Cartesian Matrix Distribution

Section 4.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 4.4 Cartesian Matrix Distributior

1/22

Identifying 1D and 2D processor numbering

» Natural column-wise identification for p = MN processors:
P(s,t)=P(s+tM), for0<s< M and 0<t<N.
» This can also be written as
P(s) = P(s mod M,s div M), for 0 <s < p.

» For a Cartesian distribution (¢g, ¢1), we map nonzeros aj; to
processors P(4(i,/)) by

&(i,j) = po(i) + p1(j)M, for 0<i,j<n and aj;#0.

> We use 1D or 2D numbering, whichever is most convenient in
the context.

A Cartesian distribution of cage6

t=0 1

> n=93, nz=785 p=4 M=N=2.
» The processor row of a matrix element aj; is s = ¢g(i);
the processor column is t = ¢1(j).
» The matrix diagonal is assigned in blocks to the processors:
, P(2) = P(0,1),
P(1) = P(1,0), P(3) = P(1,1). 44 o Dt

Advantages of a Cartesian distribution for a sparse matrix

Advantages:
P> Row-wise operations require communication only within
processor rows, and similar for column-wise operations.

» For an M x N Cartesian distribution, v; has to be sent to at
most M processors and u; is computed using contributions
received from at most N processors.

» Simplicity: Cartesian distributions partition the matrix
orthogonally into rectangular submatrices. Non-Cartesian
distributions create arbitrarily-shaped matrix parts.

Disadvantage:

» Less general, so a Cartesian distribution may not offer the
optimal solution.

Lecture 4.4 Cartesian Matrix Distribution

4/22

Matching the matrix and vector distributions

| 2

In a Cartesian distribution, vector component v; is needed
only by processors that possess an a;; # 0, and these
processors are contained in processor column P(x, ¢1(j)).

Assigning vector component v; to one of the processors in
P(x,¢1(j)) implies that v; has to be sent to at most M — 1
processors, instead of M.

If we are lucky (or clever), we may even avoid communication
of v; altogether.

If v; were assigned to a different processor column, it would
always have to be communicated.
Assigning u; to a processor in processor row P(¢o(i),)

reduces the number of contributions sent for u; to at most
N —1.

Lecture 4.4 Cartesian Matrix Distribution

5/22

A trivial but powerful theorem
Theorem 4.4 Let A be a sparse n x n matrix and u, v vectors of
length n. Assume that:
(i) the distribution of A is Cartesian, distr(A) = (¢o, ¢1);
(i) the distribution of u is such that u; resides in P(¢o(7), *);
(iii) the distribution of v is such that v; resides in P(x, ¢1(j)).

Then: if u; and v; are assigned to the same processor, aj; is also
assigned to that processor and does not cause communication.

Proof.

Component u; is assigned to P(¢o(i), t).
Component v; is assigned to P(s, ¢1(J)).
Since this is the same processor, we have

(s,t) = (¢o(i), #1()),

so that this processor also owns a;. O

6/22

Special case distr(u) = distr(v)

Corollary of Theorem 4.4. The conditions

(i) the distribution of A is Cartesian, distr(A) = (¢o, ¢1);

(ii) the distribution of u is such that u; resides in P(¢q(i), *);
(iii) the distribution of v is such that v; resides in P(x, ¢1(j));
(iv) distr(u) = distr(v);
imply that u; and v; are assigned to P(¢o(i), ¢1(i)), which is the
owner of the diagonal element aj;.

P> The choice of a Cartesian matrix distribution completely

determines the vector distribution.

» The choice of a vector distribution together with values for
M, N completely determines the Cartesian matrix distribution.

Example: 1D Laplacian matrix

-2 1
1 -2 1
1 -2 1
A=
1 -2 1
1 -2 1
1 -2

» This tridiagonal matrix represents a Laplacian operator on a
1D grid of n points.

» a; #0ifand only if i —j =0,£1.

Vector distribution for tridiagonal matrix

» a; #0if and only if i —j = 0,+1.

» Assume that we require distr(u) = distr(v). Theorem 4.4
says that it is best to assign u; and v; (and hence u;) to the
same processor if i = j + 1.

» Therefore, a suitable vector distribution over p processors is
the block distribution,

u;j — P(i div [Z-‘), for 0 < i< n.

Lecture 4.4 Cartesian Matrix Distributior

9/22

Example: 12 x 12 1D Laplacian matrix
Distribution matrix for n=12 and M = N = 2:

[0 0
0 0
0

=l o o
= = O
—= =

distr(A) =

Ol = =
N N W
N DN DN

WIN N
W WIN
w w w

3
L 3 -
Position (i, j) gives the 1D identity of the processor that owns
matrix element a;;.

Construction of the distribution matrix

distr(A) is constructed by:

>
>

distributing the vectors by the 1D block distribution;

distributing the matrix diagonal in the same way as the
vectors;
translating the 1D processor numbers into 2D numbers by
P(0) = P(0,0), P(2) = P(0,1),
P(1) = P(1,0), P(3) = P(1,1);
determining the owners of the off-diagonal nonzeros:

P age is in the same processor row as ass, owned by

P(1) = P(1,0);
P agg is in the same processor column as agg, owned by
P(2) = P(0,1);

> thus, ase is owned by P(1,1) = P(3).

11/22

Cost analysis for a Cartesian distribution

» Assume that we have a good spread of
» nonzeros and vector components Oover processors;
» matrix rows over Processor rows;
» matrix columns over processor columns.

