Sequential sparse matrix-vector multiplication (PSC §4.1)

Sparse and dense matrices

- Sparse matrices are sparsely populated by nonzero elements.
- Dense matrices have mostly nonzeros.
- Sparse matrix computations save time: operations with zeros can be skipped or simplified; only the nonzeros must be handled.
- Sparse matrix computations also save memory: only the nonzero elements need to be stored (together with their location).

Sparse matrix cage6

$n=93, n z=785$ nonzeros, $c=8.4$ nonzeros per row,
$d=9.1 \%$ density

Matrix statistics

- Number of nonzeros is

$$
n z=n z(A)=\left|\left\{a_{i j}: 0 \leq i, j<n \wedge a_{i j} \neq 0\right\}\right| .
$$

- Average number of nonzeros per row or column is

$$
c=c(A)=\frac{n z(A)}{n}
$$

- Density is

$$
d=d(A)=\frac{n z(A)}{n^{2}}
$$

- Matrix is sparse if $n z(A) \ll n^{2}$, or $c(A) \ll n$, or $d(A) \ll 1$.

Application: cage model for DNA electrophoresis

(A. van Heukelum, G. T. Barkema, R. H. Bisseling, Journal of Computational Physics 180 (2002) pp. 313-326.)

- 3D cubic lattice models a gel
- DNA polymer reptates (moves like a snake):
kinks and end points move
- DNA sequencing machines: electric field E.

Aim: study drift velocity $v(E)$.

Transition matrix for cage model

- Matrix element $a_{i j}$ is the probability that a polymer in state j moves to a state i. Hence, $0 \leq a_{i j} \leq 1$.
- Polymer has 6 monomers for cage6. We can move only one monomer at a time. Hence, each state has only a few connected states and the matrix is sparse.

Sparsity structure of cage6

- Each move can be reversed, hence $a_{i j} \neq 0 \Longleftrightarrow a_{j i} \neq 0$, i.e., the matrix is structurally symmetric.
- Move against the electric field has different probability than move with the field. Hence $a_{i j} \neq a_{j i}$, so that the matrix is unsymmetric.

Power method

- Let \mathbf{x} be the vector of state frequencies: component x_{i} represents the relative frequency of state i, with $0 \leq x_{i} \leq 1$ and $\sum_{i} x_{i}=1$.
- The power method computes $A \mathbf{x}, A^{2} \mathbf{x}, A^{3} \mathbf{x}, \ldots$, until convergence.
- Final component x_{i} represents the frequency of state i in the steady-state situation, where $A \mathbf{x}=\mathbf{x}$.
- Main operation: multiplication of sparse matrix A and dense vector \mathbf{x}.

Sparse matrix-vector multiplication

- Let A be a sparse $n \times n$ matrix and \mathbf{v} a dense input vector of length n.
- We consider the problem of computing the dense output vector \mathbf{u},

$$
\mathbf{u}:=A \mathbf{v}
$$

- The components of \mathbf{u} are

$$
u_{i}=\sum_{j=0}^{n-1} a_{i j} v_{j}, \quad \text { for } 0 \leq i<n
$$

Sparse matrix-vector multiplication algorithm

$$
\begin{aligned}
& \text { input: } \quad A \text { : sparse } n \times n \text { matrix, } \\
& \text { v : dense vector of length } n \text {. } \\
& \text { output: } \quad \mathbf{u} \text { : dense vector of length } n, \mathbf{u}=A \mathbf{v} \text {. } \\
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& u_{i}:=0 ; \\
& \text { for all }(i, j): 0 \leq i, j<n \wedge a_{i j} \neq 0 \text { do } \\
& u_{i}:=u_{i}+a_{i j} v_{j} ;
\end{aligned}
$$

The sparsity of A is expressed by the test $a_{i j} \neq 0$. Such a test is never executed in practice, and instead a sparse data structure is used.

Iterative solution methods

- Sparse matrix-vector multiplication is the main computation step in iterative solution methods for linear systems or eigensystems.
- Iterative methods start with an initial guess \mathbf{x}^{0} and then successively improve the solution by finding better approximations $\mathbf{x}^{k}, k=1,2, \ldots$, until the error is tolerable.
- Examples:
- Linear systems $A \mathbf{x}=\mathbf{b}$, solved by the conjugate gradient (CG) method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR, SOR, FOM, ...
- Eigensystems $A \mathbf{x}=\lambda \mathbf{x}$ solved by the Lanczos method, Jacobi-Davidson, ...

Web searching：which page ranks first？

Sequential sparse matrix－vector multiplication4 三主 $>$ \square

The link matrix A

- Given n web pages with links between them. We can define the sparse $n \times n$ link matrix A by

$$
a_{i j}= \begin{cases}1 & \text { if there is a link from page } j \text { to page } i \\ 0 & \text { otherwise } .\end{cases}
$$

- Let $\mathbf{e}=(1,1, \ldots, 1)^{T}$, representing an initial uniform importance (rank) of all web pages. Then

$$
(A \mathbf{e})_{i}=\sum_{j} a_{i j} e_{j}=\sum_{j} a_{i j}
$$

is the total number of links pointing to page i.

- The vector $A \mathbf{e}$ represents the importance of the pages; $A^{2} \mathbf{e}$ takes the importance of the pointing pages into account as well; and so on.

The Google matrix

- A web surfer chooses each of the outgoing N_{j} links from page j with equal probability. Define the $n \times n$ diagonal matrix D with $d_{j j}=1 / N_{j}$.
- Let α be the probability that a surfer follows an outlink of the current page. Typically $\alpha=0.85$. The surfer jumps to a random page with probability $1-\alpha$.
- The Google matrix is defined by (Brin and Page 1998)

$$
G=\alpha A D+(1-\alpha) \mathbf{e e}^{T} / n
$$

- The PageRank of a set of web pages is obtained by repeated multiplication by G, involving sparse matrix-vector multiplication by A, and some vector operations.

Insight into other applications

- (a) A 2D molecular dynamics domain of size 1.0×1.0 with 10 particles.
- The cut-off radius for the interaction between particles is $r_{\mathrm{c}}=0.2$. The circles shown have radius $r_{\mathrm{c}} / 2=0.1$.
- (b) The corresponding sparse 10×10 force matrix F. If the circles of radius $r_{\mathrm{c}} / 2$ of particles i and j overlap, then i and j interact, so that nonzero forces $f_{i j}$ and $f_{j i}$ appear in F.

Summary

- Sparse matrices are the rule, rather than the exception. In many applications, variables are connected to only a few others, leading to sparse matrices.
- Sparse matrices occur in various application areas:
- transition matrices in Markov models;
- finite-element matrices in engineering;
- linear programming matrices in optimisation;
- weblink matrices in Google PageRank computation.
- We often express computation costs in the matrix size n and the average number of nonzeros per row c.
- Sparse matrix-vector multiplication is important for iterative solvers. It can also capture other applications such as molecular dynamics.
- The sequential computation is simple, but its parallelisation is a big challenge.

