
Lecture 4.5 Mondriaan Sparse Matrix Distribution

Mondriaan Sparse Matrix Distribution
Section 4.5 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Parallel sparse matrix–vector multiplication

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u

I 4 supersteps: communicate, compute, communicate, compute.
I Parallel sparse matrix–vector multiplication u := Av, where

A sparse n × n matrix, u, v dense vectors of length n.
I Computation of

ui :=
n−1∑
j=0

aijvj , for 0 ≤ i < n.

2 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Cartesian matrix partitioning

I Block distribution of 59× 59 matrix impcol b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

I #nonzeros per processor: 126, 28, 128, 30

I Each split has optimal balance (for blocks)

3 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Non-Cartesian matrix partitioning

I Block distribution of 59× 59 matrix impcol b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

I #nonzeros per processor: 76, 76, 80, 80

I Each split has optimal balance (for blocks)

4 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

5 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

p-way matrix partitioning
I A p-way partitioning A0, . . . ,Ap−1 is defined by

p−1⋃
s=0

As = A,

As ∩ At = ∅, for s 6= t,

As 6= ∅, for 0 ≤ s < p.

I Here, As is the set of index pairs of the nonzeros of processor
P(s),

As = {(i , j) : 0 ≤ i , j < n ∧ φ(i , j) = s}, for 0 ≤ s < p.

I For the purpose of partitioning, we identify:
nonzero ≡ index pair; sparse matrix ≡ set of index pairs.

I If all nz(As) > 0, then A0, . . . ,Ap−1 forms a p-way
partitioning of A = {(i , j) : 0 ≤ i , j < n ∧ aij 6= 0}.

I We use the notation V (A0, . . . ,Ap−1) = Vφ.

6 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Communication volume for partitioned matrix

V (A0,A1,A2,A3) = V (A0,A1,A2 ∪ A3) + V (A2,A3)

I V (A0,A1,A2,A3) is the total matrix–vector communication
volume corresponding to the partitioning A0,A1,A2,A3.

I V (A2,A3) is the volume corresponding to the partitioning
A2,A3 of the matrix A2 ∪ A3.

7 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Motivation of the Mondriaan splitting

Theorem 4.6 Given a sparse matrix A and mutually disjoint subsets
A0, . . . ,Ak of A, where k ≥ 1, it holds that

V (A0, . . . ,Ak) = V (A0, . . . ,Ak−2,Ak−1 ∪ Ak) + V (Ak−1,Ak).

I Meaning: the split that creates
k + 1 parts from k parts can be
done locally and independently,
looking at just the part that is to
be split.

I This greedily minimizes the total
communication volume.

8 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Proof of the theorem
I For a given partitioning A0, . . . ,Ak−1, let the number of

processors that need a vector component vj be
µj = µj(A0, . . . ,Ak−1); this is the number of sets As that
have a nonzero in matrix column j .

I Let the number of processors that contribute to a vector
component ui be λi = λi (A0, . . . ,Ak−1).

I Let λ′i = max(λi − 1, 0) and µ′j = max(µj − 1, 0), so that the
total communication volume is

V =
n−1∑
i=0

λ′i +
n−1∑
j=0

µ′j .

I Instead of proving

V (A0, . . . ,Ak) = V (A0, . . . ,Ak−2,Ak−1 ∪Ak) + V (Ak−1,Ak),

it is sufficient to prove for all i that

λ′i (A0, . . . ,Ak) = λ′i (A0, . . . ,Ak−2,Ak−1∪Ak) +λ′i (Ak−1,Ak),

and similar for the µ′j . 9 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Proof of the theorem (cont’d)

I λi = # sets As that have a nonzero in matrix row i .

I If row i has a nonzero in Ak−1 ∪ Ak , then
λ′i = max(λi − 1, 0) = λi − 1 in all three terms. Thus,

λ′i (A0, . . . ,Ak−2,Ak−1 ∪ Ak) + λ′i (Ak−1,Ak)

= λi (A0, . . . ,Ak−2,Ak−1 ∪ Ak)− 1 + λi (Ak−1,Ak)− 1

= λi (A0, . . . ,Ak−2) + 1− 1 + λi (Ak−1,Ak)− 1

= λi (A0, . . . ,Ak−2) + λi (Ak−1,Ak)− 1

= λi (A0, . . . ,Ak)− 1 = λ′i (A0, . . . ,Ak).

