
Message Passing Interface

Message Passing Interface (MPI-1)
(PSC Appendix C, §C.1–C.2.4)

1 / 41

Message Passing Interface

History of MPI

I 1994: Message Passing Interface (MPI) became available as a
standard interface for parallel programming in C and
Fortran 77.

I Designed by a committee called the MPI Forum consisting of
computer vendors, users, computer scientists.

I Based on sending and receiving messages by a pair of
processors. One processor sends; the other receives. Both are
active in the communication.

I Underlying model: communicating sequential processes (CSP)
proposed by Tony Hoare in 1978.

I MPI itself is not a model. BSP is a model.

I MPI is an interface for a communication library, like BSPlib.

2 / 41

Message Passing Interface

Recent history of MPI

I 1997: MPI-2 standard defined. Added functionality:
I one-sided communications (put, get, sum)
I dynamic process management
I parallel input/output
I languages C++ and Fortran 90

I 2003: first full implementations of MPI-2 arrive, namely
MPICH (Argonne National Labs) and LAM/MPI (Indiana
University).

I 2004–: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of
Tennessee), LA-MPI (Los Alamos National Laboratory).

I 2012 MPI-3. Major update. More one-sided communications,
nonblocking collective communications, sparse collective
communications.

3 / 41

Message Passing Interface

Why use MPI?

I It is available on almost every parallel computer, often in an
optimised version provided by the vendor. Thus MPI is the
most portable communication library.

I Many libraries are available written in MPI, such as the
numerical linear algebra library ScaLAPACK.

I You can program in many different ways using MPI, since it is
highly flexible.

4 / 41

Message Passing Interface

Why not?

I It is huge: the full current MPI-3 standard has about 450
primitives. The user has to make many choices.

I It is not so easy to learn. Usually one starts with a small
subset of MPI. Full knowledge of the standard is hard to
attain.

I The one-sided communications of MPI-2 and MPI-3 are
rather complicated. If you like one-sided communications you
may want to consider BSPlib as an alternative.

5 / 41

Message Passing Interface

Ping pong benchmark

I The cost of communicating a message of length n is

T (n) = tstartup + ntword.

Here, tstartup is a fixed startup cost and tword is the additional
cost per data word communicated.

I Communication of a message (in its blocking form)
synchronises the sender and receiver. This is pairwise
synchronisation, not global.

I Parameters tstartup and tword are usually measured by sending
a message from one processor to another and back: ping
pong.

I The message length is varied in the ping pong benchmark.

I There is only one ping pong ball on the table.

6 / 41

Message Passing Interface

Send and receive primitives

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

I Processor P(2) sends 5 doubles to P(3).

I P(2) reads the data from its array x. After transmission, P(3)
writes these data into its array y.

I The integer ‘0’ is a tag for distinguishing between different
messages from the same source processor to the same
destination processor.

I MPI Send and MPI Recv are of fundamental importance in
MPI.

8 / 41

Message Passing Interface

Communicator: the whole processor world

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

I A communicator is a subset of processors forming a
communication environment with its own processor
numbering.

I MPI COMM WORLD is the communicator consisting of all the
processors.

10 / 41

Message Passing Interface

Send/Receive considered harmful

I 1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

I Go To was widely used in Fortran programming in those days.
It caused spaghetti code: if you pull something here,
something unexpected moves there.

I No one dares to use Go To statements any more.

I Send/Receive in parallel programming has the same dangers,
and even more, since several diners eat from the same plate.

I Pull here, pull there, nothing moves: deadlock.

I Deadlock may occur if P(0) wants to send a message to P(1),
and P(1) to P(0), and both processors want to send before
they receive.

11 / 41

Message Passing Interface

Inner product program mpiinprod

int main(int argc, char **argv){

int p, s, n;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&s);

if (s==0){
printf("Please enter n:\n");
scanf("%d",&n);
if(n<0)

MPI_Abort(MPI_COMM_WORLD,-1);
}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);
...

13 / 41

Message Passing Interface

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(buf,count,datatype,root,communicator);

I Broadcast count data items of a certain datatype from
processor root to all others in the communicator, reading
from location buf and also writing it there.

