
Lecture 4.4 Cartesian Matrix Distribution

Cartesian Matrix Distribution
Section 4.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 22



Lecture 4.4 Cartesian Matrix Distribution

Identifying 1D and 2D processor numbering

I Natural column-wise identification for p = MN processors:

P(s, t) ≡ P(s + tM), for 0 ≤ s < M and 0 ≤ t < N.

I This can also be written as

P(s) ≡ P(s mod M, s div M), for 0 ≤ s < p.

I For a Cartesian distribution (φ0, φ1), we map nonzeros aij to
processors P(φ(i , j)) by

φ(i , j) = φ0(i) + φ1(j)M, for 0 ≤ i , j < n and aij 6= 0.

I We use 1D or 2D numbering, whichever is most convenient in
the context.

2 / 22



Lecture 4.4 Cartesian Matrix Distribution

A Cartesian distribution of cage6

s = 0

1

0

1

t = 0 1

I n = 93, nz = 785, p = 4, M = N = 2.

I The processor row of a matrix element aij is s = φ0(i);
the processor column is t = φ1(j).

I The matrix diagonal is assigned in blocks to the processors:
P(0) ≡ P(0, 0), P(2) ≡ P(0, 1),
P(1) ≡ P(1, 0), P(3) ≡ P(1, 1).

3 / 22



Lecture 4.4 Cartesian Matrix Distribution

Advantages of a Cartesian distribution for a sparse matrix

Advantages:

I Row-wise operations require communication only within
processor rows, and similar for column-wise operations.

I For an M × N Cartesian distribution, vj has to be sent to at
most M processors and ui is computed using contributions
received from at most N processors.

I Simplicity: Cartesian distributions partition the matrix
orthogonally into rectangular submatrices. Non-Cartesian
distributions create arbitrarily-shaped matrix parts.

Disadvantage:

I Less general, so a Cartesian distribution may not offer the
optimal solution.

4 / 22



Lecture 4.4 Cartesian Matrix Distribution

Matching the matrix and vector distributions

I In a Cartesian distribution, vector component vj is needed
only by processors that possess an aij 6= 0, and these
processors are contained in processor column P(∗, φ1(j)).

I Assigning vector component vj to one of the processors in
P(∗, φ1(j)) implies that vj has to be sent to at most M − 1
processors, instead of M.

I If we are lucky (or clever), we may even avoid communication
of vj altogether.

I If vj were assigned to a different processor column, it would
always have to be communicated.

I Assigning ui to a processor in processor row P(φ0(i), ∗)
reduces the number of contributions sent for ui to at most
N − 1.

5 / 22



Lecture 4.4 Cartesian Matrix Distribution

A trivial but powerful theorem

Theorem 4.4 Let A be a sparse n × n matrix and u, v vectors of
length n. Assume that:

(i) the distribution of A is Cartesian, distr(A) = (φ0, φ1);

(ii) the distribution of u is such that ui resides in P(φ0(i), ∗);

(iii) the distribution of v is such that vj resides in P(∗, φ1(j)).

Then: if ui and vj are assigned to the same processor, aij is also
assigned to that processor and does not cause communication.

Proof.
Component ui is assigned to P(φ0(i), t).
Component vj is assigned to P(s, φ1(j)).
Since this is the same processor, we have

(s, t) = (φ0(i), φ1(j)),

so that this processor also owns aij . �

6 / 22



Lecture 4.4 Cartesian Matrix Distribution

Special case distr(u) = distr(v)

Corollary of Theorem 4.4. The conditions

(i) the distribution of A is Cartesian, distr(A) = (φ0, φ1);

(ii) the distribution of u is such that ui resides in P(φ0(i), ∗);

(iii) the distribution of v is such that vj resides in P(∗, φ1(j));

(iv) distr(u) = distr(v);

imply that ui and vi are assigned to P(φ0(i), φ1(i)), which is the
owner of the diagonal element aii .

