Parallel Fast Fourier Transform

Section 3.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 3.4 Parallel FFT

1/17

Data distributions for butterflies of FFT

k =
2 N M AN ANA

4 N N NN

N e Y e N e Y
S~

16

» n, p must be powers of two with p < n. Here: p =4, n=16.

> In stage k, component pair (xj, Xj;x/2) at distance k/2 is
combined.

» Block distribution works for k =2,4,... n/p.
» Cyclic distribution works for k = 2p,4p, ..., n.

Lecture 3.4 Parallel FFT

2/17

Block distribution works for small butterflies

Let n =28, p = 2. In stage k = 2, the vector x is multiplied by

101 - - T

s @ By =

» The first two butterfly blocks x(0: 1), x(2: 3) are contained
in processor block x(0: 3).

> The last two butterfly blocks x(4: 5), x(6: 7) are contained in o
processor block x(4: 7). L

Lecture 3.4 Parallel FFT

3/17

Cyclic distribution works for large butterflies

In stage k = 8, the vector x is multiplied by

hh ® Bg = Bg =

where w = wg = e ™/* = V2 -1vai
» The pairs (xp,x4) and (x2, Xg) are combined on P(0).

» The pairs (x1, x5) and (x3, x7) are combined on P(1).

Lecture 3.4 Parallel FFT

4/17

Parallelization strategy: use different distributions

» At the start, for k < n/p, we use the block distribution.

v

Near the end, for kK > 2p, we use the cyclic distribution.

» These two distributions suffice if the block distribution can
reach at least up to k = p, i.e.,

p<

9

TS

which means p < \/n. For example: p < 32 for n = 1024.

» If p > /n, we need an additional intermediate distribution, a
generalization of the block and cyclic distribution.

» Split the vector into blocks. Each block is owned by a group
of processors and is distributed by the cyclic distribution over
the processors of that group.

Lecture 3.4 Parallel FFT

5/17

Group-cyclic distribution

» Let ¢ be fixed such that 1 < c < p and pmod ¢ =0. The
group-cyclic distribution with cycle ¢ is defined by

o [[5)).

» ¢ is the number of processors in a group and [%1 = [L-‘ is
the size of a block owned by a group.
» If n mod p =0, as happens in the FFT, this reduces to

@HP((jdiv(Z?)c—i—jmodc).

» For ¢ = 1, we get the block distribution.
For ¢ = p, we get the cyclic distribution.

Lecture 3.4 Parallel FFT

6/17

From block to cyclic distribution

c=1 [|P(0)[P(0)|P(1)|P(1) HPANACINAECIRLE))

(block)

c=2 |PO)P(L)|P(0)|P(1)IHANHECNAPINEE)
c=4 [P(0)[P(1) P(0)|P(1)

(cyclic)

» Here n =8 and p = 4, so that p > /n.

» For ¢ = 2, we have p/c = 2 groups of two processors.

7/17

Global and local indices

» n,p, and hence c are powers of two, with 1 < ¢ < %.

» Thus, we can write the global index j as
. .cno .
J 212; +J1¢ + Jo,

where 0 < jo < cand 0 < j; < n/p.

» The processor that owns component Xx; is
.. ¢€n . . .
P <<j div > ¢ +J mod c) = P(jac + jo)-
p

» Processors in the same group have the same j,, but
different jp.

» We obtain the local index j by ordering the local components g
by increasing global index j, so that j = ji. '

Lecture 3.4 Parallel FFT

8/17

Which operations are local?

Butterfly operation on (x;, xj14/2) is local if
> Xj, Xj1k/2 are in the same group: k < %;
» distance k/2 is a multiple of c: k > 2c.

We can use the group-cyclic distribution with cycle ¢ for

2c< k< —c.

n
p
Outline of algorithm:

» start with ¢ = 1, perform stages k = 2,4,...,n/p;

» multiply ¢ by n/p, and perform stages

k =2n/p,4n/p,...,(n/p)%
» multiply ¢ again by n/p, and so on;
» finish with ¢ = p, instead of ¢ = (n/p)! > p.

