
Experimental results

Experimental results for the FFT
(PSC §3.7)

1 / 22

Experimental results

Test computer: SGI Origin 3800

Photo: Walter de Jong
http://www.xs4all.nl/∼walterj/sara

I Teras, the national supercomputer in the Netherlands, located
in Amsterdam. Installed in 2000; overtaken by an SGI Altix
3700 (Aster) in 2003. Machines come and go.

I Named after Teraflop/s computing rate (1012 flop/s) and
after the Greek word for ‘monster’, τερας.

I 1024 processors, split into 6 partitions with 512, 256, 128, 64,
32, 32 processors.

2 / 22

http://www.xs4all.nl/~walterj/sara

Experimental results

SGI Origin 3800 is a CC-NUMA machine

I Each processor has:
I MIPS RS14000 CPU with a clock rate of 500 MHz and a

theoretical peak performance of 1 Gflop/s
I primary data cache of 32 Kbyte
I secondary cache of 8 Mbyte
I memory of 1 Gbyte.

I Cache Coherent Non-Uniform Memory Access:
I cache is kept coherent, so user views a shared memory
I physically, the memory is distributed; hence, access time to

local and remote memory differs

3 / 22

Experimental results

Benchmarked BSP parameters of SGI Origin 3800

p g l Tcomm(0)

1 99 55 378
2 75 5118 1414
4 99 12743 2098
8 126 32742 4947

16 122 93488 15766

r = 285 Mflop/s.
Tcomm(0) is the time of a 0-relation.

4 / 22

Experimental results

Aggressive optimisation

I Initial tests: maximum optimisation level -O3 for newly
installed C compiler gave benchmark rate 981 Mflop/s.

I This is almost the theoretical peak rate. For a DAXPY, such
a speed is impossible.

I The new compiler discovered our true intention of just
measuring the computing rate, and cleverly removed some
unnecessary statements.

I We reduced the optimisation level for benchmarking to -O2.

I We may have been fooled before (predecessor Origin 2000,
Chapter 1), with a measured rate of 326 Mflop/s. This high
rate is partly due to having the machine to ourselves, but
perhaps also to overly aggressive optimisation.

I Always be cautious about benchmark results!

5 / 22

Experimental results

Time of a parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

Ti
m

e
(in

 m
s)

p

What do you think? Good or bad?

Surprise! This is the time of a theoretical, perfectly parallelised
FFT, based on a time of 155.2 ms for p = 1.

6 / 22

Experimental results

Time of a parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

Ti
m

e
(in

 m
s)

p

What do you think? Good or bad?

Surprise! This is the time of a theoretical, perfectly parallelised
FFT, based on a time of 155.2 ms for p = 1.

6 / 22

Experimental results

Measured time Tp(n) of sequential and parallel FFT

Length n
p 4096 16384 65536 262144

1 (seq) 1.16 5.99 26.6 155.2
1 (par) 1.32 6.58 29.8 167.4
2 1.06 4.92 22.9 99.4
4 0.64 3.15 13.6 52.2
8 1.18 2.00 8.9 29.3

16 8.44 11.07 9.9 26.8

Time in ms.

7 / 22

Experimental results

Time measurements are difficult on the Origin

I Timings may suffer from interference by other programs
(caused e.g. by sharing of communication links).

I Best of three: we run each experiment 3 times, and take the
best result.

I Often, the best two timings are within 5% of each other, and
the third result is worse.

8 / 22

Experimental results

Time Tp of actual parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

Ti
m

e
(in

 m
s)

p

Measured
Ideal

Warning: this kind of picture gives some insight, but it is not the
best representation of the results.

9 / 22

Experimental results

Speedup

I The speedup Sp(n) of a parallel program is the increase in
speed of the program running on p processors compared to
the speed of a sequential program with the same level of
optimisation,

Sp(n) =
Tseq(n)

Tp(n)
.

I Do not compare with T1 instead of Tseq, since this may be
too flattering. The parallel program run with p = 1 may have
much overhead. Here: 8%.

I Often, it is easy to simplify a parallel program into a
sequential one by removing overhead.

I If this is too much work, then be at least clear about the
reference ‘sequential’ program.

10 / 22

Experimental results

Speedup Sp(n) of parallel FFT

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

p

Measured n=262144
Measured n= 65536

Ideal

This kind of picture gives much more insight. It allows comparison
for different problem sizes.

11 / 22

Experimental results

Superlinear speedup

I Bound on speedup:

0 ≤ Sp(n) ≤ p.

I Sp(n) < 1 is called a slowdown. It usually happens for p = 1,
and sometimes for p = 2.