» Then the costs of the supersteps are

hg
To) = (M — 1)? + 1,

2cn
Ty = -2 41,
(1) p
Ty = (N—-1)" 41,
p
Nn
Tiay = — + 1.
(3) p

» The total BSP cost is then bounded by

2cn n M+ N-2
Ty, Mxn < — + — + ————ng + 4.
p M p

Lecture 4.4 Cartesian Matrix Distribution

12/22

Efficient computation for M = N = ,/p

2cn n 1 1
Tav, \/ﬁx\/ﬁ§7+ﬁ+2 ﬁ_ﬁ ng + 41.

» The computation is considered efficient if 2% > 2%, i.e.,
c>./pg.

» This is an improvement of a factor ,/p compared to the
previous general efficiency criterion.

Lecture 4.4 Cartesian Matrix Distribution

13/22

Dense

matrices

Dense matrices are the limit of sparse matrices for ¢ — n.

Analysing the dense case is easier and it can give us insight
into the sparse case as well.

Substituting ¢ = n in the previous cost formula gives

T L2, +2<1 1) Y
MV, dense < — =~ | ng)
ense p \//3 \/ﬁ D

Which distribution will yield this cost? All spreading
assumptions must hold!

Lecture 4.4 Cartesian Matrix Distribution

14 /22

Square cyclic distribution? No!

>

Previously, we have extolled the virtues of the square cyclic
distribution for LU decomposition and all parallel linear
algebra.

Here, however, this distribution does not work well. Diagonal
element aj; is assigned to P(i mod /p, i mod ,/p), so that
the matrix diagonal is assigned to the diagonal processors
P(s,s), 0 < s < /p.

Only /p processors have part of the matrix diagonal and the
vectors. The vector spreading assumption fails.

The trouble is that diagonal processors must send /p — 1

copies of ﬁ vector components: hy = n — # in (0).

The total cost for the square cyclic distribution is

2n? 1
TMV7 dense, \/px,/p cyclic = 7 +n+2 <1 - \/I5> ng + 4/.

Lecture 4.4 Cartesian Matrix Distribution

15/22

Cyclic row distribution? No!

» The communication balance can be improved by choosing a
distribution that spreads the matrix diagonal and the vectors
evenly, ¢u(i) = ¢y(i) =i mod p, and translating the matrix
distribution from 1D to 2D.

» We still have the freedom to choose M and N, where
MN = p. For the choice M = p and N =1, this gives the
cyclic row distribution ¢o(i) = i mod p and ¢1(j) = 0.

» The total cost for the cyclic row distribution is

2n? 1
TMV, dense, px1 cyclic = 7 + <1 - P> ng + 2.

» This distribution skips supersteps (2) and (3), since each
matrix row is completely contained in one processor.

» The trouble is that the fanout is very expensive: every
processor has to send g vector components to all others.

Lecture 4.4 Cartesian Matrix Distributior

16 /22

Square Cartesian distribution? Yes!

(o ENENEN o ENENER

» Square Cartesian distribution based on a cyclic distribution of
the matrix diagonal, ¢u(i) = ¢y(i) = i mod p, but now we
choose M = N = ,/p when translating from 1D to 2D.

» Et voilal We achieve the optimal BSP cost. 1w vt caneson st visiouto

17/22

Two layers of a dense artificial neural network
o 1 2 3 4 5 6 7

» Each neuron in the top layer of the artificial neural network
(ANN) is connected to all neurons of the bottom layer. Both
layers have 8 neurons.

» The strength v; of a signal fired by neuron j in the top layer is
an input to the strength u; of neuron / in the bottom layer.

» The connection between top neuron j and bottom neuron i
carries a weight a; which has been determined during a
training phase of the network.

Lecture 4.4 Cartesian Matrix Distributior

18/22

Similarity to matrix—vector multiplication
o 1 2 3 4 5 6 7

» The value u; is typically given by a formula of the form
n—1
uj = f(z ajjvi + b,').
j=0

» Here, f is an activation function such as the Rectified Linear
Unit (ReLU) function f(x) = max(0, x) and b; is a
component of a bias vector b.

» The neurons and their connections have been distributed over EL®
4 processors according to the square Cartesian matrix
distribution just discussed. e G e e

19/22

Square Cartesian distribution based on blocks

(oo ENENENENERER.

0]
0]
1
1
2
2
3
3
u

» Square Cartesian distribution based on a block distribution of
the matrix diagonal, ¢u(i) = ¢y(i) =i div [7], with
M=N=./p

» This also achieves the optimal BSP cost. Lectur 4.4 Carisin Matrs Distributin

20/22

Distribution of artificial neural network based on blocks

Y77
A
N

BN

N

»W//'

this distribution is just as good as the

» For dense ANNs,

previous cyclic distribution.

» It has more locality in the picture.

» For sparse ANNs with locality, such as convolutional neural

networks, a block-based distribution may be better.

s
2
2
a
=
b3

Lecture 4.4 Cartesian

21/22

Summary

» For Cartesian distributions, we use both 1D and 2D processor
numberings to our advantage, with the identification

P(s,t) = P(s + tM).

> We have seen the example of a tridiagonal matrix, where we
obtained a 2D matrix distribution, slightly different from a 1D
block row distribution.

» A square Cartesian matrix distribution based on a cyclic
distribution of the matrix diagonal and the vectors is an
optimal data distribution for dense matrices and for sparse
matrices that are relatively dense.

» This distribution (or a block-based alternative) can also be
applied to the neurons and the weights of a dense artificial
neural network.

Lecture 4.4 Cartesian Matrix Distribution

22/22

