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Experimental setup

I Hardware: we use a Broadwell node with p = 32 cores of the
supercomputer Cartesius at SURF in Amsterdam.

I BSP library: we view the node as a 32-core shared-memory
machine and run MulticoreBSP for C.

I Software: we run the program bspsort from BSPedupack
version 2.0, which implements a parallel regular samplesort.

I We also run a sequential program for proper comparison.

I Test problem: we sort n random numbers from the interval
[0,1].

2 / 11



Experimental Results for Samplesort on Cartesius

Time (in s) of parallel regular samplesort

p Length n

104 105 106 107 108

1 (seq) 0.0011 0.0124 0.146 1.714 19.51
1 (par) 0.0012 0.0136 0.156 1.836 20.83
2 0.0009 0.0075 0.087 0.948 10.69
4 0.0008 0.0046 0.046 0.501 5.56
8 0.0009 0.0032 0.027 0.271 2.88

16 0.0015 0.0040 0.019 0.166 1.59
32 0.0032 0.0047 0.022 0.129 0.99

I The sequential sort is the system quicksort in C.

I The sequential time grows as O(n log n).

I For large n, good parallel speedups are obtained.
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Speedup
I The speedup of a parallel program is the increase in speed of

the program running on p processors compared with the speed
of a sequential program,

Sp(n) =
Tseq(n)

Tp(n)
.

I Comparing to T1 instead of Tseq would be too flattering, since
the parallel program run for p = 1 will have overhead such as
superfluous calculations.

I Often, you can obtain a good sequential program by
simplifying the parallel program: substituting p = 1, s = 0,
removing syncs, and replacing puts by memory copies.

I This is a rather mechanical process, which can be
accompanied by a good drink.

I In this process, keeping track of run time gains may give
insight into further optimization opportunities for the parallel
program.
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Speedup of parallel regular samplesort
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I Highest speedup achieved: S32(108) = 19.8.
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Superlinear speedup

I Usually:
0 < Sp(n) ≤ p.

I Still, a superlinear speedup Sp(n) > p can happen, most likely
because of cache effects.

I If each processor has its own cache, increasing p also increases
the total problem size n that fits into cache.

I For a critical p, the computation rate r becomes a higher
in-cache rate, instead of a lower out-of-cache rate.
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Efficiency

I The efficiency is the fraction of the total computing power
that is usefully employed. It is defined by

Ep(n) =
Sp(n)

p
=

Tseq(n)

pTp(n)
.

I Usually 0 < Ep(n) ≤ 1 and ideally Ep(n) = 1.
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Strong and weak scalability

I Keeping the problem size fixed while increasing p is a test of
strong scalability. We do this for measuring speedup.

I Sometimes this is difficult to implement, because large
problems do not fit into the memory of one processor, and we
are interested in the behaviour of exactly those problems.

I This holds especially for distributed-memory architectures,
where the available memory grows linearly with p.

I For linear-time problems, a solution is to let the problem size n
grow linearly as well with p, which is a test of weak scalability.

I Weak scalability is good if the efficiency stays close to 1.
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Breakdown of predicted sorting time for n = 108

p n
p log2

n
p p2 log2 p

2n
p log2 p p(p − 1)g 2n

p g 5l Tp

1 0.465 0 0 0 6.899 0 7.364
2 0.224 0 0.018 0 3.485 0.000016 3.726
4 0.108 0 0.018 0 1.970 0.000034 2.095
8 0.052 0 0.013 0.000003 1.199 0.000043 1.264

16 0.025 0 0.009 0.000014 0.722 0.000082 0.756
32 0.012 0.000001 0.005 0.000079 0.498 0.000116 0.515

32 0.537 0.000124 0.247 0.000183 0.213 0.000102 0.998

I Predictions (in s) are given for p ≤ 32. For p = 32, they are
based on benchmarked values r = 5.711 Gflop/s, g = 455,
l = 132 618.

I The bottom line is the actual measured time (in s).
I The dominant predicted cost is the cost 2n

p g of moving the
data to their final destination.

I The measured cost is only n
pg , because the output block size

is balanced for random test data, so bs ≈ b.
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Misprediction of computing rate

p n
p log2

n
p p2 log2 p

2n
p log2 p p(p − 1)g 2n

p g 5l Tp

1 0.465 0 0 0 6.899 0 7.364
2 0.224 0 0.018 0 3.485 0.000016 3.726
4 0.108 0 0.018 0 1.970 0.000034 2.095
8 0.052 0 0.013 0.000003 1.199 0.000043 1.264

16 0.025 0 0.009 0.000014 0.722 0.000082 0.756
32 0.012 0.000001 0.005 0.000079 0.498 0.000116 0.515

32 0.537 0.000124 0.247 0.000183 0.213 0.000102 0.998

I For p = 32, the main computation term n
p log2

n
p representing

the local quicksort shows a large discrepancy between
prediction (0.012 s) and measurement (0.537 s).

I This must be due to slower scalar operations of the sorting
compared to the vector operations of the DAXPY benchmark.

I Better prediction: use a sorting-based benchmark rate r .
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Summary
I The speedup of a parallel program run on p processors for a

problem of size n is

Sp(n) =
Tseq(n)

Tp(n)
.

I The efficiency is

Ep(n) =
Sp(n)

p
.

I Usually we have

0 < Sp(n) ≤ p, 0 < Ep(n) ≤ 1,

and ideally
Sp(n) = p, Ep(n) = 1.

I Theoretical BSP cost analysis gives insight and helps predict
run time behaviour of parallel programs, but we should not
get carried away and have unrealistic expectations of our
predictions.
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