Random Sparse Matrices
 (PSC §4.7)

Random sparse matrix random100

$n=100, n z=1000, c=10, d=0.1$.
Interactively generated at the Matrix Market Deli (Boisvert et al. 1997), http://math.nist.gov/MatrixMarket/deli/Random/

Random sparse matrix

- A random sparse matrix A can be obtained by determining, randomly and independently, for each element $a_{i j}$ whether it is 0 or not.
- If the probability of creating a nonzero is d, the matrix has:
- an expected density $d(A)=d$;
- an expected number of nonzeros $n z(A)=d n^{2}$.
- Random sparse matrices have a very special property: every subset of the matrix elements, chosen independently from the sparsity pattern, has an expected fraction d of nonzeros.
- This property provides a powerful tool for analysing algorithms involving random sparse matrices.

Not a random sparse matrix

Matrix cage6 from DNA electrophoresis studies.

- Some structure immediately visible.
- Don't use the term 'random sparse matrix' for such a matrix or a sparse matrix without any visible structure.

Parallel sparse matrix-vector multiplication

- Construct a random sparse matrix A by drawing for each index pair (i, j) a random number $r_{i j} \in[0,1]$, doing this independently and uniformly (with each outcome equally likely), creating a nonzero $a_{i j}$ if $r_{i j}<d$.
- Distribute A over p processors in a manner that is independent of the sparsity pattern by assigning an equal number of elements (whether 0 or not) to each processor.
- Examples are the square block distribution, square cyclic distribution, and the cyclic row distribution.

Computational load balance

- The load balance can be estimated by using probability theory.
- The problem is to determine the expected maximum, taken over all processors, of the local number of nonzeros.
- We cannot solve this problem exactly, but we can obtain a useful bound on the probability of the maximum exceeding a certain value.
- Bound is obtained by applying a theorem of Chernoff, often used in the analysis of randomised algorithms.

Theorem 4.11 (Chernoff 1952)

- Let $0<d<1$.
- Let $X_{0}, X_{1}, \ldots, X_{m-1}$ be independent Bernoulli trials with outcome 0 or 1 , such that $\operatorname{Pr}\left[X_{k}=1\right]=d$, for $0 \leq k<m$.
- Let $X=\sum_{k=0}^{m-1} X_{k}$ and $\mu=m d$.
- Then for every $\epsilon>0$,

$$
\operatorname{Pr}[X>(1+\epsilon) \mu]<\left(\frac{\mathrm{e}^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu}
$$

Application of Chernoff Theorem

$$
\operatorname{Pr}[X>(1+\epsilon) \mu]<\left(\frac{\mathrm{e}^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu} .
$$

- If we flip a biased coin which produces heads with probability d, the bound tells us how small the probability is of getting $\epsilon \mu$ more heads than the expected average μ.
- Bound for $\epsilon=1$ tells us that the probability of getting more than twice the expected number of heads is less than $(\mathrm{e} / 4)^{\mu} \approx(0.68)^{m d}$.

Application to random sparse matrix

- Every processor has $m=\frac{n^{2}}{p}$ elements, each being nonzero with probability d.
- Expected number of nonzeros per processor is $\mu=\frac{d n^{2}}{p}$.
- Let E_{s} be the event that processor $P(s)$ has more than $(1+\epsilon) \mu$ nonzeros. Let $E=\cup_{s=0}^{p-1} E_{s}$.
- We have

$$
\operatorname{Pr}[E] \leq \sum_{s=0}^{p-1} \operatorname{Pr}\left[E_{s}\right]=p \operatorname{Pr}\left[E_{0}\right]
$$

so that the cost of superstep (1) satisfies

$$
\operatorname{Pr}\left[T_{(1)}>\frac{2(1+\epsilon) d n^{2}}{p}\right]<p\left(\frac{\mathrm{e}^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\frac{d n^{2}}{p}}
$$

Probability of exceeding normalised cost

Chernoff probability $F(\epsilon)$ of exceeding normalised cost $1+\epsilon$ for random sparse matrix of size $n=1000$ and density d distributed over $p=100$ processors.
Average normalised cost obtained by simulation:
1.076 for $d=0.1 ; 1.258$ for $d=0.01 ; 1.876$ for $d=0.001$.

