
Lecture 3.5 Weights

Weights for the FFT
Section 3.5 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 14



Lecture 3.5 Weights

Weights for sequential computation

I The weights of the FFT are the powers of ωn that are needed

in the FFT computation: 1, ωn, ω
2
n, . . . , ω

n/2−1
n .

I We can compute these powers by

ωj
n = e−2πij/n = cos

2πj

n
− i sin

2πj

n
.

I Computing the weights by successive multiplication

ωj+1
n = ωn · ωj

n

is less accurate and not recommended.

2 / 14



Lecture 3.5 Weights

Cost in flops

I Typically, computing a sine or cosine costs 10 flops in double
precision accuracy.

I If we compute a weight each time we need it, we perform 20
flops extra for every 10 flops (complex ∗,+,−) in the inner
loop of the FFT. This would triple the total cost.

I Alternative: compute the weights once and store them in a
table.

3 / 14



Lecture 3.5 Weights

Using symmetry to compute weights faster

I We can save half the computations by using

ω
n/2−j
n = e−2πi(n/2−j)/n = e−πie2πij/n = −(ωj

n).

Thus, we only need to compute 1, ωn, ω
2
n, . . . , ω

n/4
n .

I Taking negatives and complex conjugates is extremely cheap.

I Similarly, we can halve the work again by using

ω
n/4−j
n = −i(ωj

n).

Now, we only need to compute 1, ωn, ω
2
n, . . . , ω

n/8
n .

I The total cost of the weight initialization is thus about
20 · n/8 = 2.5n flops.

4 / 14



Lecture 3.5 Weights

Weights for parallel computation

I A brute-force approach: store the complete table of weights
on every processor.

I This approach is nonscalable in memory: in the sequential
case, we store n vector components and n/2 weights. In the
parallel case, n/p vector components and n/2 weights per
processor.

I Furthermore, for small n or large p, the 2.5n flops of the
weight initialization may be much more than the (5n log2 n)/p
local flops of the FFT.

I Some replication of weights is inevitable: stages
k = 2, 4, . . . , n/p are the same on all processors and hence
need the same weights.

I Our goal is to find a memory-scalable approach that adds only
a few flops to the overall count.

5 / 14



Lecture 3.5 Weights

Memory scalability

I We call the memory requirements M(n, p) of a BSP algorithm
scalable if this amount satisfies

M(n, p) = O
(
Mseq(n)

p
+ p

)
.

I Motivation of the O(p) term: BSP algorithms are based on
all-to-all communication supersteps, where each processor
deals with p − 1 others, and needs O(p) buffer memory for
storing communication meta-data.

I For example, calling a bsp push reg primitive for a variable
gives rise to p − 1 remote adresses being stored locally.

I Assumption: all processors possess the same amount of
memory.

6 / 14



Lecture 3.5 Weights

Approach: dry run of the parallel algorithm

I Perform a dry run of the parallel algorithm to compute and
store the needed weights in the order of their use.

I This initializes the weight table.

I For stage k and the group-cyclic distribution with cycle c , we
need to compute the k

2c complex weights of the local part of
the butterfly matrix Bk .

7 / 14



Lecture 3.5 Weights

A real-life butterfly — in case you forgot

8 / 14



Lecture 3.5 Weights

Memory needed for computation supersteps with c < p

I For stage k and the group-cyclic distribution with cycle c , we
need k

2c complex weights.

I In a computation superstep with c < p, we perform stages
k = 2c , 4c , . . . , np c , which respectively need 1, 2, . . . , n

2p
weights.

I The total number of (complex) weights of the superstep is

1 + 2 + 4 + · · ·+ n

2p
=

n

p
− 1,

so that we need to store at most 2n
p real numbers (1 complex

number = 2 reals).

9 / 14



Lecture 3.5 Weights

Memory needed for the final computation superstep

I For the final stage k = n and the group-cyclic distribution
with cycle c = p, we need k

2c = n
2p complex weights.

I Similar to the previous supersteps, the number of weights
needed doubles at every stage in the final superstep.

I Therefore, the total number of (complex) weights of the final
superstep is

· · ·+ n

4p
+

n

2p
≤ n

p
− 1,

so that, here too, we need to store at most 2n
p real numbers.

10 / 14



Lecture 3.5 Weights

Total memory needed for all computation supersteps

I We have t + 1 computation supersteps (as well as
t communication supersteps), where

t =

⌈
log2 p

log2(n/p)

⌉
,

which is the smallest integer with
(
n
p

)t
≥ p.

I The total amount of memory used per processor in reals is

2(t + 1)
n

p
.

11 / 14



Lecture 3.5 Weights

Some algebra (and calculus)

I In a suitable range of values, multiplying r terms x grows
faster than adding them.

I For x ≥ 2 and integer r ≥ 1, it holds that

x r ≥ rx .

I Proof sketch:
I For r = 1, the inequality holds trivially.
I For fixed r ≥ 2, define a function

f (x) = x r − rx .

Then
f ′(x) = r(x r−1 − 1) > 0,

so f is strictly monotonically increasing for x ≥ 2.
I The proof is completed by showing that f (2) ≥ 0, which can

be done by induction on r .

12 / 14



Lecture 3.5 Weights

Substitution achieves the final result

I Substituting r = t − 1 and x = n
p into rx ≤ x r and applying

the definition of t, we obtain

(t − 1)
n

p
≤

(
n

p

)t−1

< p.

I As a result, the total memory required for the weights is

2(t + 1)
n

p
=

4n

p
+ 2(t − 1)

n

p
<

4n

p
+ 2p.

I Adding the 2n
p memory needed for the vector x gives the total

memory use of the parallel FFT,

MFFT =
6n

p
+ 2p,

which is scalable.

13 / 14



Lecture 3.5 Weights

Summary

I We can compute a weight ωj
n of the FFT by evaluating a

cosine and a sine. This costs about 10 flops per evaluation.

I Doing this every time we use a weight is too expensive.

I It is better to store the weights in a dry run of the algorithm,
in the order of their use.

I Reusing the same weights for several butterfly operations Bk

leads to scalable memory use,

M(n, p) = O
(
Mseq(n)

p
+ p

)
.

I This approach has the additional advantage of being
cache-friendly, because all weights used in a butterfly are
stored together, and they are reused several times.

14 / 14


