Laplacian Matrices (PSC §4.8)

Physical domain

- In many applications, a physical domain exists that can be distributed naturally by assigning a contiguous subdomain to every processor.
- Communication is only needed for exchanging information across the subdomain boundaries.
- Often, the domain is structured as a multidimensional rectangular grid, where grid points interact only with a set of immediate neighbours.
- In the 2D case, these could be the neighbours to the north, east, south, and west.
- An example is the heat equation, where the value at a grid point represents the temperature at the corresponding location.

2D Laplacian operator for $k \times k$ grid

Compute

$$
\Delta_{i, j}=x_{i-1, j}+x_{i+1, j}+x_{i, j+1}+x_{i, j-1}-4 x_{i, j}, \quad \text { for } 0 \leq i, j<k,
$$

where $x_{i, j}$ denotes the temperature at grid point (i, j). By convention, $x_{i, j}=0$ outside the grid.

- $x_{i+1, j}-x_{i, j}$ approximates the derivative of the temperature in the i-direction.
- $\left(x_{i+1, j}-x_{i, j}\right)-\left(x_{i, j}-x_{i-1, j}\right)=x_{i-1, j}+x_{i+1, j}-2 x_{i, j}$ approximates the second derivative.

Relation grid-vector

- A 3×3 grid, which corresponds to a vector of length 9 . For each grid point (i, j), the index $i+3 j$ of the corresponding vector component is shown.
- More in general,

$$
v_{i+j k} \equiv x_{i, j}, \quad u_{i+j k} \equiv \Delta_{i, j}
$$

for $0 \leq i, j<k$.

Relation operator-matrix

$$
A=\left[\begin{array}{rrrrrrrrr}
-4 & 1 & . & 1 & . & . & . & . & . \\
1 & -4 & 1 & . & 1 & . & . & . & \cdot \\
. & 1 & -4 & . & . & 1 & . & . & \cdot \\
1 & . & . & -4 & 1 & . & 1 & . & \cdot \\
. & 1 & . & 1 & -4 & 1 & . & 1 & \cdot \\
. & . & 1 & . & 1 & -4 & . & . & 1 \\
. & . & . & 1 & . & \cdot & -4 & 1 & \cdot \\
. & . & . & . & 1 & . & 1 & -4 & 1 \\
. & . & . & . & . & 1 & . & 1 & -4
\end{array}\right]
$$

$$
\mathbf{u}=A \mathbf{v} \Longleftrightarrow
$$

$$
\Delta_{i, j}=x_{i-1, j}+x_{i+1, j}+x_{i, j+1}+x_{i, j-1}-4 x_{i, j}, \quad \text { for } 0 \leq i, j<k
$$

Domain view vs. matrix view

- In general, it is best to view the Laplacian as an operator on the physical domain.
- This domain view has the advantage that it naturally leads to the use of a regular data structure.
- Occasionally, however, it may be beneficial to view the Laplacian as a matrix, so that we can apply our knowledge about sparse matrix-vector multiplication.

Find a domain distribution

- Here, we adopt the domain view, so that we must assign each grid point to a processor.
- We assign the values $x_{i, j}$ and $\Delta_{i, j}$ to the owner of grid point (i, j), which translates into distr$(\mathbf{u})=\operatorname{distr}(\mathbf{v})$.
- We use a row distribution for the matrix and assign row $i+j k$ to the same processor as vector component $u_{i+j k}$ and hence grid point (i, j).
- The resulting sparse matrix-vector multiplication algorithm has two supersteps, the fanout and the local matrix-vector multiplication.
- The computation time for an interior point is 5 flops; for a border point 4 flops; for a corner point 3 flops.

Distribution into strips and blocks

- (a) Distribution into strips: long Norwegian borders,

$$
T_{\text {comm, strips }}=2 \mathrm{~kg} .
$$

- (b) Boundary corrections improve load balance.
- (c) Distribution into square blocks: shorter borders,

$$
T_{\text {comm, squares }}=\frac{4 k}{\sqrt{p}} g \quad(\text { for } p>4)
$$

Surface-to-volume ratio

- The communication-to-computation ratio for square blocks is

$$
\frac{T_{\text {comm, squares }}}{T_{\text {comp, squares }}}=\frac{4 k / \sqrt{p}}{5 k^{2} / p} g=\frac{4 \sqrt{p}}{5 k} g .
$$

- This ratio is often called the surface-to-volume ratio, because in 3D the surface of a domain represents the communication with other processors and the volume represents the amount of computation of a processor.

What do we do at scientific workshops?

Participants of HLPP 2001, International Workshop on High-Level Parallel Programming, Orléans, France, June 2001, studying Château de Blois.

The high-level object of our study

Laplacian matrices

Blocks are nice, diamonds ...

- Digital diamond, or closed I_{1}-sphere, defined by

$$
B_{r}\left(c_{0}, c_{1}\right)=\left\{(i, j) \in \mathbf{Z}^{2}:\left|i-c_{0}\right|+\left|j-c_{1}\right| \leq r\right\},
$$

for integer radius $r \geq 0$ and centre $\mathbf{c}=\left(c_{0}, c_{1}\right) \in \mathbf{Z}^{2}$.