I Sp(n) > p is called superlinear speedup. In theory, this cannot
happen, but in practice it does. Possible causes:

I Cache effects: in the parallel case, each processor has less data
to handle than in the sequential case, so that the local data
may fit in the cache.

I Different order of the computations: less work in the parallel
case. Example: search algorithms, where the search stops
when one processor finds a solution. (Trick often used in
demos by parallel computer vendors.)

12 / 22

Experimental results

Superlinear speedup: blessing or curse?

I Effects that cause superlinear speedups make it difficult to
judge the quality of the parallelisation. Even if no actual
superlinear speedups are observed ...

I Still, a faster computation is always welcome. Besides, you
paid for the multiple caches of a parallel computer.

13 / 22

Experimental results

Efficiency

I The efficiency Ep(n) of a parallel program is the fraction of
the total computing power that is usefully employed. It is
defined by

Ep(n) =
Sp(n)

p
=

Tseq(n)

pTp(n)
.

I Bound on efficiency:

0 ≤ Ep(n) ≤ 1.

14 / 22

Experimental results

Measured efficiency Ep(n) of parallel FFT

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16

Ef
fic

ie
nc

y

p

n=262144
n= 65536

The ideal value is 1.

15 / 22

Experimental results

Inefficiency

I The normalised cost (or inefficiency) Cp(n) is the ratio
between the time of the parallel program and the time of a
perfectly parallelised version of the sequential program. It is
defined by

Cp(n) =
Tp(n)

Tseq(n)/p
=

pTp(n)

Tseq(n)
=

1

Ep(n)
.

I Bound on the inefficiency: Cp(n) ≥ 1.
I The parallel overhead equals Cp(n)− 1. It usually consists of:

I load imbalance
I communication time
I synchronisation time

16 / 22

Experimental results

Normalised cost Cp(n) of parallel FFT

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 c
os

t

p

Measured n= 65536
Measured n=262144

Ideal

17 / 22

Experimental results

Breakdown of predicted execution time

p TComp TComm TSync TFFT Tp

(pred.) (meas.)

1 82.78 0.00 0.00 82.78 167.4
2 41.39 68.99 0.05 110.43 99.4
4 20.70 45.53 0.13 66.36 52.2
8 10.35 28.97 0.35 39.67 29.3

16 5.17 14.03 0.98 20.18 26.8

Time in ms. n = 262144.
Prediction is based on time

Tp(n) = 5
n

p
log2 n + 2

n

p
g + 3l .

18 / 22

Experimental results

Insights gained from breakdown

I It is difficult to predict the total time correctly, mainly due to
misprediction of the sequential computation time.

I n = 1024 DAXPY benchmark fits in cache, but n = 262144
FFT does not. This reduces the rate from 285 Mflop/s to 144
Mflop/s.

I Benchmark of computing rate r can be adapted to
application, if desired.

I Communication is the bottleneck, even though we perform
only one data permutation.

I Prediction overestimates the communication time, being
based on a pessimistic g -value, but the actual parallel FFT
was optimised to send data in packets.

I Synchronisation is unimportant for this problem size.

19 / 22

Experimental results

Total computing rate Rp(n)

I The total computing rate of the FFT is defined by

Rp(n) =
5n log2 n

Tp(n)
.

I The rate is based on the sequential flop count 5n log2 n. This
count is commonly used to measure FFT rates, even for FFT
variants with fewer actual flops.

I Radix-4 FFTs have 4.25n log2 n flops.

20 / 22

Experimental results

Computing rate Rp(n) of sequential and parallel FFT

Length n
p 4096 16384 65536 262144

1 (seq) 220 197 202 155
1 (par) 193 179 180 144
2 239 240 234 243
4 397 375 395 462
8 216 591 607 824

16 30 107 545 900

Rate in Mflop/s. Measured on SGI Origin 3800.
Note: we need at least 4 processors to exceed sequential
benchmark speed of 285 Mflop/s.

21 / 22

Experimental results

Summary

I We have introduced several metrics to express the
performance of a parallel program:

I Tp(n), the time (in s)
I Sp(n) = Tseq(n)/Tp(n), the speedup
I Ep(n) = Sp(n)/p, the efficiency
I Cp(n) = 1/Ep(n), the normalised cost or inefficiency
I Cp(n)− 1, the overhead
I Rp(n) = (5n log2 n)/Tp(n), the total computing rate (in

flop/s).

I Speedup plots give much insight.

I Always take a critical look at benchmark results obtained on a
parallel computer.

22 / 22

