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Sparse

v

and dense matrices

Sparse matrices are sparsely populated by nonzero elements.
Dense matrices are densely populated by nonzeros.

Sparse matrix computations save time: operations with zeros
can be skipped or simplified; only the nonzeros must be
handled.

Sparse matrix computations also save memory: only the
nonzeros need to be stored (together with their location).
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Sparse matrix cage6

n = 93 rows/columns

nz = 785 nonzeros

¢ = 8.4 nonzeros per row
d = 9.1% density
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Matrix statistics

» Number of nonzeros is
nz =nz(A) = [{aj : 0<i,j<nA aj#0}|.

» Average number of nonzeros per row or column is

c = c(A) = nzr(TA)‘
» Density is
d = d(A) = ”Zn(;\).

» Matrix is sparse if nz(A) < n?, or ¢(A) < n, or d(A) < 1.
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Application: cage model for gel electrophoresis of DNA

| A

®
oL @¢8>°

||‘ @0

Ll

© 1,
o 22
®
®
()

x

» 3D cubic lattice models a gel, in which a DNA polymer moves.

> DNA reptates, i.e., moves like a snake: its kinks and end
points move under the influence of an electric field E.

» Gel electrophoresis was used in first-generation DNA
sequencing to separate DNA fragments by length.

» Shorter fragments move faster.

@ A. van Heukelum, G. T. Barkema, R. H. Bisseling, Journal of
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Transition matrix for the cage model

» Matrix element aj; is the probability that a polymer in state j
moves to a state /.
» Hence, the matrix is stochastic, i.e. 0 < a;; <1 and
n—1
Za,-j =1, for all j.
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Transition matrix is sparse

» Polymer has 6 monomers for cage6. We can move only one
monomer at a time.

» Hence, each state has only a few connected states and the
matrix is sparse.
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Sparsity structure of cage6

» Each move can be reversed, hence a; # 0 <= aj; # 0, i.e.,
the matrix is structurally symmetric.

> A move against the electric field has a different probability
than a move with the field. Hence a;; # aji, so that the matrix

IS u nsym m etrlc . Lecture 4.1 Sequential Sparse Matrix—Vector Multiplication

8/22



Power

method

Let x be the vector of state frequencies: component x;
represents the relative frequency of state 7, with 0 < x; <1
and ) . x; =1

The power method computes Ax, A%x, A3x, . .., until
convergence.

The final component x; represents the frequency of state i in
the steady-state situation, where Ax = x.

Main operation: multiplication of sparse matrix A and dense
vector X.
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Sparse matrix—vector multiplication (SpMV)

» Let A be a sparse n x n matrix and v a dense input vector of

length n.
» We consider the problem of computing the dense output
vector u,
u:= Av.
» The components of u are
n—1
u,-:Za,-jvj, for0<i<n.
Jj=0
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Sparse matrix—vector multiplication algorithm

input: A sparse n X n matrix,
v : dense vector of length n.
output: u : dense vector of length n, u = Av.

fori:=0ton—1do

u; :=0;
forall (i,j):0<i,j<nA aj+#0do
uj 1= uj + ajvj;

» The sparsity of A is expressed by the test a;; # 0.

» Such a test is never executed in practice, and instead a sparse
data structure is used.
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Application of SpMV: iterative solution methods

» Sparse matrix—vector multiplication is the main computation
step in iterative solution methods for linear systems or
eigensystems.

> lterative methods start with an initial guess x° and then
successively improve the solution by finding better
approximations x¥, k = 1,2,..., until the error is tolerable.
> Examples:

» Linear systems Ax = b, solved by the conjugate gradient (CG)
method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR,
IDR(s), SOR, FOM, ...

» Eigensystems Ax = Ax solved by the Lanczos method,
Jacobi-Davidson, ...

» One size does not fit all. Different applications require
different iterative methods.
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Web searching: which page ranks first?

G bulk-synchronous parallel - Go X
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About 6.730.000 resuls (0,41 seconds)

Scholarly articles for bulk-synchronous parallel
Direct bulk-synchronous parallel algorithms - Gerbessiotis - Cited by 345
Scientific computing on bulk synchronous parallel .. - Bisseling - Cited by 151

Bulk synchronous parallel computing—a paradigm for ... - Cheatham - Cited by 111

enwikipedia.org » wiki > Bulk_synchronous_paraliel

Bulk synchronous parallel - Wikipedia

The bulk synchronous parallel (BSP) abstract computer is a bridging model for designing
parallel algorithms. It serves a purpose similar to the parallel random access machine (PRAM)
model. BSP differs from PRAM by not taking communication and synchronization for granted.
The model - Communication - Bartiers - The cost of a BSP algorithm

link.springer.com .
BSP (Bulk Synchronous Parallelism) | SpringerLink

Bulk-synchronous parallelism is a type of Goarse-grain parallelism, whers ... The model of bulk-
synchronous parallel (BSP) computation was introduced by