I The choice of a Cartesian matrix distribution completely
determines the vector distribution.

I The choice of a vector distribution together with values for
M,N completely determines the Cartesian matrix distribution.

7 / 22



Lecture 4.4 Cartesian Matrix Distribution

Example: 1D Laplacian matrix

A =



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2


.

I This tridiagonal matrix represents a Laplacian operator on a
1D grid of n points.

I aij 6= 0 if and only if i − j = 0,±1.

8 / 22



Lecture 4.4 Cartesian Matrix Distribution

Vector distribution for tridiagonal matrix

I aij 6= 0 if and only if i − j = 0,±1.

I Assume that we require distr(u) = distr(v). Theorem 4.4
says that it is best to assign ui and vj (and hence uj) to the
same processor if i = j ± 1.

I Therefore, a suitable vector distribution over p processors is
the block distribution,

ui 7−→ P(i div

⌈
n

p

⌉
), for 0 ≤ i < n.

9 / 22



Lecture 4.4 Cartesian Matrix Distribution

Example: 12× 12 1D Laplacian matrix

Distribution matrix for n = 12 and M = N = 2:

distr(A) =



0 0
0 0 0

0 0 0

1 1 1
1 1 1

1 1 3

0 2 2
2 2 2

2 2 2

3 3 3
3 3 3

3 3



.

Position (i , j) gives the 1D identity of the processor that owns
matrix element aij .

10 / 22



Lecture 4.4 Cartesian Matrix Distribution

Construction of the distribution matrix

distr(A) is constructed by:

I distributing the vectors by the 1D block distribution;

I distributing the matrix diagonal in the same way as the
vectors;

I translating the 1D processor numbers into 2D numbers by
P(0) ≡ P(0, 0), P(2) ≡ P(0, 1),
P(1) ≡ P(1, 0), P(3) ≡ P(1, 1);

I determining the owners of the off-diagonal nonzeros:
I a56 is in the same processor row as a55, owned by

P(1) = P(1, 0);
I a56 is in the same processor column as a66, owned by

P(2) = P(0, 1);
I thus, a56 is owned by P(1, 1) = P(3).

11 / 22



Lecture 4.4 Cartesian Matrix Distribution

Cost analysis for a Cartesian distribution
I Assume that we have a good spread of

I nonzeros and vector components over processors;
I matrix rows over processor rows;
I matrix columns over processor columns.

I Then the costs of the supersteps are

T(0) = (M − 1)
ng

p
+ l ,

T(1) =
2cn

p
+ l ,

T(2) = (N − 1)
ng

p
+ l ,

T(3) =
Nn

p
+ l .

I The total BSP cost is then bounded by

TMV, M×N ≤
2cn

p
+

n

M
+

M + N − 2

p
ng + 4l .

12 / 22



Lecture 4.4 Cartesian Matrix Distribution

Efficient computation for M = N =
√
p

TMV,
√
p×√p ≤

2cn

p
+

n
√
p

+ 2

(
1
√
p
− 1

p

)
ng + 4l .

I The computation is considered efficient if 2cn
p > 2ng√

p , i.e.,

c >
√
pg .

I This is an improvement of a factor
√
p compared to the

previous general efficiency criterion.

13 / 22



Lecture 4.4 Cartesian Matrix Distribution

Dense matrices

I Dense matrices are the limit of sparse matrices for c → n.

I Analysing the dense case is easier and it can give us insight
into the sparse case as well.

I Substituting c = n in the previous cost formula gives

TMV, dense ≤
2n2

p
+

n
√
p

+ 2

(
1
√
p
− 1

p

)
ng + 4l .

I Which distribution will yield this cost? All spreading
assumptions must hold!

14 / 22



Lecture 4.4 Cartesian Matrix Distribution

Square cyclic distribution? No!

I Previously, we have extolled the virtues of the square cyclic
distribution for LU decomposition and all parallel linear
algebra.

