
Random sparse matrices

Random Sparse Matrices
(PSC §4.7)

1 / 18



Random sparse matrices

Random sparse matrix random100

n = 100, nz = 1000, c = 10, d = 0.1.
Interactively generated at the Matrix Market Deli (Boisvert et al.
1997), http://math.nist.gov/MatrixMarket/deli/Random/

2 / 18



Random sparse matrices

Random sparse matrix

I A random sparse matrix A can be obtained by determining,
randomly and independently, for each element aij whether it is
0 or not.

I If the probability of creating a nonzero is d , the matrix has:
I an expected density d(A) = d ;
I an expected number of nonzeros nz(A) = dn2.

I Random sparse matrices have a very special property: every
subset of the matrix elements, chosen independently from the
sparsity pattern, has an expected fraction d of nonzeros.

I This property provides a powerful tool for analysing algorithms
involving random sparse matrices.

3 / 18



Random sparse matrices

Not a random sparse matrix

Matrix cage6 from DNA electrophoresis studies.

I Some structure immediately visible.

I Don’t use the term ‘random sparse matrix’ for such a matrix
or a sparse matrix without any visible structure.

4 / 18



Random sparse matrices

Parallel sparse matrix–vector multiplication

I Construct a random sparse matrix A by drawing for each
index pair (i , j) a random number rij ∈ [0, 1], doing this
independently and uniformly (with each outcome equally
likely), creating a nonzero aij if rij < d .

I Distribute A over p processors in a manner that is
independent of the sparsity pattern by assigning an equal
number of elements (whether 0 or not) to each processor.

I Examples are the square block distribution, square cyclic
distribution, and the cyclic row distribution.

5 / 18



Random sparse matrices

Computational load balance

I The load balance can be estimated by using probability theory.

I The problem is to determine the expected maximum, taken
over all processors, of the local number of nonzeros.

I We cannot solve this problem exactly, but we can obtain a
useful bound on the probability of the maximum exceeding a
certain value.

I Bound is obtained by applying a theorem of Chernoff, often
used in the analysis of randomised algorithms.

6 / 18



Random sparse matrices

Theorem 4.11 (Chernoff 1952)

I Let 0 < d < 1.

I Let X0,X1, . . . ,Xm−1 be independent Bernoulli trials with
outcome 0 or 1, such that Pr[Xk = 1] = d , for 0 ≤ k < m.

I Let X =
∑m−1

k=0 Xk and µ = md .

I Then for every ε > 0,

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ

.

7 / 18



Random sparse matrices

Application of Chernoff Theorem

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ

.

I If we flip a biased coin which produces heads with probability
d , the bound tells us how small the probability is of getting εµ
more heads than the expected average µ.

I Bound for ε = 1 tells us that the probability of getting more
than twice the expected number of heads is less than
(e/4)µ ≈ (0.68)md .

8 / 18



Random sparse matrices

Application to random sparse matrix

I Every processor has m = n2

p elements, each being nonzero
with probability d .

I Expected number of nonzeros per processor is µ = dn2

p .

I Let Es be the event that processor P(s) has more than
(1 + ε)µ nonzeros. Let E = ∪p−1

s=0Es .

I We have

Pr[E ] ≤
p−1∑
s=0

Pr[Es ] = pPr[E0],

so that the cost of superstep (1) satisfies

Pr

[
T(1) >

2(1 + ε)dn2

p

]
< p

(
eε

(1 + ε)1+ε

) dn2

p

.

9 / 18



Random sparse matrices

Probability of exceeding normalised cost

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

Pr
ob

ab
ili

ty
 o

f e
xc

ee
di

ng
 c

os
t

Normalized computation cost

d=0.1
d=0.01

d=0.001

Chernoff probability F (ε) of exceeding normalised cost 1 + ε for
random sparse matrix of size n = 1000 and density d distributed
over p = 100 processors.
Average normalised cost obtained by simulation:
1.076 for d = 0.1; 1.258 for d = 0.01; 1.876 for d = 0.001.