I All processors of the communicator participate.

I Extensive set of collective communications available in MPI.
Using these reduces the size of program texts.

15 / 41

Message Passing Interface

Inner product program mpiinprod (cont’d)

...
nl= nloc(p,s,n);
x= vecallocd(nl);
for (i=0; i<nl; i++){

iglob= i*p+s;
x[i]= iglob+1;

}
/* global sync for timing */
MPI_Barrier(MPI_COMM_WORLD);
time0=MPI_Wtime(); /* wall clock time */

alpha= mpiip(p,s,n,x,x);
MPI_Barrier(MPI_COMM_WORLD);
time1=MPI_Wtime();
...
MPI_Finalize();
exit(0);

17 / 41

Message Passing Interface

Inner product function mpiip

double mpiip(int p, int s, int n,
double *x, double *y){

double inprod, alpha;
int i;

inprod= 0.0;
for (i=0; i<nloc(p,s,n); i++)

inprod += x[i]*y[i];
MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

return alpha;
}

19 / 41

Message Passing Interface

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(sendbuf, recvbuf, count, datatype,
operation, communicator);

I The reduction operation by MPI Allreduce sums the
double-precision local inner products inprod, leaving the
result alpha on all processors.

I One can also do this for an array instead of a scalar, by
changing the parameter 1 to the array size count, or perform
other operations, such as taking the maximum, by changing
MPI SUM to MPI MAX.

21 / 41

Message Passing Interface

Benchmark: which primitive to measure?

I Benchmarking all communication primitives in MPI is a lot of
work. This does not appeal to us.

I A typical MPI user would look first if there is a suitable
collective-communication primitive that would do the job.

I This would lead to shorter program texts, and is good practice
from the BSP point of view as well.

I Therefore, we choose a collective communication as the
operation to be benchmarked.

I The BSP superstep, where every processor can communicate
in principle with all others, is reflected best by the all-to-all
primitives from MPI.

I Using an all-to-all primitive gives the MPI system the best
opportunities for optimisation, similar to supersteps in BSPlib
programs.

22 / 41

Message Passing Interface

Measure time of MPI Alltoallv

MPI_Barrier(MPI_COMM_WORLD);
time0= MPI_Wtime();

for (iter=0; iter<NITERS; iter++){
MPI_Alltoallv(src,Nsend,Offset_send,MPI_DOUBLE,

dest,Nrecv,Offset_recv,MPI_DOUBLE,
MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);
}

time1= MPI_Wtime();
time= time1-time0;

24 / 41

Message Passing Interface

Syntax of MPI Alltoallv

MPI_Alltoallv(src, Nsend, Offset_send, datatype_send,
dest, Nrecv, Offset_recv, datatype_recv,
communicator);

I So-called vector variant allows a varying number of data to be
sent (or even no data).

I The sender reads Nsend[t] data from array src starting at
Offset send[t] for each processor P(t), 0 ≤ t < p, and
sends these data.

I The receiver receives data from all processors, and stores
them in array dest, with Nrecv[t] data arriving from
processor P(t) at offset Offset recv[t].

I All offsets are measured in units of the data type involved,
e.g. MPI DOUBLE. (Not in raw bytes, like in BSPlib.)

26 / 41

Message Passing Interface

Initialise h-relation

for (i=0; i<h; i++)
src[i]= (double)i;

if (p==1){
Nsend[0]= Nrecv[0]= h;

} else {
for (s1=0; s1<p; s1++)

Nsend[s1]= h/(p-1);
for (i=0; i < h%(p-1); i++)

Nsend[(s+1+i)%p]++; /* one extra */
Nsend[s]= 0; /* no talking to yourself */

for (s1=0; s1<p; s1++)
Nrecv[s1]= h/(p-1);

for (i=0; i < h%(p-1); i++)
Nrecv[(s-1-i+p)%p]++;

Nrecv[s]= 0;
}

28 / 41

Message Passing Interface

Determine offsets

Offset_send[0]= 0;
Offset_recv[0]= 0;

for(s1=1; s1<p; s1++){
Offset_send[s1]=Offset_send[s1-1]+Nsend[s1-1];
Offset_recv[s1]=Offset_recv[s1-1]+Nrecv[s1-1];

}

Messages are stored in order of destination processor. Thus, offsets
can be computed by a prefix operation.

