
Lecture 5.1–5.2 Sequential Graph Matching

Sequential Graph Matching
Sections 5.1-5.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Motivation of graph matching

I Graph matching is the pairing of neighbouring vertices in a
graph.

I It has applications in finding
I suitable partners in online dating services;
I suitable organ donors in medicine;
I similar proteins in Protein-Protein Interaction networks from

bioinformatics;
I large pivot elements in matrix computations;
I similar vertices to be merged in graph coarsening.

2 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Matching can win you a Nobel memorial prize

Alvin Roth (1951) and Lloyd Shapley (1923–2016).
Source: Slate magazine October 15, 2012.

3 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Graph terminology

I A graph G = (V, E) consists of a set V of vertices (nodes) and
a set E of edges (connections).

I An edge is a pair e = (u, v) with u, v ∈ V.

I We assume the graph is undirected so that we identify

(u, v) ≡ (v , u).

I We also assume that the graph is simple, i.e., it has no
self-edges (u, u) and there exists at most one edge between
the same pair of vertices.

I Furthermore, we assume that every edge e = (u, v) has a
weight ω(e) = ω(u, v) > 0.

I The number of vertices of the graph is n = |V|
and the number of edges is m = |E|.

4 / 23

Lecture 5.1–5.2 Sequential Graph Matching

A matching

n = 8, m = 12
4 matched edges
(thick lines)

I A matching is a subset M⊆ E such that

(u, v), (u′, v) ∈M ⇒ u = u′.

I Thus, no two edges in the matching are incident to the same
vertex v .

5 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Not a matching

vu

u′

n = 8, m = 12

I Here, two marked edges (u, v), (u′, v) are incident to the same
vertex v , so this is not a matching.

6 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Edge-weighted matching

1

2

3

4

5

6

7

8

9 10

1112

n = 8, m = 12
|M| = 4
ω(M) = 42

I The cardinality of a matching M is |M|.
I The weight of a matching M is

ω(M) =
∑
e∈M

ω(e).

I The edge-weighted maximum matching problem: find an M
with maximum possible weight ω(M).

7 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Graph algorithms for social networks

I Facebook has an Open Graph application, which enables
clicking a button if you like a webpage.

I Comment of Time Magazine: “Graph: It’s a nerdy name for
something that’s surprisingly simple.”

8 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Polynomial time is not good enough

I Finding a maximum-weight matching is possible in polynomial
time O(mn + n2 log n) (Gabow 1990).

I The One-World matching problem has 10 billion vertices
(people) with 1000 edges (friends) per vertex,
i.e., n = 1010 and m = 1013.

I It takes O(1023) = 100 000 000 Pflops to solve this problem to
optimality.

I Fugaku, ranked first for the HPCG benchmark on the
TOP500 list of supercomputers in June 2022, runs at a speed
of 16 Pflop/s solving a sparse linear system.

I Fugaku would take 6 250 000 s or about 72 days to solve the
One-World matching problem. That’s a lot!

I We need linear-time greedy or approximation algorithms
instead of cubic-time exact algorithms.

9 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Approximation algorithm

I An approximation algorithm provides a problem solution
within reasonable time that differs at most by a guaranteed
factor from the optimal solution.

I An α-approximation algorithm for edge-weighted matching
gives a matching M with

ω(M) ≥ α · ω(M∗),

where M∗ denotes a maximum matching.

10 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Dominant edge

1

3

7

10

2

4

I An edge (u, v) is dominant if for all edges e incident to u or
v , we have

ω(u, v) ≥ ω(e).

I Here, the edge with weight 10 is dominant.

I Furthermore, the matching M containing this single edge is
maximal, since it cannot be extended.

11 / 23

Lecture 5.1–5.2 Sequential Graph Matching

The maximum matching

1

3

7

10

2

4

I This matching M with |M| = 2 and ω(M) = 11 has
maximum weight.

I Note the difference between a maximal matching and a
maximum matching.

12 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Basic dominant-edge algorithm (Preis 1999)

input: G = (V, E): graph with vertex set V and edge set E .
output: M: matching, M⊆ E .

