Program bspmv
Section 4.11 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 4.11 Program bspmv

1/14

Parallel sparse matrix—vector multiplication

» The function bspmv is an implementation of Algorithm 4.5 for
parallel sparse matrix—vector multiplication.

» It can handle every possible distribution of the matrix and the
vectors.

Lecture 4.11 Program bspmv

2/14

Data structure: indexing

void bspmv_init(long n, long nrows, long ncols,
long nv, long nu,
long xrowindex, long xcolindex, ...){

» Each processor first builds its own local data structure for
representing the local part of the sparse matrix.

» Local nonempty rows are numbered i =0, ... ,nrows — 1,
where nrows = |/q|.

» The global index of the row with local index i is
i = rowindex|[i].

» The global index of the column with local index j is
J = colindex[j].

Lecture 4.11 Program bspmv

3/14

Data structure: nonzeros

void bspmv(long n, long nz, long nrows, long ncols,
double xa, long x*inc, ...){

» Nonzeros are stored in order of increasing local row index i.

» The nonzeros of each local row are stored consecutively in
order of increasing local column index j, using the
Incremental Compressed Row Storage (ICRS) data structure.

» The kth nonzero is stored as a pair (a[k], inc[k]), where a[k]

is the numerical value of the nonzero and incl[k]| the
increment in the local column index.

Lecture 4.11 Program bspmv

4/14

Creating the matrix data structure

>

Each triple (/,/, ajj) is read from an input file and sent to the
responsible processor, as determined by the matrix
distribution.

This is done in batches of size at most MAXSEND to save buffer
space, at the expense of an increase in the number of
supersteps.

The local triples are then sorted by increasing global column
index.

This enables conversion to local column indices. During the
conversion, the global indices are registered in colindex.

The triples are sorted again, now by global row index. The
original mutual precedences between triples from the same
matrix row are maintained (i.e., the sort is stable).

Lecture 4.11 Program bspmv

5/14

Data structure: vector components

void bspmv_init(long n, long nrows, long ncols,
long nv, long nu,
long xrowindex, long =xcolindex ,
long xvindex, long xuindex, ...){

» Vector component v; corresponds to a local component v[k]
in P(¢y(j)), where j = vindex[k]. Here, 0 <k < nv.

» All the needed vector components v;, whether obtained from
other processors or already present locally, are written into a
local array vloc, which has the same local indices as the
matrix columns.

» vloc[j] stores a copy of vj, where j = colindex[j]. Here,
0 < j < ncols.

Lecture 4.11 Program bspmv

6/14

Where to get the input vector components

void bspmv(long n, long nz, long nrows, long ncols,
double *xa, long =xinc,
long xsrcprocv, long *srcindv, ...){

bsp_get(srcprocv[j],v,srcindv[j]«sizeof(double),
&vloc[j],sizeof(double));

> bsp_get is used to obtain v;, because the receiver knows it
needs v;.

» The processor from which to get the value has processor
number ¢y (j) = srcprocv(j].

» The source processor needs to be determined only once. Its
processor number can be used without additional cost in
repeated application of the matrix—vector multiplication.

» We also store the location of v; in the source processor as the & :
local index srcindv([j].

Lecture 4.11 Program bspmv

7/14

Possible optimizations

>

>

>

We use bsp_get to obtain v;, but we still need preprocessing
to determine srcprocv|j] and srcindv([j].

With some extra preprocessing we could have used bsp_put
instead.

With even more preprocessing we could have put all the data
for the same destination together, as one packet. This would
attain optimistic g-values.

Principle: more preprocessing gives less work in repeated
multiplications.

Optimization makes a program faster but sometimes it also
creates a mess. Therefore, we did not implement the above
optimizations in BSPedupack.

A straightforward optimization is the direct assignment in the
fanout of the value v;j to vloc[j] in case v; is local.

We implemented this to avoid the substantial overhead of a
call to bsp_get in the local case.

