Sequential sparse matrix–vector multiplication (PSC §4.1)

Sparse and dense matrices

- Sparse matrices are sparsely populated by nonzero elements.
- Dense matrices have mostly nonzeros.
- Sparse matrix computations save time: operations with zeros can be skipped or simplified; only the nonzeros must be handled.
- ► Sparse matrix computations also save memory: only the nonzero elements need to be stored (together with their location).

Sparse matrix cage6

$$\it n=93,~nz=785$$
 nonzeros, $\it c=8.4$ nonzeros per row, $\it d=9.1\%$ density

Matrix statistics

Number of nonzeros is

$$nz = nz(A) = |\{a_{ij} : 0 \le i, j < n \land a_{ij} \ne 0\}|.$$

Average number of nonzeros per row or column is

$$c=c(A)=\frac{nz(A)}{n}.$$

Density is

$$d=d(A)=\frac{nz(A)}{n^2}.$$

▶ Matrix is sparse if $nz(A) \ll n^2$, or $c(A) \ll n$, or $d(A) \ll 1$.

Application: cage model for DNA electrophoresis

(A. van Heukelum, G. T. Barkema, R. H. Bisseling, Journal of Computational Physics 180 (2002) pp. 313–326.)

- ▶ 3D cubic lattice models a gel
- ► DNA polymer reptates (moves like a snake): kinks and end points move
- ► DNA sequencing machines: electric field E. Aim: study drift velocity v(E).
 Sequencing machines: electric field E.

Transition matrix for cage model

- ▶ Matrix element a_{ij} is the probability that a polymer in state j moves to a state i. Hence, $0 \le a_{ij} \le 1$.
- Polymer has 6 monomers for cage6. We can move only one monomer at a time. Hence, each state has only a few connected states and the matrix is sparse.

Sparsity structure of cage6

- ▶ Each move can be reversed, hence $a_{ij} \neq 0 \iff a_{ji} \neq 0$, i.e., the matrix is structurally symmetric.
- Move against the electric field has different probability than move with the field. Hence $a_{ij} \neq a_{ji}$, so that the matrix is unsymmetric.

Power method

- Let **x** be the vector of state frequencies: component x_i represents the relative frequency of state i, with $0 \le x_i \le 1$ and $\sum_i x_i = 1$.
- ► The power method computes A**x**, A²**x**, A³**x**, ..., until convergence.
- ▶ Final component x_i represents the frequency of state i in the steady-state situation, where $A\mathbf{x} = \mathbf{x}$.
- ► Main operation: multiplication of sparse matrix *A* and dense vector **x**.

Sparse matrix-vector multiplication

- ▶ Let A be a sparse n × n matrix and v a dense input vector of length n.
- We consider the problem of computing the dense output vector u,

$$\mathbf{u} := A\mathbf{v}$$
.

► The components of **u** are

$$u_i = \sum_{j=0}^{n-1} a_{ij} v_j, \quad \text{for } 0 \le i < n.$$

Sparse matrix-vector multiplication algorithm

input: A: sparse $n \times n$ matrix,

 \mathbf{v} : dense vector of length n.

output: \mathbf{u} : dense vector of length n, $\mathbf{u} = A\mathbf{v}$.

for
$$i := 0$$
 to $n - 1$ do $u_i := 0$;

for all
$$(i,j)$$
: $0 \le i,j < n \land a_{ij} \ne 0$ do $u_i := u_i + a_{ij}v_j$;

The sparsity of A is expressed by the test $a_{ij} \neq 0$. Such a test is never executed in practice, and instead a sparse data structure is used.

Iterative solution methods

- Sparse matrix-vector multiplication is the main computation step in iterative solution methods for linear systems or eigensystems.
- Iterative methods start with an initial guess \mathbf{x}^0 and then successively improve the solution by finding better approximations \mathbf{x}^k , $k = 1, 2, \ldots$, until the error is tolerable.
- Examples:
 - Linear systems Ax = b, solved by the conjugate gradient (CG) method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR, SOR, FOM, ...
 - ► Eigensystems Ax = \(\lambda x \) solved by the Lanczos method, Jacobi-Davidson, ...

Web searching: which page ranks first?

The link matrix A

▶ Given n web pages with links between them. We can define the sparse $n \times n$ link matrix A by

$$a_{ij} = \begin{cases} 1 & \text{if there is a link from page } j \text{ to page } i \\ 0 & \text{otherwise.} \end{cases}$$

Let $\mathbf{e} = (1, 1, \dots, 1)^T$, representing an initial uniform importance (rank) of all web pages. Then

$$(\mathbf{Ae})_i = \sum_j a_{ij} e_j = \sum_j a_{ij}$$

is the total number of links pointing to page i.

► The vector **Ae** represents the importance of the pages; **A**²**e** takes the importance of the pointing pages into account as well; and so on.

The Google matrix

- ▶ A web surfer chooses each of the outgoing N_j links from page j with equal probability. Define the $n \times n$ diagonal matrix D with $d_{jj} = 1/N_j$.
- Let α be the probability that a surfer follows an outlink of the current page. Typically $\alpha=0.85$. The surfer jumps to a random page with probability $1-\alpha$.
- ► The Google matrix is defined by (Brin and Page 1998)

$$G = \alpha AD + (1 - \alpha)ee^T/n$$
.

► The PageRank of a set of web pages is obtained by repeated multiplication by *G*, involving sparse matrix–vector multiplication by *A*, and some vector operations.

Insight into other applications

- ▶ (a) A 2D molecular dynamics domain of size 1.0×1.0 with 10 particles.
- ▶ The cut-off radius for the interaction between particles is $r_c = 0.2$. The circles shown have radius $r_c/2 = 0.1$.
- ▶ (b) The corresponding sparse 10 × 10 force matrix F. If the circles of radius r_c/2 of particles i and j overlap, then i and j interact, so that nonzero forces f_{ii} and f_{ii} appear in F.

Summary

- ► Sparse matrices are the rule, rather than the exception. In many applications, variables are connected to only a few others, leading to sparse matrices.
- Sparse matrices occur in various application areas:
 - transition matrices in Markov models:
 - finite-element matrices in engineering;
 - linear programming matrices in optimisation;
 - weblink matrices in Google PageRank computation.
- ▶ We often express computation costs in the matrix size *n* and the average number of nonzeros per row c.
- Sparse matrix-vector multiplication is important for iterative solvers. It can also capture other applications such as molecular dynamics.
- ▶ The sequential computation is simple, but its parallelisation is a big challenge.