
Lecture 3.4 Parallel FFT

Parallel Fast Fourier Transform
Section 3.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 17

Lecture 3.4 Parallel FFT

Data distributions for butterflies of FFT

2

4

8

16

k =

I n, p must be powers of two with p < n. Here: p = 4, n = 16.

I In stage k , component pair (xj , xj+k/2) at distance k/2 is
combined.

I Block distribution works for k = 2, 4, . . . , n/p.

I Cyclic distribution works for k = 2p, 4p, . . . , n.

2 / 17

Lecture 3.4 Parallel FFT

Block distribution works for small butterflies

Let n = 8, p = 2. In stage k = 2, the vector x is multiplied by

I4 ⊗ B2 =

1 1 · · · · · ·
1 −1 · · · · · ·
· · 1 1 · · · ·
· · 1 −1 · · · ·
· · · · 1 1 · ·
· · · · 1 −1 · ·
· · · · · · 1 1
· · · · · · 1 −1

.

I The first two butterfly blocks x(0 : 1), x(2 : 3) are contained
in processor block x(0 : 3).

I The last two butterfly blocks x(4 : 5), x(6 : 7) are contained in
processor block x(4 : 7).

3 / 17

Lecture 3.4 Parallel FFT

Cyclic distribution works for large butterflies

In stage k = 8, the vector x is multiplied by

I1 ⊗ B8 = B8 =

1 · · · 1 · · ·
· 1 · · · ω · ·
· · 1 · · · ω2 ·
· · · 1 · · · ω3

1 · · · −1 · · ·
· 1 · · · −ω · ·
· · 1 · · · −ω2 ·
· · · 1 · · · −ω3

,

where ω = ω8 = e−πi/4 = 1
2

√
2− 1

2

√
2i .

I The pairs (x0, x4) and (x2, x6) are combined on P(0).

I The pairs (x1, x5) and (x3, x7) are combined on P(1).

4 / 17

Lecture 3.4 Parallel FFT

Parallelization strategy: use different distributions

I At the start, for k ≤ n/p, we use the block distribution.

I Near the end, for k ≥ 2p, we use the cyclic distribution.

I These two distributions suffice if the block distribution can
reach at least up to k = p, i.e.,

p ≤ n

p
,

which means p ≤
√
n. For example: p ≤ 32 for n = 1024.

I If p >
√
n, we need an additional intermediate distribution, a

generalization of the block and cyclic distribution.

I Split the vector into blocks. Each block is owned by a group
of processors and is distributed by the cyclic distribution over
the processors of that group.

5 / 17

Lecture 3.4 Parallel FFT

Group-cyclic distribution

I Let c be fixed such that 1 ≤ c ≤ p and p mod c = 0. The
group-cyclic distribution with cycle c is defined by

xj 7−→ P

((
j div

⌈
cn

p

⌉)
c +

(
j mod

⌈
cn

p

⌉)
mod c

)
.

I c is the number of processors in a group and
⌈
cn
p

⌉
=
⌈

n
p/c

⌉
is

the size of a block owned by a group.

I If n mod p = 0, as happens in the FFT, this reduces to

xj 7−→ P

((
j div

cn

p

)
c + j mod c

)
.

I For c = 1, we get the block distribution.
For c = p, we get the cyclic distribution.

6 / 17

Lecture 3.4 Parallel FFT

From block to cyclic distribution

P(0) P(0) P(1) P(1) P(2) P(2) P(3) P(3)c = 1

(block)

P(0) P(1) P(0) P(1) P(2) P(3) P(2) P(3)c = 2

P(0) P(1) P(2) P(3) P(0) P(1) P(2) P(3)c = 4

(cyclic)

I Here n = 8 and p = 4, so that p >
√
n.

I For c = 2, we have p/c = 2 groups of two processors.

7 / 17

Lecture 3.4 Parallel FFT

Global and local indices

I n, p, and hence c are powers of two, with 1 ≤ c < cn
p .

I Thus, we can write the global index j as

j = j2
cn

p
+ j1c + j0,

where 0 ≤ j0 < c and 0 ≤ j1 < n/p.

I The processor that owns component xj is

P

((
j div

cn

p

)
c + j mod c

)
= P(j2c + j0).

I Processors in the same group have the same j2, but
different j0.

I We obtain the local index j by ordering the local components
by increasing global index j , so that j = j1.

8 / 17

Lecture 3.4 Parallel FFT

Which operations are local?

Butterfly operation on (xj , xj+k/2) is local if

I xj , xj+k/2 are in the same group: k ≤ cn
p ;

I distance k/2 is a multiple of c : k ≥ 2c .

We can use the group-cyclic distribution with cycle c for

2c ≤ k ≤ n

p
c .

Outline of algorithm:

I start with c = 1, perform stages k = 2, 4, . . . , n/p;

I multiply c by n/p, and perform stages
k = 2n/p, 4n/p, . . . , (n/p)2;

I multiply c again by n/p, and so on;

I finish with c = p, instead of c = (n/p)t ≥ p.

