For $p>n / p$, we need $t-1$ additional iterations, each requiring a twiddle array. Fortunately, the total extra twiddle memory is at most

$$
\begin{aligned}
\frac{2(t-1) n}{p} & =2\left(\frac{n}{p}+\frac{n}{p}+\cdots+\frac{n}{p}\right) \\
& \leq 2 \frac{n}{p} \cdot \frac{n}{p} \cdots \frac{n}{p} \\
& =2\left(\frac{n}{p}\right)^{t-1}=\frac{2 p}{k_{1}} \leq p
\end{aligned}
$$

## Summary

- We have introduced the Generalised Discrete Fourier Transform defined by

$$
y_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{j(k+\alpha)}
$$

- We have restructured our parallel algorithm, expressing the local computations as sequential GFFTs.
- The sequential GFFTs can be performed at little extra cost by multiplying the local vector first by a diagonal twiddle matrix, and then performing an unordered FFT.
- The restructured algorithm is memory-scalable, with

$$
M(n, p)=\mathcal{O}\left(\frac{M_{\mathrm{seq}}(n)}{p}+p\right)
$$

