
Lecture 5.10 Experimental results on Cartesius

Experimental results on Cartesius
Section 5.10 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 1

Lecture 5.10 Experimental results on Cartesius

Test set of graphs from SuiteSparse Matrix Collection
Name n m d ∆ Origin

tx2010 914 231 2 228 136 4.9 121 redistricting Texas
mouse gene 45 101 14 461 095 641.3 8 031 gene regulatory network
cage15 5 154 859 47 022 346 18.2 46 DNA electrophoresis
kmer P1a 139 353 211 148 914 992 2.1 40 protein k-mer

I Parameters: n = number of vertices, m = number of edges,
d = average degree, ∆ = maximum degree.

I tx2010: V = Texas land areas from the 2010 US Census;
E = connections to neighbouring areas;
ω = length of the shared border.

I mouse gene: V = probes from a DNA microarray;
E = regulatory interactions; ω = mutual information value.

I cage15: V = states of a polymer of length 15;
E = possible state transitions; ω = probability.

I kmer P1a: V = segments of length k of amino acids;
E = overlapping segment pairs; ω = 1.

2 / 1

Lecture 5.10 Experimental results on Cartesius

Partitioning time vs. matching time

I The vertices of the test graphs were partitioned by a run of
the Mondriaan partitioner in 1D row mode for the purpose of
a parallel SpMV with p = 1, 2, 4, . . . , 1024.

I Here, the input graph was translated to a matrix by creating
the sparse symmetric adjacency matrix A and adding a
diagonal I .

I Partitioning a test graph takes much longer than running a
matching algorithm on a partitioned test graph. Still, this
resembles a likely use case, where the graph is available in a
sensible distributed form as part of a larger application.

I In contrast, randomly distributing the vertices would be
cheap, but would cut most edges and make the algorithm
communication-bound.

3 / 1

Lecture 5.10 Experimental results on Cartesius

Measured execution time (in ms) for graph matching

p tx2010 mouse gene cage15 kmer P1a

1 208.5 671 2 358 59 057
2 107.0 356 1 237 32 473
4 52.4 322 646 17 618
8 28.1 305 424 9 054

16 15.1 251 194 4 454
32 9.1 317 178 2 756
64 7.5 538 88 911

128 7.9 836 76 561
256 8.3 2 005 77 299
512 15.1 2 526 129 204

1 024 29.3 6 295 218 302

I Experiments performed on p processor cores of the Broadwell
subsystem of Cartesius running BSPonMPI.

I The largest speedup achieved, compared to the parallel
program with p = 1, is S512 = 289 for kmer P1a. The
smallest speedup is S16 = 2.7 for mouse gene.

4 / 1

Lecture 5.10 Experimental results on Cartesius

Upper bound on the number of matches

I A trivial upper bound on the number of matches is

|M| ≤
⌊
|V|
2

⌋
,

because every match involves 2 vertices.

5 / 1

Lecture 5.10 Experimental results on Cartesius

Upper bound on the total matching weight

1

3

17

10

2

4

ω(M) = 17 + 4 = 21 ≤ 1
2(17 + 3 + 1 + 17 + 10 + 2 + 4) = 27

I An upper bound on the total matching weight is

ω(M) ≤ 1

2

∑
v∈V

max {ω(u, v) : (u, v) ∈ E},

because every vertex v contributes at most the weight of one
half-edge to the total matching weight, and this weight is at
most half the weight of its heaviest edge.

6 / 1

Lecture 5.10 Experimental results on Cartesius

Number of matches and total matching weight

tx2010 mouse gene cage15 kmer P1a

Matches 375 342 18 273 2 575 446 59 735 594
Matches upper bound 457 115 22 550 2 577 429 69 676 605

Weight 28 933 021 703 1 287.998 76 890.186 59 735 594
Weight upper bound 39 547 303 682 1 553.424 77 709.076 69 676 605

I Given are the total number of matches |M| and the total
matching weight ω(M), together with their upper bounds, for
p = 1.

I The preference for a local match in tie-breaking causes a
variation of ≤ 0.1% for varying p.