M := ∅;
while E 6= ∅ do

pick a dominant edge (u, v) ∈ E ;
M :=M∪ {(u, v)};
E := E \ {(x , y) ∈ E : x = u ∨ x = v};
V := V \ {u, v};

returnM;

R. Preis, in Proceedings STACS 1999, Lecture Notes in Computer
Science, Vol. 1563, pp. 259–269. Springer.

13 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Lemma 5.1: the basic dominant-edge algorithm yields a
maximal matching

Proof:

I Let M be the matching produced by the basic dominant-edge
algorithm and E the original edge set.

I An edge e ∈ E to be added to M in an extension is not in
M. Hence it must have been removed by an edge (u, v) ∈M
sometime during the algorithm.

I Then e must be incident to u or v and hence cannot be in the
same matching as (u, v).

I Thus, the matching M cannot be extended. �

14 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Lemma 5.2: the algorithm yields a 1
2-approximation

Proof:

I Let M be the matching produced by the basic dominant-edge
algorithm.

I Let M∗ = {e∗0 , . . . , e∗k−1} be a maximum matching.
I For each edge e∗i ∈M∗:

I if e∗i ∈M, we define ei = e∗i ;
I if e∗i 6∈ M, we define ei = the edge that removed e∗i

during the algorithm.

I This creates a list e0, . . . , ek−1 of edges from M, with

ω(ei) ≥ ω(e∗i), for 0 ≤ i < k.

15 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Proof (cont’d)

e∗i

ei = ej

e∗j

I Note that ei = ej for i 6= j is possible, since e∗i and e∗j may
have been removed by the same edge in M.

I However, at most 2 edges from M∗ may have been removed
by the same edge and these must be at opposite ends of the
removing edge.

I Therefore, an edge from M occurs at most twice in the list of
the ei , so that

k−1∑
i=0

ω(ei) ≤ 2ω(M).

16 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Proof (cont’d)

I Combining our inequalities gives

ω(M∗) =
k−1∑
i=0

ω(e∗i) ≤
k−1∑
i=0

ω(ei) ≤ 2ω(M).

which is equivalent to

ω(M) ≥ 1

2
ω(M∗).

�

17 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Local domination algorithm: initialization

D := ∅; . dominant vertices
M := ∅; . matched edges
for all v ∈ V do

pref (v) := nil; . preference of v

{ Find initial dominant edges }
for all v ∈ V do

Adjv := {u ∈ V : (u, v) ∈ E}; . adjacent vertices of v
if Adjv 6= ∅ then

pref (v) := argmax{ω(u, v) : u ∈ Adjv};
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)};
M :=M∪ {(v , pref (v))};

...

F. Manne and R. H. Bisseling, in Proceedings PPAM 2007, Lecture Notes
in Computer Science, Vol. 4967, pp. 708–717. Springer.

18 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Mutual preferences

1

3

7

10

2

4

I A mutual preference corresponds to a dominant edge.

I For simplicity, we assume that there are no equal preferences
(ties).

19 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Nonmutual preferences

1

3

17

10

2

4

20 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Local domination algorithm: main loop

...
{ Process matched vertices }
while D 6= ∅ do

pick a vertex v ∈ D;
D := D \ {v};
for all x ∈ Adjv : (x , pref (x)) /∈M do

Adjx := Adjx \ {v};
if Adjx 6= ∅ then

pref (x) := argmax{ω(x , y) : y ∈ Adjx};
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)};
M :=M∪ {(x , pref (x))};

else
pref (x) := nil;

21 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Properties of the local domination algorithm

I As long as we can add an edge to the matching, there exists a
dominant edge, the heaviest remaining edge.

I The algorithm keeps going until the set of dominant vertices
D becomes empty. Then the matching M is maximal.

I For now, we assume without loss of generality that the
weights are unique. This guarantees that there are no ties.

I Dominance is a local property: the algorithm is easy to
parallelize.

22 / 23

Lecture 5.1–5.2 Sequential Graph Matching

Summary

I A graph G = (V, E) consists of a set V of vertices and a set E
of edges.

I A matching in an undirected graph G is a subset M⊆ E such
that no two edges in the subset share a vertex.

I An α-approximation algorithm for edge-weighted matching
gives a matching M with

ω(M) ≥ α · ω(M∗),

where M∗ denotes a maximum matching.

I The local domination algorithm is a parallelizable
1
2 -approximation algorithm for edge-weighted matching.

23 / 23