30 / 41

Message Passing Interface

LU decomposition function mpilu

void mpilu(int M, int N, int s, int t, int n,
int *pi, double **a){

MPI_Comm row_comm_s, col_comm_t;

/* Create a new communicator for
my processor row and column */

MPI_Comm_split(MPI_COMM_WORLD,s,t,&row_comm_s);
MPI_Comm_split(MPI_COMM_WORLD,t,s,&col_comm_t);
...

I 2D numbering directly available in MPI: create a
communicator for every processor row and column by splitting
the world communicator.

32 / 41

Message Passing Interface

Splitting a communicator

MPI_Comm_split(MPI_COMM_WORLD,s,t,&row_comm_s);

I Processors that call MPI Comm split with the same value of s
end up in the same communicator, which we call row comm s.

I Thus, we obtain M communicators, each corresponding to a
processor row P(s, ∗).

I Every processor obtains a processor number within its
communicator. This number is by increasing value of the third
parameter of the primitive, i.e., t.

I Broadcast of pivot value within processor column, i.e., within
communicator col comm t now becomes:

if (k%N==t)
MPI_Bcast(&pivot,1,MPI_DOUBLE,smax,col_comm_t);

34 / 41

Message Passing Interface

Swapping the permutation in P(∗, 0)

/* piece of code for k%M != r%M */
if (k%M==s){

MPI_Send(&pi[k/M],1,MPI_INT,r%M,0,MPI_COMM_WORLD);
MPI_Recv(&pi[k/M],1,MPI_INT,r%M,0,MPI_COMM_WORLD,

&status);
}
if (r%M==s){

MPI_Recv(&tmp,1,MPI_INT,k%M,0,MPI_COMM_WORLD,
&status);

MPI_Send(&pi[r/M],1,MPI_INT,k%M,0, MPI_COMM_WORLD);
pi[r/M]= tmp;

}

I Don’t change the order of the sends and receives!
(Punishment: deadlock on certain machines.)

36 / 41

Message Passing Interface

Sender info must be initialised for FFT

offset= 0;
j0= s%c0; j2= s/c0;
for(j=0; j<npackets; j++){

jglob= j2*c0*np + j*c0 + j0;
destproc= (jglob/(c1*np))*c1 + jglob%c1;
Nsend[destproc]= 2*size;
Offset_send[destproc]= offset;
for(r=0; r<size; r++){

tmp[offset + 2*r]= x[2*(j+r*ratio)];
tmp[offset + 2*r+1]= x[2*(j+r*ratio)+1];

}
offset += 2*size;

} ...

I mpifft is identical to bspfft, except for redistribution.
Packets are the same.

38 / 41

Message Passing Interface

Receiver info must also be initialised

...
/* Initialise receiver info */
offset= 0;
j0= s%c1; j2= s/c1;
for(r=0; r<npackets; r++){

j= r*size;
jglob= j2*c1*np + j*c1 + j0;
srcproc= (jglob/(c0*np))*c0 + jglob%c0;
Nrecv[srcproc]= 2*size;
Offset_recv[srcproc]= offset;
offset += 2*size;

}
MPI_Barrier(MPI_COMM_WORLD); /* for safety */
MPI_Alltoallv(tmp,Nsend,Offset_send,MPI_DOUBLE,

x, Nrecv,Offset_recv,MPI_DOUBLE,
MPI_COMM_WORLD);

40 / 41

Message Passing Interface

Summary

I The Message Passing Interface (MPI) is a highly portable
communication library supported by most vendors of parallel
computers.

I In MPI, you should try to use collective communications as
much as possible. They reduce the size of program texts, and
they also create supersteps, thus structuring the program in
BSP style.

I MPI rule:
collective communications may synchronise the
processors, but you cannot rely on this.

So feel free to add global synchronisations where needed.

41 / 41

