
Lecture 4.12 Experimental results on Cartesius

Experimental results on Cartesius
Section 4.12 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 10



Lecture 4.12 Experimental results on Cartesius

Test set of sparse matrices

Name n nz c Origin

mip1 66 463 10 352 819 155.8 mixed integer progr.
in-2004 1 382 908 16 917 053 12.2 web links India 2004
asia osm 11 950 757 25 423 206 2.1 road network Asia
cage14 1 505 785 27 130 349 18.0 DNA electrophoresis
rgg n 2 21 s0 2 097 152 28 975 990 13.8 random geometric graph
laplace2D 4096 16 777 216 83 869 696 5.0 2D Laplacian
random100k 100 000 100 004 125 1 000.0 random sparse matrix
laplace3D 256 16 777 216 117 047 296 7.0 3D Laplacian

I Random geometric graph with 221 randomly placed points in
a unit square interacting within a cut-off radius.

I Laplacian matrices: 4096 × 4096 2D grid and 256 × 256 × 256
3D grid, both with 224 grid points.

I Random sparse matrix with density d = 0.01.

2 / 10



Lecture 4.12 Experimental results on Cartesius

BSP cost for the smallest matrices
p mip1 in-2004 asia osm

1 20 705 638 33 834 106 50 846 412
2 10 635 008 + 1 087g 17 402 680 + 319g 25 582 806 + 62g
4 5 321 972 + 2 152g 8 619 792 + 611g 12 847 854 + 62g
8 2 665 180 + 3 539g 4 354 756 + 832g 6 526 308 + 82g

16 1 332 106 + 2 603g 2 178 062 + 867g 3 272 994 + 97g
32 666 428 + 2 740g 1 089 034 + 832g 1 636 606 + 143g
64 333 156 + 2 000g 544 514 + 756g 818 266 + 96g

128 166 614 + 1 640g 272 258 + 777g 409 110 + 99g
256 83 304 + 1 380g 136 128 + 588g 204 564 + 132g

I The matrices and vectors were partitioned by Mondriaan,
version 4.2.1 with the default medium-grain method; ε = 3%.

I The fixed synchronization cost 4l is not shown. For p = 2 on
Cartesius, this is of the order 100 000.

I To make parallelism worthwhile, T2 ≤ Tseq should hold, and
hence at least 2nz/2 + 4l ≤ 2nz , i.e.,

nz ≥ 4l .

3 / 10



Lecture 4.12 Experimental results on Cartesius

BSP cost for larger matrices

p cage14 rgg n 2 21 s0 laplace2D 4096

1 54 260 698 57 951 980 167 739 392
2 27 166 388 + 74 019g 29 832 972 + 1 578g 84 777 274 + 4 096g
4 13 565 176 + 99 763g 14 569 690 + 1 602g 43 065 966 + 4 634g
8 6 890 846 + 74 273g 7 440 620 + 1 784g 21 577 598 + 7 741g

16 3 391 294 + 49 716g 3 728 966 + 1 587g 10 797 944 + 5 956g
32 1 718 302 + 34 948g 1 864 464 + 1 409g 5 397 110 + 4 600g
64 859 872 + 19 192g 932 328 + 917g 2 699 434 + 3 339g

128 434 492 + 11 846g 465 786 + 830g 1 349 762 + 2 785g
256 215 784 + 9 402g 233 020 + 553g 674 844 + 1 869g

I The matrix cage14 is difficult to partition and it has a high
communication cost.

I The matrix rgg n 2 21 s0 with about the same n and nz has
a far lower cost. Here, Mondriaan discovered the underlying
geometric proximity in 2D.

I This also happened for the 2D Laplacian matrix.

4 / 10



Lecture 4.12 Experimental results on Cartesius

BSP cost for the largest matrices

p random100k laplace3D 256

1 200 008 250 234 094 592
2 100 004 126 + 50 001g 117 124 986 + 65 942g
4 51 502 050 + 77 951g 59 819 416 + 72 363g
8 25 342 198 + 70 647g 30 138 652 + 78 441g

16 12 875 064 + 60 560g 15 065 066 + 59 840g
32 6 437 730 + 42 376g 7 532 394 + 44 229g
64 3 218 834 + 39 937g 3 766 718 + 30 805g

128 1 609 420 + 30 428g 1 883 288 + 18 681g
256 804 708 + 24 039g 941 610 + 12 726g

I The matrix random100k is difficult to partition and it has a
high communication cost.

I Mondriaan also discovered the underlying geometric proximity
for the 3D Laplacian matrix, but it still has a 6.8 times higher
communication cost than the 2D Laplacian matrix.

I The computation cost is 1.4 times higher.