I If row i has no nonzero in Ak−1 ∪ Ak , then both Ak−1 and Ak

are empty, so that

λ′i (A0, . . . ,Ak−2,Ak−1 ∪ Ak) + λ′i (Ak−1,Ak)

= λ′i (A0, . . . ,Ak−2) + 0 = λ′i (A0, . . . ,Ak). �

10 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Computational load balance

I Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

I A load balance criterion must therefore be satisfied:

max
0≤s<p

nz(As) ≤ (1 + ε)
nz(A)

p
.

I ε is the specified allowable imbalance.

I ε′ is the imbalance achieved by the partitioning.

11 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

BSP cost determines ε

I Best choice of ε is machine-dependent and can be found by
using the BSP model.

I Communication cost is Vg
p , assuming that the communication

is balanced by the vector partitioning that follows the matrix
partitioning.

I Total BSP cost is

2(1 + ε′)
nz(A)

p
+

Vg

p
+ 4l .

I To get a good trade-off between the overheads of
computation imbalance and communication, we require

2ε′
nz(A)

p
≈ Vg

p
, i.e., ε′ ≈ Vg

2nz(A)
.

I If necessary, we adjust ε and run the partitioner again.

12 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Bipartitioning: splitting into 2 parts

A =


0 3 0 0 1
4 1 0 0 0
0 5 9 2 0
6 0 0 5 3
0 0 5 8 9

 .

I The number of possible 2-way partitionings is
2nz(A)−1 = 212 = 4096. Symmetry saves a factor of 2.

I Finding the best solution by enumeration, trying all
possibilities and choosing the best, works only for small
problems. Thus, we need heuristic methods.

I Splitting by rows (or by columns) restricts the search space to
2n−1 = 24 = 16 possibilities.

13 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Vertical and horizontal bipartitioning

I Assume ε = 0.1, so nz(As) ≤ 7, for s = 0, 1.

I An optimal column split has V = 4:

A =


· 3 · · 1
4 1 · · ·
· 5 9 2 ·
6 · · 5 3
· · 5 8 9

 .
I An optimal row split has V = 3:

A =


· 3 · · 1
4 1 · · ·
· 5 9 2 ·
6 · · 5 3
· · 5 8 9

 .

14 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Repeated splits

I The partitioning starts with a complete matrix, splits it into 2
submatrices, splits each submatrix, giving 4 submatrices, and
so on. The method can be formulated recursively.

I For simplicity, we assume that p = 2q.

I Rows and columns in the submatrix need not be consecutive.

I The recursion level of a submatrix is the number of times the
original matrix must be split to reach the submatrix. The level
of the original matrix is 0.

I The final result for processor P(s) is a submatrix defined by
an index set Īs × J̄s . The submatrices are mutually disjoint.

I Removing empty rows and columns from Īs × J̄s gives Is × Js .
Thus

As ⊆ Is × Js ⊆ Īs × J̄s .

15 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Global view of matrix cage6

I Distribution of 93× 93 matrix cage6 with 785 nonzeros, for
p = 4, obtained by Mondriaan partitioning with ε = 3%.

I Maximum number of nonzeros per processor is 202; average is
785/4=196.25. Achieved imbalance is ε′ ≈ 2.93%.

I Communication volume: fanout 58; fanin 55; V = 113.

16 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Local view of matrix cage6

I The local submatrix Īs × J̄s of processor P(s) has size:

65× 45 for P(3); 38× 48 for P(1);
28× 45 for P(2); 55× 48 for P(0).

I Ī0 × J̄0 has 17 empty rows and 6 empty columns, giving a size
of 38× 42 for I0 × J0.

17 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Growth of load imbalance by splitting

I If the growth factor at each recursion level is 1 + δ, the overall
growth factor is (1 + δ)q ≈ 1 + qδ. Here, p = 2q. This
motivates starting with qδ = ε, i.e.,

δ =
ε

q
.

I For the deepest splits, with q = 1, we have δ = ε and the
above first-order approximation is exact.

I After the first split, one part has at least half the nonzeros,
and the other part at most half. We recompute the ε-values
for both halves based on the new situation.

I Here, the less-loaded processor can increase the allowed load
imbalance to reduce communication in further splits.

