Vector Distribution
(PSC §4.6)

Vector partitioning

=-E.'F'|'$":-'I.'E’!-'.!"-I'"¥"|'ﬁ':="'l

— '-
]

- H

.I - n ...l

L

. ..

S "
- L
o = "

. [] EEE = .'
w1 -
.I:l: l--.llI - ow

= B
:. l.l

Broadway Boogie Woogie
Piet Mondriaan 1943

Balance the communication!

» Aim: reduce the BSP cost hg, where

h = max h(s), h(s) = max(hs(s), h:(s)).
0<s<p
» Thus, given a matrix distribution ¢, we have to determine a
vector distribution ¢, that minimises h for the fanout and
satisfies j € Jg,(j), for 0 < j < n.
» Constraint j € Jy, (j) means: processor P(s) = P(¢y(j)) that
owns v; must own a nonzero in matrix column j, i.e., j € Js.
» We also have to find a vector distribution ¢, that minimises
the value h for the fanin and that satisfies the constraint
I € I¢u(;), for0 <i < n.

Vector distribution il

Vector partitioning for prime60

Global view. Both constraints are satisfied.

Vector distribution ik %

Vector partitioning for prime60

] S R l'g

|.'_ ., o .. " "

!'._..'_ "N " .

H TR = :

= . .
| LY R

-

R .

PR

e i

. |

- |

. = |-

11

Local view. The local components of the vector u are placed to
the left of the local submatrix for P(0) and

Vector distribution il

The two vector distribution problems are similar

» Nonzero pattern of row i of A equals the nonzero pattern of
column i of AT:
ujs is sent from P(s) to P(t) in the multiplication by A
& v; is sent from P(t) to P(s) in the multiplication by AT.
» We can find a good distribution ¢, given ¢ = ¢4 by finding a
good distribution ¢, given ¢ = 7.
» Hence, we only solve one problem, namely for v. We can
apply this method also for u, with AT instead of A.

Vector distribution -

General case: arbitrary g; values

» Columns with g; = 0 or g; = 1 do not cause communication
and are omitted from the problem. Hence, we assume g; > 2,
for all j.

» For processor P(s):

and
h(s)=j:j€Js A ¢ulf) # s}

» Aim: for given matrix distribution and hence given
communication volume V/, minimise

h= he(s), he(s)) -
omax max (hs(s), hi(s))

Vector distribution il

Egoistic local bound

» An egoistic processor tries to minimise its own
h(s) = max(hy(s), hs(s)) without consideration for others.

» To minimise hy(s), it just has to maximise the number of
components v; with j € Js that it owns.

» To minimise hy(s), it has to minimise the total weight of these
components, where the weight of v; is g; — 1.

» A locally optimal strategy is to start with hg(s) = 0 and
hy(s) = |Js| and grab the components in order of increasing
weight, each time adjusting hs(s) and h.(s), as long as
hs(s) < hy(s).

Vector distribution il

Optimal values

> Denote the resulting optimal value of hy(s) by h(s), that of
hs(s) by hs(s), and that of h(s) by h(s). We have

hy(s) < h(s) = h(s), for 0 < s < p.

> The value lA1(s) is a local lower bound on the actual value that
can be achieved: h(s) < h(s), for all s.

Vector distribution il

Example vector distribution problem

s=0] 1 1] - J1[1]1]1
111 111]1]1
2 1 : 1111
3 1111 1
aj 2 2 3(3]3
j=1ol1[2[3]4[5]6]|7

» A 1 in the table denotes that P(s) owns a nonzero in column
J and hence needs v;.

» Columns are ordered by increasing g;.
» Processor P(0) wants vg and v, but nothing more,
so that hs(0) = 2, h,(0) =4, and h(0) = 4.

» The fanout will cost at least 4g.

Vector distribution

10/22

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on Numerical
Analysis 21 (2005) pp. 47-65.)

>

Define the generalised lower bound h(J, nsy, nro) for a given
index set J C Js and a given initial number of sends nsy and
receives nry.

Initial communications are due to columns outside J.

Bound is computed by the same method, but starting with
hs(s) = nsp and h.(s) = nro + |J|.

Note that h(s) = h(Js,0,0).

Our algorithm gives preference to the processor that faces the

toughest future, i.e., the processor with the highest current
value h(s).

