Bulk Synchronous Message Passing: bspsort

Section 1.9 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Bulk Synchronous Message Passin

1/14

Parallel regular samplesort

» Function bspsort is an implementation of Algorithm 1.4 for
bulk synchronous parallel regular samplesort.

» The communication pattern of its main communication
superstep (3) is irregular, because varying amounts of data are
being sent between the processors.

» For irregular communications, a different way of
communicating data is convenient, called bulk synchronous
message passing.

Bulk Synchronous Message Passin

Bulk synchronous message passing (BSMP)

P> The bsp_send primitive allows us to send data to a given
processor without specifying the location where the data is to
be stored.

> We view bsp_send as a bsp_put with a wildcard for the
destination address.

» BSMP is one-sided communication, since it does not require
any activity by the receiver in the same superstep.

P In the next superstep, the receiver must do something, at
least if she wants to use the received data.

» BSPIlib has 5 primitives for BSMP, which we will discuss, and
2 high-performance versions, which we will ignore.

Bulk Synchronous Message Passin

3/14

Motivation for BSMP

» Superstep (3) of samplesort uses bsp_send to send a local
data set X, of variable size from P(s) to P(t). The set size is
only known to the sender.

» A sender does not know what others send to the same
destination. Processors do not know what they will receive.

> If we were to use a bsp_put, we would have to specify a
destination address.

» Reserving sufficient space for each possible set size would
require too much memory.

» First telling how much is going to be sent, then reserving the
right amount of space, and finally asking the senders to put
data there is clumsy, and requires 3 supersteps.

Bulk Synchronous Message Passin

Send operation from BSPlib

> bsp_send just sends the data to the right destination
processor, without worrying about what happens afterwards.

» In the next superstep, bsp_move moves all or part of the
received data into the desired location.

Bulk Synchronous Message Passin

Primitive bsp_send

bsp_pid nbytes

source |bsp_send
Y

Message [tag| payload

bsp_send (pid, tag, source, nbytes);

P> bsp_send copies nbytes of data from the local processor
bsp_pid into a message, adds a tag, and sends the message
to the destination processor pid.

P> source points to the start of the data to be copied.

Bulk Synchronous Message Passin

Sending a data set

long
for

» Here, the tag is the data count (for demonstration purposes).

i= 0;
(long t=0; t<p; t++){
/x Send the values for P(t) x/
long i0= i; // index of first value to be sent
long count= 0; // number of values to be sent
while (i < nloc(n,s,p) &&
(t—p—1 ||
(x[i] < Splitter[t+1].weight) |]
x[i] ==Splitter[t+1].weight && ...)
)

count++;
i++;
}
if (count > 0)
bsp_send (t,&count,&x[i0],countxsizeof(double));

Bulk Synchronous Message Passing

7/14

Primitive bsp move

Message |[tag| payload

WVG

pid Faxnbytes
A

dest

bsp_move(dest, maxnbytes);

P> bsp_move writes at most maxnbytes into the memory pointed
to by dest.

Bulk Synchronous Message Passin

Use it or lose it

» The message sent using bsp_send is first stored by the system
in a local send buffer, and then sent and stored in a buffer on
the receiving processor.

» Some time after the message has been sent, it becomes
available to the receiver. BSP philosophy: this happens at the
end of the current superstep.

P In the next superstep, the messages can be read; reading
messages means moving them from the receive buffer into the
desired destination memory.

> At the end of the next superstep, all remaining unmoved
messages will be lost, which saves buffer memory and forces
the receiver into the right habit of cleaning her desk.

Bulk Synchronous Message Passin

Getting information on the received data

bsp_nprocs_t nparts_recvd;
bsp_size_t nbytes_recvd;

bsp_qsize(&nparts_recvd ,&nbytes_recvd);

> bsp_gsize gives the number of messages (parts) in the
receive buffer, which is a queue, and the total number of
bytes.

> bsp nprocs_t and bsp_size_t are integer types that can be
used as wrappers to ensure compatibility with both the
modernized version of BSPIib and the previous one.

Bulk Synchronous Message Passin

10/14

Getting the tag of the first message in the queue

start[0]= O;

for (long j=0; j<nparts_recvd; j++){
bsp_size_t payload_size;
long count;
bsp_get_tag(&payload_size ,&count);

> bsp_get_tag obtains the size in bytes and the tag of the first
message in the queue.

» Here, we used the tag to give the data count of the message
(which we also could derive from payload_size).

Bulk Synchronous Message Passing

11/14

Concatenating the received parts

start[0]= O;

for (long j=0; j<nparts_recvd; j++){
bsp_size_t payload_size;
long count;
bsp_get_tag(&payload_size ,&count);

bsp_-move(&x[start[j]],countxsizeof (double));

start[j+1]= start[j] + count;

» The data words of the message are moved into locations
start[j] to start[j+1]-1 of the array x.

Bulk Synchronous Message Passin

12/14

Setting the tag size

bsp_size_t tag_size= sizeof(long);
bsp_set_tagsize(&tag_size);
bsp_sync ();

> When calling bsp_set_tagsize, the variable tag_size
represents the desired tag size.

» As a result, the system uses the desired tag size for all
messages to be sent by bsp_send, starting from the next
superstep.

» All processors must call the function with the same tag size.

» Side effect: tag_size is modified so that after the call it
contains the previous tag size of the system, thus preserving
the old system value.

Bulk Synchronous Message Passin

13/14

Summary

>

We have encountered a new style of communication: bulk
synchronous message passing (BSMP), which uses the
bsp_send primitive.

In one superstep, an arbitrary number of communication
operations can be performed, using either bsp_put, bsp_get,
or bsp_send. These can be mixed freely.

The BSP model and BSPIib do not favour any particular type
of communication. It is up to the user to choose the most
convenient primitive in a given situation. Apart from this,
BSPIib is pretty paternalistic, forcing you to do the right thing.

Irregular algorithms benefit most from bsp_send.

You now know the complete BSPIib, except for the advanced
(dangerous!) high-performance primitives.

Bulk Synchronous Message Passin