‘www.quora.com » What-is-BSP-Bulk-Synchronous-Parallel

What is BSP (Bulk Synchronous Parallel)? - Quora

Nov 2, 2014 - What is BSP (Bulk Synchronous Parallel)?. 1 Answer. Victor Eijkhout, I've seen

buzzwords come and go. Most are synonyms for "seeking funding”. Answered

Whatis the difierence between Bulk Synchronous ...- Quora 22 Jul 2012

Bulk Synchronous Parallel Computing: Why the BSP model is ... 29 Mar 2016

More results from www.quora.com
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The weblink matrix A

» Given n web pages with hyperlinks between them, we can
define the sparse n x n weblink matrix A by

5 1 if there is a hyperlink from page j to page i
Y71 0 otherwise.

> Lete=(1,1,...,1)T, represent an initial uniform importance
(rank) of all web pages. Then

(Ae)i =) aje = ay
j j

is the total number of hyperlinks pointing to page i.

» The vector Ae represents the importance of the pages; A’e
takes the importance of the pointing pages into account as
well; and so on.
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Weblink matrix bspww500

» This matrix with n = 500 and nz = 13400 represents 500 web
pages and the hyperlinks connecting them.

» It was obtained by a breadth-first search in 2017 of the World
Wide Web starting at http://www.bsp-worldwide.org and pF7Hg
using the web crawler surfer.m by Cleve Moler. :
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http://www.bsp-worldwide.org

The random surfer model

» A random web surfer chooses each of the ¢; outgoing
hyperlinks from page j with equal probability c%

» To incorporate this behaviour, we define the n x n diagonal
scaling matrix D by
djj = ¢
and multiply the weblink matrix A from the right by D1
» This divides each column j of A by c;.
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The Google matrix

» Let a be the probability that a surfer follows an outlink of the
current page. Typically & = 0.85. The surfer jumps to a
random page with probability 1 — a.

> The Go gle matrix is defined by

1
G=aAD™' + (1 —a)-ee’.
n

> Note that this definition is under the assumption that all
¢ > 0.

» The PageRank of a set of web pages is obtained by repeated
multiplication by G, involving sparse matrix—vector
multiplication by A and some vector operations.

@ S. Brin and L. Page, Computer Networks and ISDN Systems, 30(1-7)
(1998) pp. 107-117.
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Vector operation

» The vector e can be viewed as an n x 1 matrix of all ones and
the vector e® as a 1 x n matrix.

» The matrix ee! is an n x n matrix with all elements equal
to 1.

» Multiplication of a vector x by eel is cheap:

ee’x = e(e'x) E xj)e.
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Escaping from dangling nodes

» If ¢; =0, column j must be empty and page j a dangling
node; it could be a PDF file or an image file.

» To avoid division by zero, the diagonal element is then
redefined as dj; = 1.

» To make the Google matrix stochastic (with all column sums
equal to 1), we must add to G an extra term

1
a-edl.
n

» Here, the vector & is defined by

{1 iijZO

0 otherwise.

>

J
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Insight into other applications

e
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» A molecular dynamics domain of size 1.0 x 1.0 with 15
particles.

» The cut-off radius for interaction between particles is r. = 0.2.
The circles shown have radius r./2 = 0.1.
» Particles interact if their circles intersectucure s seuenis sprse Matriscvector Muttipicato
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Force matrix F represents particle interactions

01234567 891011121314
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» Shown is the matrix F + /, where F is the sparse 15 x 15
force matrix corresponding to the particle interactions.

» If particles / and j interact, nonzeros fj; and f; appear in F.

» Row i of F + | expresses the information needed to compute
the next position of particle / in a molecular dynamics
simulation: forces f;j # 0 and the current position and velocity

of | Lecture 4.1 Sequential Sparse Matrix-Vector Multiplication

21/22



Summary

>

Sparse matrices are the rule, rather than the exception. In
many applications, variables are connected to only a few
others, leading to sparse matrices.
Sparse matrices occur in many application areas:

» transition matrices in Markov models;

» finite-element matrices in engineering;

» linear programming matrices in optimization;

» weblink matrices in Google PageRank computation.
Sparse matrix—vector multiplication is important for iterative
solvers and it is the workhorse of the PageRank computation.

It can also capture other applications such as molecular
dynamics.

The sequential computation is simple, but its parallelization is
a challenge.
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