Vector Distribution (PSC §4.6)

Vector partitioning

Broadway Boogie Woogie Piet Mondriaan 1943

Balance the communication!

▶ Aim: reduce the BSP cost hg, where

$$h = \max_{0 \le s < p} h(s), \qquad h(s) = \max(h_s(s), h_r(s)).$$

- ▶ Thus, given a matrix distribution ϕ , we have to determine a vector distribution $\phi_{\mathbf{v}}$ that minimises h for the fanout and satisfies $j \in J_{\phi_{\mathbf{v}}(j)}$, for $0 \le j < n$.
- ► Constraint $j \in J_{\phi_{\mathbf{v}}(j)}$ means: processor $P(s) = P(\phi_{\mathbf{v}}(j))$ that owns v_j must own a nonzero in matrix column j, i.e., $j \in J_s$.
- ▶ We also have to find a vector distribution $\phi_{\mathbf{u}}$ that minimises the value h for the fanin and that satisfies the constraint $i \in I_{\phi_{\mathbf{u}}(i)}$, for $0 \le i < n$.

Vector partitioning for prime60

Global view. Both constraints are satisfied.

Vector partitioning for prime60

Local view. The local components of the vector \mathbf{u} are placed to the left of the local submatrix for P(0) and P(2).

The two vector distribution problems are similar

- Nonzero pattern of row i of A equals the nonzero pattern of column i of A^T:
 - u_{is} is sent from P(s) to P(t) in the multiplication by $A \Leftrightarrow v_i$ is sent from P(t) to P(s) in the multiplication by A^T .
- ▶ We can find a good distribution $\phi_{\mathbf{u}}$ given $\phi = \phi_A$ by finding a good distribution $\phi_{\mathbf{v}}$ given $\phi = \phi_{A^T}$.
- ▶ Hence, we only solve one problem, namely for \mathbf{v} . We can apply this method also for \mathbf{u} , with A^T instead of A.

General case: arbitrary q_i values

- ▶ Columns with $q_j = 0$ or $q_j = 1$ do not cause communication and are omitted from the problem. Hence, we assume $q_j \ge 2$, for all j.
- ▶ For processor P(s):

$$h_{\mathrm{s}}(s) = \sum_{0 \leq j < n, \ \phi_{\mathbf{v}}(j) = s} (q_j - 1),$$

and

$$h_{\mathbf{r}}(s) = |\{j : j \in J_s \land \phi_{\mathbf{v}}(j) \neq s\}|.$$

► Aim: for given matrix distribution and hence given communication volume *V*, minimise

$$h = \max_{0 \le s < p} \max (h_{s}(s), h_{r}(s))$$
.

Egoistic local bound

- ▶ An egoistic processor tries to minimise its own $h(s) = \max(h_r(s), h_s(s))$ without consideration for others.
- To minimise h_r(s), it just has to maximise the number of components v_j with j ∈ J_s that it owns.
- ▶ To minimise $h_s(s)$, it has to minimise the total weight of these components, where the weight of v_j is $q_j 1$.
- ▶ A locally optimal strategy is to start with $h_s(s) = 0$ and $h_r(s) = |J_s|$ and grab the components in order of increasing weight, each time adjusting $h_s(s)$ and $h_r(s)$, as long as $h_s(s) \leq h_r(s)$.

Optimal values

▶ Denote the resulting optimal value of $h_r(s)$ by $\hat{h}_r(s)$, that of $h_s(s)$ by $\hat{h}_s(s)$, and that of h(s) by $\hat{h}(s)$. We have

$$\hat{h}_{\scriptscriptstyle \mathrm{S}}(s) \leq \hat{h}_{\scriptscriptstyle \mathrm{I}}(s) = \hat{h}(s), \text{ for } 0 \leq s < p.$$

▶ The value $\hat{h}(s)$ is a local lower bound on the actual value that can be achieved: $\hat{h}(s) \leq h(s)$, for all s.

Example vector distribution problem

s = 0	1		1		1	1	1	1
1	1	1		1	1	1	1	
2		1				1	1	1
3			1	1	1			1
$q_j =$	2	2	2	2	3	3	3	3
j =	0	1	2	3	4	5	6	7

- ▶ A 1 in the table denotes that P(s) owns a nonzero in column j and hence needs v_j .
- ▶ Columns are ordered by increasing q_j .
- Processor P(0) wants v_0 and v_2 , but nothing more, so that $\hat{h}_s(0) = 2$, $\hat{h}_r(0) = 4$, and $\hat{h}(0) = 4$.
- ▶ The fanout will cost at least 4g.