Lecture 4.11 Program bspmv

8/14

Motivation for using Bulk Synchronous Message Passing

» The fanin uses bsp_send to send nonzero partial sum uj; to
P(¢u(i))-

» The information whether a nonzero partial sum for a certain
row exists is only available at the sender.

» A sender does not know what others send to the same
destination. Processors do not know what they will receive.

> If we were to use a bsp_put, we would have to specify a
destination address.

P> bsp_send is convenient here: it just sends the data to the
right destination, without worrying about what happens
afterwards.

Lecture 4.11 Program bspmv

9/14

Sending a partial sum

for (long i=0; i<nrows; i++){
double sum= 0.0;
/* compute sum x/

if (destprocul[i] = s)
u[destindu[i]]= sum;
else
bsp_send (destprocu[i],&destindu[i],
&sum, sizeof (double));

» The tag is an index destindu[i] corresponding to i and the
payload is sum = uj; consisting of 1 double.

» The tag should be chosen such that it enables the receiver to
handle the payload easily.

» The destination processor, given by ¢, (/) = destproculi],
has been initialized beforehand by bspmv_init.

» The identity of the source processor is irrelevant and is not
sent along with the data.

Lecture 4.11 Program bspmv

10/14

Summation of received partial sums

bsp_qsize(&nsums,&nbytes);
bsp_get_tag(&status ,&i);

for (long k=0; k<nsums; k++){
/x status != —1, but its value is not used %/
double sum;
bsp_move(&sum, sizeof (double));
uli] += sum;
bsp_get_tag(&status ,&i);

}

P> bsp_gsize gives the number of messages received, i.e., the
number nsums of partial sums.

» The index i of a message is obtained from its tag and the
sum from its payload. The index i is the local index at the
receiver.

Lecture 4.11 Program bspmv

11/14

Pointer magic for ICRS in local SpMV

double xpa= a; // pointer to a
long xpinc= inc;

double xpvloc= vloc;

double xpvloc_end= pvloc + ncols;

for (long i=0; i<nu; i++)
uli]= 0.0;

pvloc += xpinc;
for (long i=0; i<nrows; i++){
double sum= 0.0;
while (pvloc<pvloc_end){
sum += (xpa) * (xpvloc); // = a[k]xvioc[j]
pa++;
pinc—++;
pvloc += xpinc;

}
// send sum

pvloc —= ncols;

Lecture 4.11 Program bspmv

12/14

Initialization function bspmv_init

» This is what | have. Write the owner of every local
component v; cyclically into a temporary array.
for (long j=0; j<nv; j++)}

long jglob= vindex[j];
bsp_put(jglob%p,&s,tmpprocv,

(jglob/p)«sizeof(long),sizeof(long));
}

» Where can | find what | need? In processor P(j mod p) at
location P(j div p).
for (long j=0; j<ncols; j++){
long jglob= colindex|[j];
bsp_-get(jglob%p,tmpprocv,(jglob/p)*sizeof(long),
&srcprocv[j],sizeof(long));

}

» | can get v; from P(srcprocv(j]). Similar for its location
srcindv[j].

Lecture 4.11 Program bspmv

13/14

Summary

» The input of a sparse matrix requires a lot of preprocessing:
» we send the matrix nonzeros as triples (i, j, aj) to the
processors that own them according to the matrix distribution;
> we sort the local nonzeros twice, in a stable way, first by global
column index and then by global row index;
> we create the Incremental Compressed Row Storage (ICRS)
data structure.
» Furthermore, we announce the owner and location of vector
components to the processors that need this information.

> It is often worthwhile to remove the overhead of a function
call to bsp_put, bsp_get, or bsp_send in case
communication stays within a processor.

» Bulk Synchronous Message Passing (BSMP) is convenient for
irregular computations such as sparse matrix—vector
multiplication.

Lecture 4.11 Program bspmv

14 /14

