Experimental results on a Beowulf cluster (PSC $\S4.10$)

Beowulf cluster

- A Beowulf cluster consists of several PCs connected by communication switches.
- We use a cluster of 32 IBM x330 nodes, located at the Physics Department of Utrecht University, part of DAS-2, the 200-node Distributed ASCI Supercomputer built by 5 collaborating Dutch universities.
- Each node contains 2 Pentium-III processors with 1 GHz clock speed, 1 Gbyte of memory, and a local disk.
- ► Nodes are connected by a Myrinet-2000 network.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Panda BSP library

р	g	1	$T_{\rm comm}(0)$
1	1337	7 188	6 767
2	1400	100 743	102 932
4	1401	226 131	255 307
8	1190	440 742	462 828
16	1106	835 196	833 095
32	1711	1 350 775	1 463 009
64	2485	2 410 096	2 730 173

Benchmarked BSP parameters p, g, l and time of a 0-relation (r = 323 Mflop/s)

- Experimental BSP library on top of Panda portability layer on top of Myrinet.
- ▶ 2 processors per node; for $p \leq 32$, only 1 is used.

Experimental resu

(a)

Test set of sparse matrices

Matrix	п	nz	Origin	
random20k	20 000	99 601	random sparse matrix	
amorph20k	20 000	100 000	amorphous silicon	
prime20k	20 000	382 354	prime number matrix	
bcsstk32	44 609	2 014 701	automobile chassis	
cage12	130 228	2 032 536	DNA electrophoresis	
(Subset of the original test set from Section 4.10)				

BSP cost for smaller matrices

р	random20k	amorph20k	prime20k	
1	199 202	200 000	764 708	
2	$102\;586+5073g$	$100\ 940 + \ 847g$	393 520 + 4275 <i>g</i>	
4	51 292 + 4663 <i>g</i>	$51\ 490 + \ 862g$	196 908 + 5534 g	
8	25 642 + 3452g	$25\ 742 + 1059g$	98 454 + 4030 <i>g</i>	
16	$12\ 820 + 2152g$	$12\ 872 + 530g$	49 226 + 3148 <i>g</i>	
32	$6\ 408 + 1478 g$	6 434 + 371g	24 612 + 2620g	
64	$3\ 202 + 1007g$	$3\ 216 + \ 267g$	$12 \ 304 + 2235g$	

- Matrix and vectors partitioned by Mondriaan.
- ► Fixed synchronisation cost 4/ not shown. Since l ≈ 100 000 for p = 2, matrices must have at least 100 000 nonzeros to make parallelism worthwhile.

Experimental result

4 D N 4 B N 4 B N 4 B N

BSP cost for larger matrices

р	bcsstk32	cage12	
1	4 029 402	4 065 072	
2	2 070 816 + 630g	2 093 480 + 10 389g	
4	$1 \ 036 \ 678 + \ 786g$	1 046 748 + 15 923g	
8	518 676 + 842 <i>g</i>	523 376 $+$ 16 543 g	
16	259 390 + 1163 g	$261\ 684 + 9\ 984g$	
32	$129\ 692+\ 917g$	$130\ 842+\ 6\ 658g$	
64	64 836 + 724g	$65\ 420 + 5\ 385g$	

- Same number of nonzeros, but much more communication for cage12.
- This may be due to the high-dimensional underlying structure of cage12, in contrast to bcsstk32, which is only 3D.

Experimental results

Measured execution time (in ms)

р		random	amorph	prime	bcsstk32	cage12
		20k	20k	20k		
1	(seq)	9	7	18	71	92
1	(par)	10	8	19	72	96
2		73	13	56	59	205
4		57	16	77	39	228
8		48	15	50	25	226
16		32	11	46	24	128
32		28	17	37	23	87
64		36	29	45	34	73

 Compare random20k and amorph20k: same size and number of nonzeros, but amorph20k much faster.

Experimental resul

7/9

- E - N

• • • • • • • • • • • • •

Only modest speedups obtained for larger problems.

Did we gain something?

► We have shown that for large problem sizes the algorithm scales well.

Did we gain something?

- ► We have shown that for large problem sizes the algorithm scales well.
- Many research papers on parallel computing end like this, even if the statement is not true.
- ► The sad truth: we haven't reached the problem size yet where parallel computing becomes worthwhile. The high value g ≈ 1000 hinders obtaining decent speedups.
- Our main goal should be to understand the results, whatever they may be.

Summary

- Clusters of PCs are cheap supercomputers with tremendous potential.
- BSPlib implementations for such clusters can have great impact. The Panda BSP library is one such library. But networks evolve fast and form a moving target.
- Top of my wish list: new implementations for clusters based on Infiniband, Fast Ethernet, etc., and for dual-core and multi-core PCs. Preferably open-source.
- 20 years from now:
 - Cray XK7, Blue Gene/Q, K-computer, DAS-4, and their friends will all be dead
 - I shall be older and perhaps wiser
 - BSP costs like 65 420 + 5 385g + 4/ for matrix cage12 will still be meaningful, as predictors for Zettaflop/s (10²¹ flop/s) machines.

Experimental result

(a)