5 / 10



Lecture 4.12 Experimental results on Cartesius

Execution time (in ms) using Multicore BSP for C

p mip1 in-2004 asia cage14 rgg lapl random lapl

osm 2D 100k 3D

1 (seq) 13.9 32.1 150.2 46.9 59.0 213.6 379.5 255.5
1 (par) 14.9 35.4 181.2 50.9 63.6 241.2 390.3 285.7
2 7.5 18.6 91.4 31.6 32.9 122.7 188.8 150.2
4 4.1 10.0 46.6 21.4 16.5 63.7 115.9 104.4
8 2.3 5.7 24.9 13.8 11.0 52.2 71.6 72.0

16 2.3 4.8 30.1 10.4 11.2 53.1 38.9 72.6
32 1.6 5.4 29.7 12.4 5.3 43.6 20.8 41.0

I Results for bspmv executed on one Broadwell node of
Cartesius, used as a shared-memory parallel computer.

I The overhead of the parallel program run for p = 1 is up to
20.6% (for asia osm), compared to the sequential program.

I Only modest speedups were obtained, up to 18.2× on 32
processors for random100k.

I Higher speedups can be obtained by further optimization, e.g.
by sending data in larger packets.

6 / 10



Lecture 4.12 Experimental results on Cartesius

Execution time (in ms) using BSPonMPI

p mip1 in-2004 asia cage14 rgg lapl random lapl

osm 2D 100k 3D

1 (seq) 13.8 31.6 150.0 46.5 56.5 213.6 380.0 256.3
1 (par) 14.7 34.6 178.6 50.0 61.5 239.0 386.7 283.8
2 7.9 19.0 95.8 40.8 32.8 125.9 190.4 176.3
4 4.5 9.7 44.9 33.2 16.4 66.2 126.8 93.2
8 3.0 6.0 26.0 22.3 12.8 52.5 84.8 80.9

16 3.9 7.7 35.0 23.0 12.7 61.8 58.3 85.8
32 2.4 8.3 34.2 22.5 5.7 52.7 23.9 38.8
64 2.2 2.8 7.9 8.4 3.3 13.2 15.9 21.0

128 2.9 2.1 5.3 7.5 2.3 8.2 13.5 13.1
256 3.9 3.0 3.0 6.1 2.3 5.1 15.4 8.7

I Results for bspmv executed on up to 8 Broadwell nodes of
Cartesius, used as a distributed-memory parallel computer.

I The highest speedup achieved is 50× on 256 processors for
the matrix asia osm, which has a low communication cost.

I The lowest maximum speedup achieved is 6.3× on 64
processors for the smallest matrix mip1.

7 / 10



Lecture 4.12 Experimental results on Cartesius

Shared memory vs. distributed memory for p = 32

mip1 in-2004 asia cage14 rgg lapl random lapl

osm 2D 100k 3D

shared 1.6 5.4 29.7 12.4 5.3 43.6 20.8 41.0
distributed 2.4 8.3 34.2 22.5 5.7 52.7 23.9 38.8

I Execution time (in ms) for bspmv executed on one Broadwell
node of Cartesius.

I MulticoreBSP for C v.2.0.4 was used for shared memory and
BSPonMPI v1.1 for distributed memory.

I In general, shared memory is faster. The largest gain is for
cage14.

I Distributed memory can use more nodes.

I A hybrid shared/distributed-memory approach (possibly based
on hybrid-BSP) can thus be beneficial.

8 / 10



Lecture 4.12 Experimental results on Cartesius

Did we gain something?

I We have shown that for large problem sizes the algorithm
scales well.

I If only all problems were large! More important than showing
good speedups for large problems is understanding what
happens for various problem sizes, small as well as large.

I The BSP cost can be used to explain timing results on a
particular machine, or predict them, although agreement will
never be perfect.

9 / 10



Lecture 4.12 Experimental results on Cartesius

Did we gain something?

I We have shown that for large problem sizes the algorithm
scales well.

I If only all problems were large! More important than showing
good speedups for large problems is understanding what
happens for various problem sizes, small as well as large.

I The BSP cost can be used to explain timing results on a
particular machine, or predict them, although agreement will
never be perfect.

9 / 10



Lecture 4.12 Experimental results on Cartesius

Summary

I The advantage of presenting BSP costs over presenting raw
timings on a particular machine is that BSP cost results are
future-proof.

I Raw timings, however, have a short lifespan.
I 20 years from now:

I Cartesius, Cori, Summit, Fugaku, and their friends will all be
dead.

I I shall be older and perhaps wiser.
I BSP costs like 215 784 + 9 402g + 4l for p = 256 and matrix

cage14 will still be meaningful, perhaps as predictors for
completely solar-powered zettaflop/s (1021 flop/s) machines.

10 / 10


