Experimental Results for Samplesort on Cartesius
Section 1.10 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Experimental Results for Samplesort on Cartesiu

1/11

Experimental setup

» Hardware: we use a Broadwell node with p = 32 cores of the
supercomputer Cartesius at SURF in Amsterdam.

» BSP library: we view the node as a 32-core shared-memory
machine and run MulticoreBSP for C.

» Software: we run the program bspsort from BSPedupack
version 2.0, which implements a parallel regular samplesort.

» We also run a sequential program for proper comparison.

» Test problem: we sort n random numbers from the interval
[0,1].

Experimental Results for Samplesort on Cartesius

2/11

Time (in s) of parallel regular samplesort

p Length n

10* 10° 106 10" 108
1 (seq) 0.0011 0.0124 0.146 1.714 1951
1 (par) 0.0012 0.0136 0.156 1.836 20.83
2 0.0009 0.0075 0.087 0.948 10.69
4 0.0008 0.0046 0.046 0.501 5.56
8
6
2

0.0009 0.0032 0.027 0.271 2.88
0.0015 0.0040 0.019 0.166 1.59
0.0032 0.0047 0.022 0.129 0.99

1
3

» The sequential sort is the system quicksort in C.
» The sequential time grows as O(nlog n).

P For large n, good parallel speedups are obtained.

Experimental Results for Samplesort on Cartesius

3/11

Speedup

» The speedup of a parallel program is the increase in speed of
the program running on p processors compared with the speed
of a sequential program,

Tseq(n)

*e(") = Tp(n)

» Comparing to Ty instead of Ts.q would be too flattering, since
the parallel program run for p = 1 will have overhead such as
superfluous calculations.

» Often, you can obtain a good sequential program by
simplifying the parallel program: substituting p =1,s =0,
removing syncs, and replacing puts by memory copies.

» This is a rather mechanical process, which can be
accompanied by a good drink.

» In this process, keeping track of run time gains may give
insight into further optimization opportunities for the parallel
program. Exprimentl Resuls for Samplesort on Crtes

4/11

Speedup of parallel regular samplesort

30 fSp:p - B
25 n=10" - ,
n=10
% 20 r ///vr
L) -
g 15+ ;
wn e
10 | |
/,4{'///“
5+ yz .
0 - I I I I I I

0O 5 10 15 20 25 30
p

» Highest speedup achieved: S35(108) = 19.8. ¢ rease i sumpi on o

5/11

Superlinear speedup

> Usually:
0 < Sp(n) <p.

» Still, a superlinear speedup Sp(n) > p can happen, most likely
because of cache effects.

P If each processor has its own cache, increasing p also increases
the total problem size n that fits into cache.

» For a critical p, the computation rate r becomes a higher
in-cache rate, instead of a lower out-of-cache rate.

Experimental Results for Samplesort on Cartesius

6/11

Efficiency

» The efficiency is the fraction of the total computing power
that is usefully employed. It is defined by

_ 55(n) _ Teg(n)
p pTp(n)

» Usually 0 < Ep(n) <1 and ideally Ey(n) = 1.

Experimental Results for Samplesort on Cartesius

7/11

Strong and weak scalability

> Keeping the problem size fixed while increasing p is a test of
strong scalability. We do this for measuring speedup.

» Sometimes this is difficult to implement, because large
problems do not fit into the memory of one processor, and we
are interested in the behaviour of exactly those problems.

» This holds especially for distributed-memory architectures,
where the available memory grows linearly with p.

P For linear-time problems, a solution is to let the problem size n
grow linearly as well with p, which is a test of weak scalability.

> Weak scalability is good if the efficiency stays close to 1.

Experimental Results for Samplesort on Cartesius

8/11

Breakdown of predicted sorting time for n = 108

P logy p?log, p 2—; log, p p(p—1)g %g 5/ T

1 0.465 0 0 0 6.899 0 7.364

2 0224 0 0.018 0 3.485 0.000016 3.726

4 0.108 0 0.018 0 1.970 0.000034 2.095

8 0.052 0 0.013 0.000003 1.199 0.000043 1.264
16 0.025 0 0.009 0.000014 0.722 0.000082 0.756

32 0.012 0.000001 0.005 0.000079 0.498 0.000116 0.515
32 0537 0.000124 0.247 0.000183 0.213 0.000102 0.998

» Predictions (in s) are given for p < 32. For p = 32, they are
based on benchmarked values r = 5.711 Gflop/s, g = 455,
I =132618.

» The bottom line is the actual measured time (in s).

» The dominant predicted cost is the cost %”g of moving the
data to their final destination.

» The measured cost is only gg, because the output block size
is balanced for random test data, SO bs A b.cumensi et for Sumpleort an Caresi

9/11

Misprediction of computing rate

p 2log, o p*log, p 2—p" logop plp—1)g %g 5/ T

1 0.465 0 0 0 6.899 0 7.364

2 0.224 0 0.018 0 3.485 0.000016 3.726

4 0.108 0 0.018 0 1.970 0.000034 2.095

8 0.052 0 0.013 0.000003 1.199 0.000043 1.264
16 0.025 0 0.009 0.000014 0.722 0.000082 0.756

32 0.012 0.000001 0.005 0.000079 0.498 0.000116 0.515
32 0.537 0.000124 0.247 0.000183 0.213 0.000102 0.998

» For p = 32, the main computation term glog2g representing
the local quicksort shows a large discrepancy between
prediction (0.012 s) and measurement (0.537 s).

» This must be due to slower scalar operations of the sorting
compared to the vector operations of the DAXPY benchmark. E7&

> Better prediction: use a sorting-based benchmark rate r.

Experimental Results for Samplesort on Cartesius

10/11

Summary

» The speedup of a parallel program run on p processors for a
problem of size n is

Tseq(n)
Sp(n) = =4
p() Tp(”)
» The efficiency is
Sp(n)
Ep(n) = pp

» Usually we have
0 < Sp(n) <p, 0< Ep(n) <1,

and ideally
S5p(n) = p, Ep(n) = 1.

» Theoretical BSP cost analysis gives insight and helps predict
run time behaviour of parallel programs, but we should not
get carried away and have unrealistic expectations of our
predictions. Experimental Rsults for Samlesrt on Caresa

11/11