Lecture 3.4 Parallel FFT

9/17

Warning: difficult slides ahead

10/17

Parallel unordered FFT: from block to cyclic

k=2 c:=1;
while kK < n do
jo :=smod c; := s div ¢; > Superstep (0)
while k < gc do
b:=I5;
kp'
for r:=jobto (jn+1)b—1do
{ Compute local part of Byx(rk: (r+ 1)k —1) }
forj::jgtog—lstepcdo
T = Wf(er+j+k/2?
Xrk+j+kj2 -= Xrk+j — T,
Xrk—+j = Xrk+j + T;
k = 2k;

Lecture 3.4 Parallel FFT

11/17

Parallel unordered FFT: from block to cyclic

k=2 c:=1;
while kK < n do
jo :=smod c; := s div ¢; > Superstep (0)
while k < gc do
b:=I5;
kp'
for r:=jobto (jn+1)b—1do
{ Compute local part of Byx(rk: (r+ 1)k —1) }
forj::jgtog—lstepcdo
T = Wf(er+j+k/2?
Xrk+j+kj2 -= Xrk+j — T,
Xrk—+j = Xrk+j + T;
k = 2k;

if ¢ < p then > Superstep (1)
¢ = ¢; ¢ :=min(Jc, p); e
Redistr(x, n, p, co, ¢, rev);

Lecture 3.4 Parallel FFT

11/17

Parallel bit reversal: from cyclic to block
j=b 5=6

. ~ = .
j= (00107 | 110), cyclic

X

(10100 | 110)> cyclic

<

(110 | 10100)2 block reverse

i=(1; | 1912(:)0)2 block
s= j=

» Example with p = 8, n = 256, for j = 46 = (00101110)5.
» Start in the cyclic distribution with a local bit reversal.

» Then swap the data between P(s) and P(pp(s)). U
» We end in the block distribution, with j = 116 = (01110100)>. 1,4,

Postponing the data swaps

» The distribution just before the swaps is the block distribution
with bit-reversed processor numbering.

» All processors perform the same operations in FFT stages
k=2,4,... n/p, multiplying local blocks of x by B.

» ['ll scratch your back if you scratch mine: processors perform
the work of their partner.

» The data swaps can be postponed until the first
redistribution, immediately after stage k = n/p.

> Buy 2, Pay 1: two permutations can be done at the cost of
one by combining them. Hence no extra communication is
incurred by the data swaps.

Lecture 3.4 Parallel FFT

13/17

Redistribution from cycle ¢y to cycle ¢

function REDISTR(x, n, p, cp, ¢, rev)

if rev then
{ Reverse the processor numbering }
Jo = pp(s) mod cp;
J2 = pp(s) div cp;
else
Jo := s mod cp;
Jjo = s div ¢p;

for j ::jg%” +jo to (o + 1)% — 1 step ¢ do
dest := (j div <')c +j mod c;
put x; in P(dest);

Lecture 3.4 Parallel FFT

14 /17

Last iteration of main loop

» The last iteration is determined by the smallest integer t such
that (n/p)t > p.

P> The cycles of the iterations are
c=(n/p)° (n/p)',....(n/P)"" ", p.

» The total number of iterations is therefore t + 1.

» For n=2" and p = 29, we have

(n/p)t > p nt > pt+1 . pmt > 2q(t+1)
=S mt>q(t+1l)<= mt—qt>gq
q

—=t>)
m-—q

» It follows that

Lecture 3.4 Parallel FFT

15/17

BSP cost

| 2

| 4

Every iteration, except the last, has a computation superstep
and a communication superstep that redistributes the data.

The last iteration has no data redistribution.
The total synchronization time is therefore
T . q
syne = 2t + 1)/ = (2| ——| +1) I
m-—q
Every redistribution moves at most all the local data in and
out, i.e., n/p complex numbers, or 2n/p real data words.
The total communication time is therefore
2n q 2n
Teomm =t - —8 = ’7-‘ c— &
p m—q| p
Look mama, without counting! The total computation time is
5nlogy, n

Tcomp = p

Lecture 3.4 Parallel FFT

16/17

Summary

>

>

We have used different distributions in different parts of the
algorithm, trying to make our operations local.

The algorithm starts and finishes in the cyclic distribution.

If we split a vector into p/c blocks and distribute each block
over ¢ processors by the cyclic distribution, then we obtain the
group-cyclic distribution with cycle c.

The total BSP cost of the parallel FFT algorithm is

5nlog, n lo n lo
Trrr = g2 —1—2[82P —‘~g+ <2 [gzp-‘ + 1> l.
p logy(n/p) | P log,(n/p)

For practical p, we only need one data redistribution:

5nlog, n n

TepT, 1<p<yn = + 2;g +3l.

Lecture 3.4 Parallel FFT

17/17