Probability distribution

Probability distribution obtained by simulation for random sparse matrix of size $n=1000$ and density $d=0.01$ distributed over $p=100$ processors.

- Local nonzero count 124 (cost $=1.24$) occurs most.
- Derivative is $(1-F(\epsilon))^{\prime}$, probability density function corresponding to the Chernoff bound. Pessimistic!

Communication cost for random sparse matrix

- The communication volume for a dense matrix is an upper bound on the volume for a sparse matrix distributed by the same fixed, pattern-independent scheme.
- For a random sparse matrix with a high density, the communication obligations will be the same as for a dense matrix.
- Therefore, we try to find a good fixed distribution scheme for random sparse matrices by applying methods from the dense case.

Square Cartesian distribution for dense matrix

Square Cartesian distribution based on a cyclic distribution of the matrix diagonal. $n=8, p=4, M=N=2$.

Superstep (0): fanout

- Vector component v_{j} is needed only in $P\left(*, \phi_{1}(j)\right)$.
- $P\left(s, \phi_{1}(j)\right)$ does not need v_{j} if all $\frac{n}{\sqrt{p}}$ elements in the local part of matrix column j are zero; this has probability $(1-d)^{n / \sqrt{p}}$.
- Probability that $P\left(s, \phi_{1}(j)\right)$ needs v_{j} is $1-(1-d)^{n / \sqrt{P}}$.
- Since $\sqrt{p}-1$ processors each have to receive v_{j} with this probability, the expected number of receives for component v_{j} is $(\sqrt{p}-1)\left(1-(1-d)^{n / \sqrt{p}}\right)$.
- Expected volume is $n(\sqrt{p}-1)\left(1-(1-d)^{n / \sqrt{p}}\right)$.
- Ignoring communication imbalance, we divide by p, giving

$$
T_{(0)}=\left(\frac{1}{\sqrt{p}}-\frac{1}{p}\right)\left(1-(1-d)^{n / \sqrt{p}}\right) n g .
$$

Total communication cost

- Cost of fanin is same as for fanout.
- For $n=1000$ and $p=100$, the matrix with highest density $d=0.1$ has an expected communication cost of 179.995 g , close to the cost of 180 g for a dense matrix.
- The corresponding expected normalised communication cost is

$$
\frac{T_{(0)}+T_{(2)}}{2 d n^{2} / p} \approx 0.09 g
$$

- We need a parallel computer with $g \leq 11$ to run our algorithm with more than 50% efficiency
- For $n=1000$ and $p=100$, the matrix with lowest density $d=0.001$ has an expected normalised communication cost of 0.86 g .

Tailor the distribution to the matrix

Local view of random100 (with $n=100, n z=1000, d=0.1$), distributed by the Mondriaan program over $p=16$ processors.
Shown is the submatrix $I_{s} \times J_{s}$ for $0 \leq s<16$.

- Allowed imbalance $\epsilon=20 \% ; \epsilon^{\prime}=18.4 \%$ achieved. Max nonzeros per proc 74. Avg 62.5. Min 25. $V=367$.

Comparing Cartesian and Mondriaan distribution

p	ϵ (in \%)	V (Cartesian)	V (Mondriaan)
2	0.8	993	814
4	2.1	1987	1565
8	4.0	3750	2585
16	7.1	5514	3482
32	11.8	7764	4388

Random sparse matrix of size $n=1000$ and density $d=0.01$ distributed over p processors, by:

- pattern-independent Cartesian distribution;
- pattern-dependent distribution produced by the Mondriaan package with $\epsilon=$ expected value for the Cartesian distribution.
45% less communication volume for Mondriaan $(p=32)$.

Summary

- Distributing a random sparse matrix independently of its sparsity pattern spreads the computation well.
- We can quantify this by using the Chernoff bound

$$
\operatorname{Pr}[X>(1+\epsilon) \mu]<\left(\frac{\mathrm{e}^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu}
$$

- For the communication, we can use a pattern-independent square Cartesian distribution which distributes the matrix diagonal and the vectors cyclically over the processors.
- The distribution can be improved by tailoring it to the sparsity pattern e.g. by using Mondriaan.
- Parallel multiplication of a random sparse matrix and a vector remains a difficult problem.