- $B_{r}(\mathbf{c})$ is the set of points with Manhattan distance $\leq r$ to the central point \mathbf{c}.

Points of a diamond

The number of points of $B_{r}(\mathbf{c})$ is

$$
\begin{aligned}
& 1+3+5+\cdots+(2 r-1)+(2 r+1)+(2 r-1)+\cdots+1 \\
= & 2 \sum_{k=0}^{r-1}(2 k+1)+(2 r+1)=4 \sum_{k=0}^{r-1} k+4 r+1 \\
= & 2(r-1) r+4 r+1=2 r^{2}+2 r+1 .
\end{aligned}
$$

The number of neighbouring points is $4 r+4$.

Diamonds are forever

- Assume that the diamond has its fair share $2 r^{2}+2 r+1=\frac{k^{2}}{p}$ of the grid points.
- Therefore, $2 r^{2} \approx \frac{k^{2}}{p}$ for large r, and hence $r \approx \frac{k}{\sqrt{2 p}}$.
- Just on the basis of $4 r+4$ receives, we have

$$
\frac{T_{\text {comm, diamonds }}}{T_{\text {comp, diamonds }}}=\frac{4 r+4}{5\left(2 r^{2}+2 r+1\right)} g \approx \frac{2}{5 r} g \approx \frac{2 \sqrt{2 p}}{5 k} g .
$$

- Compare with value $\frac{4 \sqrt{p}}{5 k} g$ for square blocks: factor $\sqrt{2}$ less.
- Gain caused by reuse of data: value at grid point is used twice but sent only once.

Alhambra：tile the whole space

Laplacian matrices

Tile the whole sky with diamonds

Diamond centres at $\mathbf{c}=\lambda \mathbf{a}+\mu \mathbf{b}, \lambda, \mu \in \mathbf{Z}$, where $\mathbf{a}=(r, r+1)$ and $\mathbf{b}=(-r-1, r)$. Good method for an infinite grid.

Practical method for finite grids

- Discard one layer of points from the north-eastern and south-eastern border of the diamond.
- For $r=3$, the number of points decreases from 25 to 18 .
12×12 computational grid: periodic partitioning

- Total computation: 672 flops. Avg 84. Max 90.
- Communication: 104 values. Avg 13. Max 14.
- Total time: $90+14 g=90+14 \cdot 10=230$ (ignoring $2 /$).
- Rectangular 6×3 blocks: time would be $87+15 \cdot 10=237$. Worse!

12×12 computational grid: Mondriaan partitioning

- Total computation: 672 flops. Avg 84. Max 91. $(\epsilon=10 \%$.)
- Communication: 85 values. Avg 10.525. Max 16.
- Total time: $91+16 g=91+16 \cdot 10=251$.
- Challenge: better solution can be obtained manually, using ideas from both solutions shown. Current best known solution is 199 (Bas den Heijer 2006).

Three dimensions

- If a processor has a cubic block of $N=k^{3} / p$ points, about $\frac{6 k^{2}}{p^{2 / 3}}=6 N^{2 / 3}$ are boundary points. In 2D, only $4 N^{1 / 2}$.
- If a processor has a $10 \times 10 \times 10$ block, 488 points are on the boundary. About half!
- Thus, communication is important in 3D.
- Based on the surface-to-volume ratio of a 3D digital diamond, we can aim for a reduction by a factor $\sqrt{3} \approx 1.73$ in communication cost.
- The prime application of diamond-shaped distributions will most likely be in 3D.

Basic cell for 3D

- Basic cell: grid points in a truncated octahedron.
- For load balancing, take care with the boundaries.
- What You See, Is What You Get (WYSIWYG):

4 hexagons and 3 squares visible at the front are included.
Also 12 edges, 6 vertices.

- Gain factor of 1.68 achieved for $p=2 q^{3}$.

Comparing 3 distribution methods in 2D and 3D

Grid	p	Rectangular	Diamond	Mondriaan
1024×1024	2	1024	2046	1024
	4	1024	2048	1240
	8	1280	1026	1378
	16	1024	1024	1044
	32	768	514	766
	64	512	512	548
	128	384	258	395
$64 \times 64 \times 64$	16	4096	2402	2836
	128	1024	626	829

Communication cost (in g) for a Laplacian operation on a grid. Mondriaan with $\epsilon=10 \%$.

Summary

- Communication can be reduced tremendously by using knowledge of the physical domain.
- To achieve a good distribution with a low surface-to-volume ratio, all dimensions must be cut. In 2D, this gives square blocks. In 3D, cubic subdomains.
- In 2D, an even better method is to use digital diamonds (with two edge layers removed). This basic cell can be used to tile a rectangular domain in a straightforward manner. Best performance is obtained for $p=2 q^{2}$.
- In 3D, the best method is to use truncated octahedra with WYSIWYG tie breaking at the boundaries. Best performance is obtained for $p=2 q^{3}$.
- In 3D, the performance of Mondriaan is between that of cubes and truncated octahedra.