I The matching weight is between 73.2% of the upper bound
(tx2010) and 98.9% (cage15), so that the 50% guarantee of
the 1/2-approximation is more than satisfied.

I Compared to the (unknown) maximum matching weight, the
percentages will even be better.

7 / 1

Lecture 5.10 Experimental results on Cartesius

Number of operations performed

p tx2010 mouse gene cage15 kmer P1a

Operations lower bound 8.9 58 188 596
Operations 1 9.5 59 193 873

32 9.5 148 206 872
1 024 9.8 168 225 872

I The number of operations (in millions) performed was
obtained by summing the sizes of the ranges encountered.

I The lower bound given is 4m, the cost of partially sorting only
the upper parts of adjacency lists.

I The operation counts for p = 1 fit well with their lower
bound, meaning that in practice the partial sort leads to a
linear-time sequential algorithm.

I The number of operations grows a bit with p, because
operations are performed on the basis of increasingly
incomplete information, e.g., about a new suitor for a halo
vertex.

8 / 1

Lecture 5.10 Experimental results on Cartesius

Number of supersteps
p tx2010 mouse gene cage15 kmer P1a

Supersteps 2 8 957 55 26
32 10 1 613 69 67

1 024 13 2 099 82 72
Parallel depth 146 309 141 145

I The number of supersteps needed for parallel matching grows
with p, again because of increasingly incomplete information.

I The parallel depth of an algorithm is the length of its critical
path.

I An theorem by Ferdous et al. states that the parallel depth
for matching on a graph with uniformly random edge weights
is O((log2m) log2 ∆). Note: our test graphs are not random.

I The parallel depth given is (log2m) log2 ∆, which we take as
an asymptotic lower bound on the number of supersteps for
p =∞ in the random case.

S. M. Ferdous, A. Khan, and A. Pothen, In: Proceedings IPDPS 2018,
IEEE, pp. 22–33.

9 / 1

Lecture 5.10 Experimental results on Cartesius

Load balancing for cage15 and p = 8

Max operations Time (in ms) Supersteps
(×103)

4 845 6 618
8 657 3 340

16 555 1 694
32 500 875
64 465 465

128 445 261
256 429 159
512 417 108

1 024 400 83
2 048 377 71
4 096 352 65
8 192 346 62

16 384 341 60
∞ 341 60

I We can try to balance the computational work load by
imposing a maximum number of operations carried out by a
processor in a superstep.

10 / 1

Lecture 5.10 Experimental results on Cartesius

Load balancing for cage15 and p = 8
Max operations Time (in ms) Supersteps

(×103)

4 845 6 618
.

1 024 400 83
2 048 377 71
4 096 352 65
8 192 346 62

16 384 341 60
∞ 341 60

I The total synchronization time for 60 supersteps based on the
benchmark value of l is only 2.2 ms, so that the cost of the
synchronizations themselves is insignificant.

I Still, we do not observe any gain from the load balancing
procedure, which indicates that our work counters are not
accurate enough: communication operations were not taken
into account, and, how sobering a thought, perhaps not all
O(1)-operations are created equal.

11 / 1

Lecture 5.10 Experimental results on Cartesius

Local preferences are beneficial

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 64 128 256 512 1024

Ef
fic

ie
nc

y

p

Ep = 1

Local pref

No local pref

I Shown is the eficiency (relative to p = 1) for the graph
kmer P1a, with and without tie-breaking by preferring local
matches.

I This graph has unit weights, so that all weight comparisons
are ties.

I For p = 1 024, the efficiency is 19.6% with local preferences,
and 10.7% without.

12 / 1

Lecture 5.10 Experimental results on Cartesius

Summary

I Partitioning a test graph takes much longer than running a
matching algorithm. Still, parallel matching is useful as part
of a larger application.

I An upper bound on the total matching weight is

ω(M) ≤ 1

2

∑
v∈V

max {ω(u, v) : (u, v) ∈ E}.

I In practice, the matching weight achieved by the parallel
1/2-approximation algorithm is much higher than the
guarantee of 50% and the total operation count is linear in
the number of edges.

I The load balancing procedure based on imposing a maximum
number of operations should be improved.

I There is always further work to do. Fortunately!

13 / 1