Vector distribution

11/22

Initialisation of algorithm

fors:=0top—1do

Ls := Js;
hs(s) :=0;
hy(s) :=0;

> L is the index set of components that may still be assigned to
P(s).

» The number of sends caused by the assignments done so far is
registered as hs(s); the number of receives as hy(s).

» The current state of P(s) is represented by the triple
(Ls, hs(s), hu(s)).

Vector distribution

12 /22

Termination of algorithm

fors:=0top—1do
if hy(s) < hy(Ls, hs(s), hy(s)) then
active(s) := true;
else active(s) := false;

» Note that nsy < IA1S(J7 nsp, nry), so that trivially
ho(s) < hu(Ls, hu(s), hu(s)).

» A processor will not accept more components once it has
achieved its optimum, when hy(s) = h(Ls, hs(s), he(s)).

Vector distribution

13 /22

Main loop of algorithm

while (3s: 0 < s < p A active(s)) do
Smax := argmax(h.(Ls, hs(s), he(s)) : 0 < s < p A active(s));
J:=min(Ls,,.); {J has minimal q; }
(bv(,]) = Smax:
hs(smax) = hs(smax) + qj — 1;

Vector distribution t:

14 /22

Main loop of algorithm

while (3s: 0 < s < p A active(s)) do
Smax := argmax(h.(Ls, hs(s), he(s)) : 0 < s < p A active(s));
J:=min(Ls,,.); {J has minimal q; }
(bv(,/) = Smax:
hs(smax) = hs(smax) + qj — 1;

foralls:0<s<pAs#smax N JjE Jsdo
hy(s) = he(s) + 1,

foralls:0<s<pAj€ J do

Ls:= Ls\{{};
if hs(s) = hs(Ls, hs(s), he(s)) then
active(s) := false;

Vector distribution il

14 /22

Special case: gq; <2

2 _ealel 2
4 T 1l . .’1.\
SRR PN IRt

N1 2 3151522 @

\.7 2 ?;.-.\\3 []
i N e % Ne
® /5 3‘ \ /3

1 6 6

> Vertex s = processor s, 0 < s < p
» Edge (s, t) = processor pair sharing matrix columns
» Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a
processor, balancing the number of data words sent and received

Vector distribution

15 /22

Transform into unweighted undirected graph

3 3_3
° o-0-0 TR
.5/ i) 1 1 ./1 \.
3\ 3?5 5 ./] \1
ol 02020
% s e P
(]
/s 3l AN 3
T’ e T

> Assign two shared columns: one to processor s, one to t.

w(s, t) == w(s, t) —2.
> Repeat until all edge weights = 0 or 1.

Vector distribution t:

16 /22

Unweighted undirected graph

o~ e-0-0 __o
./ .\. ‘ /. \.
‘e . ® \
N e-0-0
.\. ° \o /.
—d & No—¢

Vector distribution t:

17/22

Transform into directed graph

o o-0-0¢ __o
0: %o o S e
° >-0-0 © \
N e-0-0
.‘. ° \o /.
o 4 No—e

v

Walk path starting at odd-degree vertex

» Remove walked edges from undirected graph

v

Edge s — t: processor s sends, t receives

v

Even-degree vertices remain even-degree

» Repeat until all degrees in undirected graph are even.

Vector distribution t:

18 /22

Transform into directed graph

o-e-0 o
° / ®
o-o-0 '\ \
L
$ \o——O

Vector distribution t:

19/22

Transform into directed graph

?-'.-'. ./.\.
: 0\/ \
o\._—. /

Vector distribution t:

20/22

Transform into directed graph

» Walk path starting at even-degree vertex
» Repeat until undirected graph empty
» Solution is provably optimal (see Bisseling & Meesen 2005)

Vector distribution t:

21/22

Summary

» BSP cost is a natural metric that encourages communication
balancing.

» For the general vector distribution problem, we have
developed a heuristic method, which works well in practice.

» The heuristic method is based on assigning vector
components to the processor with the toughest future, as
predicted by an egoistic local bound.

» For the special case with at most 2 processors per matrix
column, we have obtained an optimal method based on
walking paths in an associated graph, starting first at
odd-degree vertices.

Vector distribution

N
N
N
N

