
Vector distribution

Vector Distribution
(PSC §4.6)

1 / 22

Vector distribution

Vector partitioning

Broadway Boogie Woogie
Piet Mondriaan 1943

2 / 22

Vector distribution

Balance the communication!

I Aim: reduce the BSP cost hg , where

h = max
0≤s<p

h(s), h(s) = max(hs(s), hr(s)).

I Thus, given a matrix distribution φ, we have to determine a
vector distribution φv that minimises h for the fanout and
satisfies j ∈ Jφv(j), for 0 ≤ j < n.

I Constraint j ∈ Jφv(j) means: processor P(s) = P(φv(j)) that
owns vj must own a nonzero in matrix column j , i.e., j ∈ Js .

I We also have to find a vector distribution φu that minimises
the value h for the fanin and that satisfies the constraint
i ∈ Iφu(i), for 0 ≤ i < n.

3 / 22

Vector distribution

Vector partitioning for prime60

Global view. Both constraints are satisfied.

4 / 22

Vector distribution

Vector partitioning for prime60

Local view. The local components of the vector u are placed to
the left of the local submatrix for P(0) and P(2).

5 / 22

Vector distribution

The two vector distribution problems are similar

I Nonzero pattern of row i of A equals the nonzero pattern of
column i of AT :
uis is sent from P(s) to P(t) in the multiplication by A
⇔ vi is sent from P(t) to P(s) in the multiplication by AT .

I We can find a good distribution φu given φ = φA by finding a
good distribution φv given φ = φAT .

I Hence, we only solve one problem, namely for v. We can
apply this method also for u, with AT instead of A.

6 / 22

Vector distribution

General case: arbitrary qj values

I Columns with qj = 0 or qj = 1 do not cause communication
and are omitted from the problem. Hence, we assume qj ≥ 2,
for all j .

I For processor P(s):

hs(s) =
∑

0≤j<n, φv(j)=s

(qj − 1),

and
hr(s) = |{j : j ∈ Js ∧ φv(j) 6= s}|.

I Aim: for given matrix distribution and hence given
communication volume V , minimise

h = max
0≤s<p

max (hs(s), hr(s)) .

7 / 22

Vector distribution

Egoistic local bound

I An egoistic processor tries to minimise its own
h(s) = max(hr(s), hs(s)) without consideration for others.

I To minimise hr(s), it just has to maximise the number of
components vj with j ∈ Js that it owns.

I To minimise hs(s), it has to minimise the total weight of these
components, where the weight of vj is qj − 1.

I A locally optimal strategy is to start with hs(s) = 0 and
hr(s) = |Js | and grab the components in order of increasing
weight, each time adjusting hs(s) and hr(s), as long as
hs(s) ≤ hr(s).

8 / 22

Vector distribution

Optimal values

I Denote the resulting optimal value of hr(s) by ĥr(s), that of
hs(s) by ĥs(s), and that of h(s) by ĥ(s). We have

ĥs(s) ≤ ĥr(s) = ĥ(s), for 0 ≤ s < p.

I The value ĥ(s) is a local lower bound on the actual value that
can be achieved: ĥ(s) ≤ h(s), for all s.

9 / 22

Vector distribution

Example vector distribution problem

s = 0 1 · 1 · 1 1 1 1
1 1 1 · 1 1 1 1 ·
2 · 1 · · · 1 1 1
3 · · 1 1 1 · · 1

qj = 2 2 2 2 3 3 3 3

j = 0 1 2 3 4 5 6 7

I A 1 in the table denotes that P(s) owns a nonzero in column
j and hence needs vj .

I Columns are ordered by increasing qj .

I Processor P(0) wants v0 and v2, but nothing more,
so that ĥs(0) = 2, ĥr(0) = 4, and ĥ(0) = 4.

I The fanout will cost at least 4g .

10 / 22

Vector distribution

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on Numerical
Analysis 21 (2005) pp. 47–65.)

I Define the generalised lower bound ĥ(J, ns0, nr0) for a given
index set J ⊂ Js and a given initial number of sends ns0 and
receives nr0.

I Initial communications are due to columns outside J.

I Bound is computed by the same method, but starting with
hs(s) = ns0 and hr(s) = nr0 + |J|.

I Note that ĥ(s) = ĥ(Js , 0, 0).

I Our algorithm gives preference to the processor that faces the
toughest future, i.e., the processor with the highest current
value ĥ(s).

11 / 22

Vector distribution

Initialisation of algorithm

for s := 0 to p − 1 do
Ls := Js ;
hs(s) := 0;
hr(s) := 0;

I Ls is the index set of components that may still be assigned to
P(s).

I The number of sends caused by the assignments done so far is
registered as hs(s); the number of receives as hr(s).

I The current state of P(s) is represented by the triple
(Ls , hs(s), hr(s)).

12 / 22

Vector distribution

Termination of algorithm

for s := 0 to p − 1 do

if hs(s) < ĥs(Ls , hs(s), hr(s)) then
active(s) := true;

else active(s) := false;

I Note that ns0 ≤ ĥs(J, ns0, nr0), so that trivially
hs(s) ≤ ĥs(Ls , hs(s), hr(s)).

I A processor will not accept more components once it has
achieved its optimum, when hs(s) = ĥs(Ls , hs(s), hr(s)).

13 / 22

Vector distribution

Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do

smax := argmax(ĥr(Ls , hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do
hr(s) := hr(s) + 1;

for all s : 0 ≤ s < p ∧ j ∈ Js do
Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;

14 / 22

Vector distribution

Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do

smax := argmax(ĥr(Ls , hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do
hr(s) := hr(s) + 1;

for all s : 0 ≤ s < p ∧ j ∈ Js do
Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;

14 / 22

Vector distribution

Special case: qj ≤ 2

3

1

3

66

2
1

5

3

3
5

1

3
1

3
4

2217

3

2

4

55
66

2

3

3
1

3

1

5
4

1 2

2

I Vertex s = processor s, 0 ≤ s < p

I Edge (s, t) = processor pair sharing matrix columns

I Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a
processor, balancing the number of data words sent and received

15 / 22

Vector distribution

Transform into unweighted undirected graph

5

3

3
5

1

11
3

17

3

55

3

3
1

3

1

5

1

3 3

1

3

I Assign two shared columns: one to processor s, one to t.
w(s, t) := w(s, t)− 2 .

I Repeat until all edge weights = 0 or 1.

16 / 22

Vector distribution

Unweighted undirected graph

17 / 22

Vector distribution

Transform into directed graph

I Walk path starting at odd-degree vertex

I Remove walked edges from undirected graph

I Edge s → t: processor s sends, t receives

I Even-degree vertices remain even-degree

I Repeat until all degrees in undirected graph are even.

18 / 22

Vector distribution

Transform into directed graph

19 / 22

Vector distribution

Transform into directed graph

20 / 22

Vector distribution

Transform into directed graph

I Walk path starting at even-degree vertex

I Repeat until undirected graph empty

I Solution is provably optimal (see Bisseling & Meesen 2005)

21 / 22

Vector distribution

Summary

I BSP cost is a natural metric that encourages communication
balancing.

I For the general vector distribution problem, we have
developed a heuristic method, which works well in practice.

I The heuristic method is based on assigning vector
components to the processor with the toughest future, as
predicted by an egoistic local bound.

I For the special case with at most 2 processors per matrix
column, we have obtained an optimal method based on
walking paths in an associated graph, starting first at
odd-degree vertices.

22 / 22