9 / 17

Lecture 3.4 Parallel FFT

Warning: difficult slides ahead

10 / 17

Lecture 3.4 Parallel FFT

Parallel unordered FFT: from block to cyclic

k := 2; c := 1;
while k ≤ n do

j0 := s mod c ; j2 := s div c ; . Superstep (0)
while k ≤ n

p c do
b := nc

kp ;
for r := j2b to (j2 + 1)b − 1 do
{ Compute local part of Bkx(rk : (r + 1)k − 1) }
for j := j0 to k

2 − 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k ;

if c < p then . Superstep (1)
c0 := c ; c := min(np c , p);
Redistr(x, n, p, c0, c , rev);

11 / 17

Lecture 3.4 Parallel FFT

Parallel unordered FFT: from block to cyclic

k := 2; c := 1;
while k ≤ n do

j0 := s mod c ; j2 := s div c ; . Superstep (0)
while k ≤ n

p c do
b := nc

kp ;
for r := j2b to (j2 + 1)b − 1 do
{ Compute local part of Bkx(rk : (r + 1)k − 1) }
for j := j0 to k

2 − 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k ;

if c < p then . Superstep (1)
c0 := c ; c := min(np c , p);
Redistr(x, n, p, c0, c , rev);

11 / 17

Lecture 3.4 Parallel FFT

Parallel bit reversal: from cyclic to block

j = (

j=5︷ ︸︸ ︷
00101 |

s=6︷︸︸︷
110)2 cyclic

(10100 | 110)2 cyclic

(110 | 10100)2 block reverse

j = (011︸︷︷︸
s=3

| 10100︸ ︷︷ ︸
j=20

)2 block

I Example with p = 8, n = 256, for j = 46 = (00101110)2.
I Start in the cyclic distribution with a local bit reversal.
I Then swap the data between P(s) and P(ρp(s)).
I We end in the block distribution, with j = 116 = (01110100)2. 12 / 17

Lecture 3.4 Parallel FFT

Postponing the data swaps

I The distribution just before the swaps is the block distribution
with bit-reversed processor numbering.

I All processors perform the same operations in FFT stages
k = 2, 4, . . . , n/p, multiplying local blocks of x by Bk .

I I’ll scratch your back if you scratch mine: processors perform
the work of their partner.

I The data swaps can be postponed until the first
redistribution, immediately after stage k = n/p.

I Buy 2, Pay 1: two permutations can be done at the cost of
one by combining them. Hence no extra communication is
incurred by the data swaps.

13 / 17

Lecture 3.4 Parallel FFT

Redistribution from cycle c0 to cycle c

function Redistr(x, n, p, c0, c , rev)

if rev then
{ Reverse the processor numbering }
j0 := ρp(s) mod c0;
j2 := ρp(s) div c0;

else
j0 := s mod c0;
j2 := s div c0;

for j := j2
c0n
p + j0 to (j2 + 1) c0np − 1 step c0 do

dest := (j div cn
p)c + j mod c ;

put xj in P(dest);

14 / 17

Lecture 3.4 Parallel FFT

Last iteration of main loop

I The last iteration is determined by the smallest integer t such
that (n/p)t ≥ p.

I The cycles of the iterations are
c = (n/p)0, (n/p)1, . . . , (n/p)t−1, p.

I The total number of iterations is therefore t + 1.

I For n = 2m and p = 2q, we have

(n/p)t ≥ p ⇐⇒ nt ≥ pt+1 ⇐⇒ 2mt ≥ 2q(t+1)

⇐⇒ mt ≥ q(t + 1)⇐⇒ mt − qt ≥ q

⇐⇒ t ≥ q

m − q
.

I It follows that

t =

⌈
q

m − q

⌉
.

15 / 17

Lecture 3.4 Parallel FFT

BSP cost

I Every iteration, except the last, has a computation superstep
and a communication superstep that redistributes the data.

I The last iteration has no data redistribution.
I The total synchronization time is therefore

Tsync = (2t + 1)l =

(
2

⌈
q

m − q

⌉
+ 1

)
l .

I Every redistribution moves at most all the local data in and
out, i.e., n/p complex numbers, or 2n/p real data words.

I The total communication time is therefore

Tcomm = t · 2n

p
g =

⌈
q

m − q

⌉
· 2n

p
g .

I Look mama, without counting! The total computation time is

Tcomp =
5n log2 n

p
.

16 / 17

Lecture 3.4 Parallel FFT

Summary

I We have used different distributions in different parts of the
algorithm, trying to make our operations local.

I The algorithm starts and finishes in the cyclic distribution.

I If we split a vector into p/c blocks and distribute each block
over c processors by the cyclic distribution, then we obtain the
group-cyclic distribution with cycle c .

I The total BSP cost of the parallel FFT algorithm is

TFFT =
5n log2 n

p
+2·
⌈

log2 p

log2(n/p)

⌉
·n
p
g+

(
2

⌈
log2 p

log2(n/p)

⌉
+ 1

)
l .

I For practical p, we only need one data redistribution:

TFFT, 1<p≤
√
n =

5n log2 n

p
+ 2

n

p
g + 3l .

17 / 17