10 / 18



Random sparse matrices

Probability distribution

0

0.05

0.1

0.15

0.2

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

Pr
ob

ab
ili

ty

Normalized computation cost

Measured
Scaled derivative

Probability distribution obtained by simulation for random sparse
matrix of size n = 1000 and density d = 0.01 distributed over
p = 100 processors.

I Local nonzero count 124 (cost = 1.24) occurs most.

I Derivative is (1− F (ε))′, probability density function
corresponding to the Chernoff bound. Pessimistic!

11 / 18



Random sparse matrices

Communication cost for random sparse matrix

I The communication volume for a dense matrix is an upper
bound on the volume for a sparse matrix distributed by the
same fixed, pattern-independent scheme.

I For a random sparse matrix with a high density, the
communication obligations will be the same as for a dense
matrix.

I Therefore, we try to find a good fixed distribution scheme for
random sparse matrices by applying methods from the dense
case.

12 / 18



Random sparse matrices

Square Cartesian distribution for dense matrix

0 1 2 3 0 1 2 3

0 0 1 1 0 0 1 1
0

1

0

0

1

1

0

1

0

0

1

1

2

2

3

3

0

0

1

1

3

3

2

2

Au

v

Square Cartesian distribution based on a cyclic distribution of the
matrix diagonal. n = 8, p = 4, M = N = 2.

13 / 18



Random sparse matrices

Superstep (0): fanout

I Vector component vj is needed only in P(∗, φ1(j)).

I P(s, φ1(j)) does not need vj if all n√
p elements in the local

part of matrix column j are zero; this has probability
(1− d)n/

√
p.

I Probability that P(s, φ1(j)) needs vj is 1− (1− d)n/
√

p.

I Since
√

p − 1 processors each have to receive vj with this
probability, the expected number of receives for component vj

is (
√

p − 1)(1− (1− d)n/
√

p).

I Expected volume is n(
√

p − 1)(1− (1− d)n/
√

p).

I Ignoring communication imbalance, we divide by p, giving

T(0) =

(
1
√

p
− 1

p

)
(1− (1− d)n/

√
p)ng .

14 / 18



Random sparse matrices

Total communication cost

I Cost of fanin is same as for fanout.

I For n = 1000 and p = 100, the matrix with highest density
d = 0.1 has an expected communication cost of 179.995g ,
close to the cost of 180g for a dense matrix.

I The corresponding expected normalised communication cost is

T(0) + T(2)

2dn2/p
≈ 0.09g .

I We need a parallel computer with g ≤ 11 to run our algorithm
with more than 50% efficiency

I For n = 1000 and p = 100, the matrix with lowest density
d = 0.001 has an expected normalised communication cost of
0.86g .

15 / 18



Random sparse matrices

Tailor the distribution to the matrix

Local view of random100 (with n = 100, nz = 1000, d = 0.1),
distributed by the Mondriaan program over p = 16 processors.
Shown is the submatrix Is × Js for 0 ≤ s < 16.

I Allowed imbalance ε = 20%; ε′ = 18.4% achieved.
Max nonzeros per proc 74. Avg 62.5. Min 25. V = 367.

16 / 18



Random sparse matrices

Comparing Cartesian and Mondriaan distribution

p ε (in %) V (Cartesian) V (Mondriaan)

2 0.8 993 814
4 2.1 1987 1565
8 4.0 3750 2585

16 7.1 5514 3482
32 11.8 7764 4388

Random sparse matrix of size n = 1000 and density d = 0.01
distributed over p processors, by:

I pattern-independent Cartesian distribution;

I pattern-dependent distribution produced by the Mondriaan
package with ε = expected value for the Cartesian distribution.

45% less communication volume for Mondriaan (p = 32).

17 / 18



Random sparse matrices

Summary

I Distributing a random sparse matrix independently of its
sparsity pattern spreads the computation well.

I We can quantify this by using the Chernoff bound

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ

.

I For the communication, we can use a pattern-independent
square Cartesian distribution which distributes the matrix
diagonal and the vectors cyclically over the processors.

I The distribution can be improved by tailoring it to the sparsity
pattern e.g. by using Mondriaan.

I Parallel multiplication of a random sparse matrix and a vector
remains a difficult problem.

18 / 18