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, *Electronic Transactions on Numerical Analysis* **21** (2005) pp. 47–65.)

- ▶ Define the generalised lower bound $\hat{h}(J, ns_0, nr_0)$ for a given index set $J \subset J_s$ and a given initial number of sends ns_0 and receives nr_0 .
- ▶ Initial communications are due to columns outside *J*.
- ▶ Bound is computed by the same method, but starting with $h_s(s) = ns_0$ and $h_r(s) = nr_0 + |J|$.
- Note that $\hat{h}(s) = \hat{h}(J_s, 0, 0)$.
- ▶ Our algorithm gives preference to the processor that faces the toughest future, i.e., the processor with the highest current value $\hat{h}(s)$.

Initialisation of algorithm

for
$$s := 0$$
 to $p - 1$ do
 $L_s := J_s;$
 $h_s(s) := 0;$
 $h_r(s) := 0;$

- L_s is the index set of components that may still be assigned to P(s).
- ▶ The number of sends caused by the assignments done so far is registered as $h_s(s)$; the number of receives as $h_r(s)$.
- ► The current state of P(s) is represented by the triple $(L_s, h_s(s), h_r(s))$.

Termination of algorithm

$$\begin{array}{l} \text{for } s := 0 \text{ to } p-1 \text{ do} \\ \text{if } h_s(s) < \hat{h}_s(L_s, h_s(s), h_r(s)) \text{ then} \\ \text{active}(s) := \textit{true}; \\ \text{else } \text{active}(s) := \textit{false}; \end{array}$$

- Note that $ns_0 \leq \hat{h}_s(J, ns_0, nr_0)$, so that trivially $h_s(s) \leq \hat{h}_s(L_s, h_s(s), h_r(s))$.
- A processor will not accept more components once it has achieved its optimum, when $h_s(s) = \hat{h}_s(L_s, h_s(s), h_r(s))$.

Main loop of algorithm

```
while (\exists s : 0 \le s  do

<math>s_{\text{max}} := \operatorname{argmax}(\hat{h}_{\text{r}}(L_s, h_{\text{s}}(s), h_{\text{r}}(s)) : 0 \le s 

<math>j := \min(L_{s_{\text{max}}}); \{j \text{ has minimal } q_j \}

\phi_{\mathbf{v}}(j) := s_{\text{max}};

h_{\text{s}}(s_{\text{max}}) := h_{\text{s}}(s_{\text{max}}) + q_i - 1;
```

Main loop of algorithm

```
while (\exists s : 0 \le s \le p \land active(s)) do
        s_{\text{max}} := \operatorname{argmax}(\hat{h}_{r}(L_{s}, h_{s}(s), h_{r}(s)) : 0 \leq s 
       j := \min(L_{S_{max}}); \{j \text{ has minimal } q_i \}
        \phi_{\mathbf{v}}(i) := s_{\max};
        h_{s}(s_{max}) := h_{s}(s_{max}) + a_{i} - 1:
        for all s: 0 \le s \le p \land s \ne s_{\max} \land i \in J_s do
                h_r(s) := h_r(s) + 1:
        for all s: 0 \le s \le p \land j \in J_s do
                L_s := L_s \setminus \{i\}:
                if h_s(s) = \hat{h}_s(L_s, h_s(s), h_r(s)) then
                        active(s) := false:
```

Special case: $q_j \leq 2$

- ▶ Vertex s = processor s, $0 \le s < p$
- ▶ Edge (s, t) = processor pair sharing matrix columns
- ▶ Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a processor, balancing the number of data words sent and received

Transform into unweighted undirected graph

- Assign two shared columns: one to processor s, one to t. w(s,t) := w(s,t) 2.
- ▶ Repeat until all edge weights = 0 or 1.

Unweighted undirected graph

- Walk path starting at odd-degree vertex
- Remove walked edges from undirected graph
- ▶ Edge $s \rightarrow t$: processor s sends, t receives
- ► Even-degree vertices remain even-degree
- ▶ Repeat until all degrees in undirected graph are even.

- ► Walk path starting at even-degree vertex
- Repeat until undirected graph empty
- ► Solution is provably optimal (see Bisseling & Meesen 2005)

Summary

- ▶ BSP cost is a natural metric that encourages communication balancing.
- For the general vector distribution problem, we have developed a heuristic method, which works well in practice.
- ► The heuristic method is based on assigning vector components to the processor with the toughest future, as predicted by an egoistic local bound.
- ► For the special case with at most 2 processors per matrix column, we have obtained an optimal method based on walking paths in an associated graph, starting first at odd-degree vertices.