
MPI-2

Message Passing Interface (MPI-2)
(PSC Appendix C, §C.2.5–C.4)

1 / 21



MPI-2

One-sided communications in MPI-2

bsp_hpput(pid, src, dst, dst_offsetbytes, nbytes);

MPI_Put(src, src_n, src_type,
pid, dst_offset, dst_n, dst_type, dst_win);

I The standard put operation in MPI-2 is the unbuffered put,
equivalent to the high-performance put in BSPlib.

I Data sizes and offsets are measured in units of the basic data
type, src type for the source array and dst type for the
destination array. Both could e.g. be MPI DOUBLE.

I The destination memory area is not given by a pointer to
memory space such as an array, but by a pointer to a window
object.

3 / 21



MPI-2

Windows for one-sided communications

bsp_push_reg(variable, nbytes);

MPI_Win_create(variable, nbytes, unit, info, comm, win);

bsp_pop_reg(variable);

MPI_Win_free(win);

I A window is a preregistered and distributed memory area,
consisting of local memory on every processor of a
communicator.

I A window is created by MPI Win create, equivalent to
bsp push reg.

I win is the window of type MPI Win corresponding to the array
variable.

I The integer unit is the unit for expressing offsets; comm is the
communicator of the window.

5 / 21



MPI-2

Creating a window

MPI_Win_create(variable, nbytes, unit, info,
comm, win); //syntax

MPI_Win v_win;

MPI_Win_create(v,nv*SZDBL,SZDBL,MPI_INFO_NULL,
MPI_COMM_WORLD,&v_win);

MPI_Win_fence(0, v_win);

I A window can be used after a call to MPI Win fence, which
can be thought of as a synchronisation of the processors that
own the window.

7 / 21



MPI-2

Fanout in mpimv

for(j=0; j<ncols; j++)
MPI_Get(&vloc[j], 1,MPI_DOUBLE,srcprocv[j],

srcindv[j],1,MPI_DOUBLE,v_win);
MPI_Win_fence(0, v_win);

I Communications initiated before a fence are guaranteed to
have been completed after the fence.

I The fence acts as a synchronisation at the end of a superstep.

9 / 21



MPI-2

Fanin using accumulate

for(i=0; i<nrows; i++){
/* compute psum = local partial sum of row i */
...

MPI_Accumulate(psum,1,MPI_DOUBLE,
destprocu[i], destindu[i],
1,MPI_DOUBLE,MPI_SUM,u_win);

}
MPI_Win_fence(0, u_win);

I Accumulate is a one-sided communication.

I Instead of putting a value into the destination location,
accumulate adds a value into the location, or takes a
maximum, or performs another binary operation.

11 / 21



MPI-2

Comparison of BSPlib and MPI for inner product

Program n p BSPlib MPI

Inner product 100 000 1 4.3 4.3
2 4.2 2.2
4 5.9 1.1
8 9.1 0.6

16 26.8 0.3

I Time Tp(n) (in ms) of parallel program from BSPedupack
and MPIedupack on p processors of a Silicon Graphics Origin
3800.

I BSPlib implementation was designed for earlier machine.

I The vendor’s version of MPI is clearly well-optimised, leading
to good scalability.

12 / 21



MPI-2

Comparison of BSPlib and MPI for LU and FFT

Program n p BSPlib MPI

LU decomposition 1000 1 5408 6341
2 2713 2744
4 1590 1407
8 1093 863

16 1172 555

FFT 262 144 1 154 189
2 111 107
4 87 50
8 41 26

16 27 19

13 / 21



MPI-2

Comparison of BSPlib and MPI for matrix–vector

Program n p BSPlib MPI

Matrix–vector 20 000 1 3.8 3.9
2 11.4 2.7
4 14.7 6.9
8 20.8 8.4

16 18.7 11.0

I Test problem amorph20k too small to obtain speedup.

14 / 21



MPI-2

How to use BSP in an MPI world?

I The first, purist approach is to write our programs in BSPlib
and install BSPlib ourselves if needed.

I Main advantages: ease of use; automatic enforcement of the
BSP style; no deadlock.

I For shared-memory architectures, efficient implementation is
available through Albert-Jan Yzelman’s MulticoreBSP for C.

I Always possible to use BSPonMPI by Wijnand Suijlen.

I BSPonMPI is a library. Linking it with your BSPlib program
turns it into an MPI program. Then use mpirun . . .

15 / 21



MPI-2

Second approach: the hybrid program

I The hybrid approach is to write a single program in BSP style,
but express all communication both in MPI and BSPlib.

I The resulting single-source program can then be compiled
conditionally (with or without a flag -DMPITARGET), e.g. for
the FFT:

#ifdef MPITARGET
mpiredistr(x,n,p,s,c0,c,rev,rho_p);

#else
bspredistr(x,n,p,s,c0,c,rev,rho_p);

#endif

I Main advantages: single-source program; choice of BSP or
MPI, whichever is fastest; encourages programming in BSP
style also in the MPI part of programs.

I Disadvantage: longer program texts.

17 / 21



MPI-2

Third approach: write in BSPlib, then convert to MPI

I Main advantages: saves human time when developing the
program; single-source program.

I Disadvantage: some extra effort needed at the end of the
development stage.

I This approach was taken for BSPedupack, which was
converted into MPIedupack within a week.

18 / 21



MPI-2

Fourth approach: write in MPI-2

I Use collective communications where possible, and keep the
lessons learned from the BSP model in mind.

I This probably works best after having obtained some
experience with BSPlib.

19 / 21



MPI-2

Differences between BSPlib and MPI

I BSPlib: system optimises. MPI: user optimises.

I BSPlib: small. MPI: large.

I BSPlib is easier for the novice. MPI gives experts more power.

I BSPlib: paternalistic library which steers programming efforts
in the right direction. MPI allows many different styles of
programming.

20 / 21



MPI-2

Summary: where BSP meets MPI

I Use BSPlib when learning to program in parallel.

I Use MPI later in life.

I Use BSPonMPI if you prefer BSPlib but want the portability
of MPI.

I MPI-2 provides one-sided communications.

I Our experimental comparisons were unfair to BSPlib. More
testing is needed, also using BSPonMPI.

I The third approach may be the best: write in BSPlib, but be
prepared to convert to MPI. You may never need to!

21 / 21