18 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Recursive matrix partitioning
input: A: sparse m × n matrix, p = 2q, ε = allowed imbalance.
output: (A0, . . . ,Ap−1): ε-balanced p-way partitioning of A.

function MatrixPartition(A, p, ε)
if p > 1 then

maxnz := (1 + ε)nz(A)
p ;

(Brow
0 ,Brow

1 ) := Bipartition(A, row, εq );

(Bcol
0 ,Bcol

1 ) := Bipartition(A, col, εq );

if V (Brow
0 ,Brow

1 ) ≤ V (Bcol
0 ,Bcol

1 ) then
(B0,B1) := (Brow

0 ,Brow
1 );

else (B0,B1) := (Bcol
0 ,Bcol

1 );

ε0 := maxnz
nz(B0) ·

p
2 − 1; ε1 := maxnz

nz(B1) ·
p
2 − 1;

(A0, . . . ,Ap/2−1) := MatrixPartition(B0,
p
2 , ε0);

(Ap/2, . . . ,Ap−1) := MatrixPartition(B1,
p
2 , ε1);

else
A0 := A;

19 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Recursive matrix partitioning
input: A: sparse m × n matrix, p = 2q, ε = allowed imbalance.
output: (A0, . . . ,Ap−1): ε-balanced p-way partitioning of A.

function MatrixPartition(A, p, ε)
if p > 1 then

maxnz := (1 + ε)nz(A)
p ;

(Brow
0 ,Brow

1 ) := Bipartition(A, row, εq );

(Bcol
0 ,Bcol

1 ) := Bipartition(A, col, εq );

if V (Brow
0 ,Brow

1 ) ≤ V (Bcol
0 ,Bcol

1 ) then
(B0,B1) := (Brow

0 ,Brow
1 );

else (B0,B1) := (Bcol
0 ,Bcol

1 );

ε0 := maxnz
nz(B0) ·

p
2 − 1; ε1 := maxnz

nz(B1) ·
p
2 − 1;

(A0, . . . ,Ap/2−1) := MatrixPartition(B0,
p
2 , ε0);

(Ap/2, . . . ,Ap−1) := MatrixPartition(B1,
p
2 , ε1);

else
A0 := A;

19 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Hypergraph

4

3

2

1

0

8

7

6

5

I Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors.

20 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

The row-net model

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

I Hypergraph H = (V,N ) gives exact communication volume.

I Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets), ni = {j : 0 ≤ j < n ∧ aij 6= 0}:

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},
n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.

Ü. V. Çatalyürek and C. Aykanat, IEEE Transactions on Parallel and
Distributed Systems 10 (7) (1999) pp. 673–693.

21 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Minimizing communication volume

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

I Cut nets n1, n2 each cause one communication: V = 2.

I Use Kernighan–Lin algorithm for hypergraph bipartitioning:
start with an initial random partitioning.

I Try to improve it by moving vertices (columns) with the
largest gain in communication to the other part.

I If this increases the communication, the move is still accepted.

I Several passes are carried out. Vertices are never moved twice
in a pass. The best solution encountered is kept.

22 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

The multilevel scheme

1. Merge similar columns in pairs to reduce the problem size, and
repeat this until the problem is small.

2. Bipartition the smaller problem using Kernighan–Lin with an
improved implementation by Fiduccia and Mattheyses.

3. Refine the bipartitioning using a simplified KLFM scheme.

23 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Multilevel bipartitioning of an 8× 8 matrix

−→coarsen −→coarsen

ypartition

←−
uncoarsen
& refine ←−

uncoarsen
& refine

ypartition

I Here, the coarsening of the matrix is by merging pairs of
adjacent columns.

24 / 25



Lecture 4.5 Mondriaan Sparse Matrix Distribution

Summary

I We have derived a recursive algorithm that yields a p-way
sparse matrix partitioning A0, . . . ,Ap−1 with

As ⊆ Is × Js ⊆ Īs × J̄s .

I It is greedy, i.e., minimizes for the splits separately without
looking ahead, and it adapts the allowed load imbalance to
the current partitioning.

I A hypergraph H = (V,N ) is a generalization of a graph. It
consists of a set V of vertices and a set N of hyperedges,
which are subsets of V.

I Multilevel methods for hypergraph partitioning find good
splits of a sparse matrix in reasonable time.

25 / 25


