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Fine-grain model

» Create a hypergraph from an m x n sparse matrix A where
each nonzero a;; # 0 becomes a vertex.

» Each row i gives rise to a row net
{y 1 0<j<nA a;#0}.
» Each column j gives rise to a column net
{i 0<i<mA aj#0}.
» The hypergraph has nz(A) vertices and m + n nets.

@ U. V. Catalytirek and C. Aykanat, In: Proceedings Irregular 2001, IEEE,
p.118.
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Fine-grain partitioning

> )\; = # processors with a nonzero in row i
= # processors having a vertex in row net i.

> )\; — 1 = communication volume caused by row net i.

» 1; —1 = communication volume caused by column net ;.

» Partitioning the fine-grain hypergraph minimizes the exact
communication volume of the parallel SpMV.

» Partitioning can be expensive since the number of vertices is
large.
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Desirables

» We would like to keep the nonzeros of each row together.
» We would like to keep the nonzeros of each column together.

» We would like to have our cake and eat it too.

Lecture 4.6 Fine-Grain and Medium-Grain

4/20



Medium-grain partitioning

» Solution: split the matrix A by a simple method into
A=A"UA® = A" + A9

where A* N A = .

» The nonzeros in a row of A" stay together and
those in a column of A also stay together.

» For a square matrix A, form the 2n x 2n matrix

S|

@ D. M. Pelt and R. H. Bisseling, In: Proceedings IPDPS 2014, IEEE, pp.
529-539
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Simple split of matrix A

—
W W W NN

» The split is based on

» r; = # nonzeros of row i
» ¢; = # nonzeros of column j.

» Nonzero aj; is assigned to A" if r; < ¢j, because rows with
fewer nonzeros are more likely to stay together.

» Exception: if r; = 1, the row cannot be cut, so aj; is assigned
to A° to help keep its column together.

» If ¢; < rj, the nonzero is assigned to A°.

» All ties a;; with r; = ¢; are broken in the same way.
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Form new matrix B
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B
» The diagonal entries in the top left block B connect the
nonzeros originating in the same column of A.

» Unnecessary diagonal entries caused by empty rows in A" are
removed from B.
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Bipartition matrix B by columns

B

» Perform a 1D column-wise bipartitioning of B.

» The allowed imbalance ¢ = 0.1, where the diagonal nonzeros
do not count.

» Resulting communication volume V/(By, B1) = 4.
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Fold B back into A

B

» For nonempty rows j of B: the number of processors in
column j of A equals the number of processors in row j of B,

,Uj(A07A1) = )\j(Bo, Bl), for 0 <j < n.

Lecture 4.6 Fine-Grain and Medium-Grain

9/20



Fold B back into A

B

> Look at the last column of A, column j = 4: its nonzeros
come from column 4 of B and row 4 of B.

» But by construction, column 4 of B has a single owner,
the owner of bss, which already occurs in row 4 of B.

» So row 4 of B determines the amount of communication
in column 4 of A. Lecture 46 Fine. Grai and Medium-Grn
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Communication volume is preserved

» We have proven that

1j(Ao, A1) = Aj(Bo, Br), for 0 <j < n.
» Similarly, we can prove that

Ai(Ao, A1) = Apti(Bo, B1), for 0 <i<n.

» Therefore, using the notation A\’ = max(\;, 0),

n—1 n—1
V(Ao, A1) ZA: Ao, A1) + ) (Ao, Ar)
=0 j=0

n—1 n—1

=Y Noti(Bo, Br) + > Ni(Bo, Bi)
i—0 =0

2n—1
= ) X(Bo, B1) = V(Bo, By).
i=0
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Regular 1D partitioning is a special case

>

If we split a square n X n matrix A into A = A" U A°® by
choosing A* =0 and A® = A, we obtain the 2n x 2n matrix

B:[gg}

Here, the matrix diagonal became completely empty after
removal of unnecessary entries.

A 1D column-wise partitioning of B then reduces to a 1D
column-wise partitioning of A.

For the choice A" = A and A° = 0, the matrix B becomes

0 AT
s[04

A 1D column-wise partitioning of B then reduces to a 1D
row-wise partitioning of A.
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Chicken-or-egg problem: which one was first?

» To partition the matrix A, we first need to form a matrix B.
> To form a matrix B, we need a partitioning of A.

» That's why we start with a simple partitioning of A.
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Iterative refinement by repeated partitioning
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> [terative refinement uses the output of a partitioning as input
to a next partitioning: A" = Ap and A° = A;.

» The next partitioning consists of 1 level of Kernighan—Lin
refinement, which is fast and can only improve the result,
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Test set of sparse square matrices

Name n nz c Origin

mipl 66463 10352819 155.8 mixed integer programming
in-2004 1382908 16917053  12.2  web links India 2004
asia_osm 11950757 25423206 2.1 road network Asia

cageld 1505785 27130349 18.0 DNA electrophoresis

rggn 2 21_s0 2097152 28975990 13.8 random geometric graph

> Matrices from the SuiteSparse Matrix (formerly University of
Florida) Collection by Tim Dauvis.
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Communication volume and partitioning time

Name p Volume Time (in s)
LB FG MG LB FG MG
mipl 2 9099 3929 2109 94 291 98
64 120636 90133 56864 350 1059 230
in-2004 2 1158 637 558 81 376 89
64 18247 16345 14425 401 1774 397
asia_osm 2 91 120 130 61 48 48
64 2291 2667 2538 271 206 258
cageld 2 195912 172091 154962 153 232 109
64 1436410 1161269 980957 664 1035 516
rggn 2 21 s0 2 3364 3322 2976 47 111 64
64 46192 44049 41249 234 613 345
Norm. geomean 1.00 0.83 0.70 1.00 210 0.95

» LB = Localbest (original Mondriaan)
» FG = Fine-grain

» MG = Medium-grain with iterative refinement
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Geometric mean

| 2

v

Definition for a set of values xg, ..., xx_1 > O:

x|

GM(x0, .-, xk—1) = (X0 - X1+ Xk—1)*k.

GM can handle widely differing scales.
It gives each matrix/p pair equal influence.

Useful property:

& Xk,1) _ GM(Xo,...,kal)
vo! T Y1 GM(yo, .- -, yk-1)

It does not matter whether we normalize the values first or
only after computing the mean.

GM(

This is useful when comparing results from different methods,
normalizing against one method.
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Performance profile of the communication volume

Fraction of problem instances
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Communication volume relative to best Higher is better!

How to read this: the Localbest method solves 70% of the 10
problem instances within 1.5 times the lowest volume achieved
by any of the three methods.

The medium-grain method solves all problem instances within
1.5 times the lowest volume.
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Advantages of performance profiles

» Problem instances for which one method fails but others
succeed can still be included in a performance profile (in
contrast to geometric-mean comparisons).

» A performance profile can be used to summarize results for a
large number of problem instances.

» Example: all the 2833 matrices from the SuiteSparse Matrix
collection partitioned for p =2,4,8,...,1024.

> A performance profile captures much more information than a
single number such as the geometric mean.
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Summary

» The fine-grain method can in principle find the best
partitioning of a given sparse matrix.

» The medium-grain method, however, usually achieves this in
practice.

» The medium-grain method tries to keep both rows and
columns together, based on a simple nonzero-count criterion.

P This is in contrast to the original Mondriaan method
(Localbest), which imposes both objectives separately and
then takes the best result.

» The geometric mean and performance profiles are useful in
comparing different methods and summarizing their results.
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