I Here, however, this distribution does not work well. Diagonal
element aii is assigned to P(i mod

√
p, i mod

√
p), so that

the matrix diagonal is assigned to the diagonal processors
P(s, s), 0 ≤ s <

√
p.

I Only
√
p processors have part of the matrix diagonal and the

vectors. The vector spreading assumption fails.

I The trouble is that diagonal processors must send
√
p − 1

copies of n√
p vector components: hs = n − n√

p in (0).

I The total cost for the square cyclic distribution is

TMV, dense,
√
p×√p cyclic =

2n2

p
+ n + 2

(
1− 1
√
p

)
ng + 4l .

15 / 22



Lecture 4.4 Cartesian Matrix Distribution

Cyclic row distribution? No!

I The communication balance can be improved by choosing a
distribution that spreads the matrix diagonal and the vectors
evenly, φu(i) = φv(i) = i mod p, and translating the matrix
distribution from 1D to 2D.

I We still have the freedom to choose M and N, where
MN = p. For the choice M = p and N = 1, this gives the
cyclic row distribution φ0(i) = i mod p and φ1(j) = 0.

I The total cost for the cyclic row distribution is

TMV, dense, p×1 cyclic =
2n2

p
+

(
1− 1

p

)
ng + 2l .

I This distribution skips supersteps (2) and (3), since each
matrix row is completely contained in one processor.

I The trouble is that the fanout is very expensive: every
processor has to send n

p vector components to all others.

16 / 22



Lecture 4.4 Cartesian Matrix Distribution

Square Cartesian distribution? Yes!

A

vT

u

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

I Square Cartesian distribution based on a cyclic distribution of
the matrix diagonal, φu(i) = φv(i) = i mod p, but now we
choose M = N =

√
p when translating from 1D to 2D.

I Et voilà! We achieve the optimal BSP cost.

17 / 22



Lecture 4.4 Cartesian Matrix Distribution

Two layers of a dense artificial neural network

0 1 2 3 4 5 6 7
v

u

I Each neuron in the top layer of the artificial neural network
(ANN) is connected to all neurons of the bottom layer. Both
layers have 8 neurons.

I The strength vj of a signal fired by neuron j in the top layer is
an input to the strength ui of neuron i in the bottom layer.

I The connection between top neuron j and bottom neuron i
carries a weight aij which has been determined during a
training phase of the network.

18 / 22



Lecture 4.4 Cartesian Matrix Distribution

Similarity to matrix–vector multiplication

0 1 2 3 4 5 6 7
v

u

I The value ui is typically given by a formula of the form

ui = f (
n−1∑
j=0

aijvj + bi ).

I Here, f is an activation function such as the Rectified Linear
Unit (ReLU) function f (x) = max(0, x) and bi is a
component of a bias vector b.

I The neurons and their connections have been distributed over
4 processors according to the square Cartesian matrix
distribution just discussed.

19 / 22



Lecture 4.4 Cartesian Matrix Distribution

Square Cartesian distribution based on blocks

A

vT

u

0

0

0

0

0

0

1

1

1 1

1

1

2

2

2 2

2

2

3

3

3 3

3

3

I Square Cartesian distribution based on a block distribution of
the matrix diagonal, φu(i) = φv(i) = i div dnp e, with
M = N =

√
p

I This also achieves the optimal BSP cost.

20 / 22



Lecture 4.4 Cartesian Matrix Distribution

Distribution of artificial neural network based on blocks

0 1 2 3 4 5 6 7
v

u

I For dense ANNs, this distribution is just as good as the
previous cyclic distribution.

I It has more locality in the picture.

I For sparse ANNs with locality, such as convolutional neural
networks, a block-based distribution may be better.

21 / 22



Lecture 4.4 Cartesian Matrix Distribution

Summary

I For Cartesian distributions, we use both 1D and 2D processor
numberings to our advantage, with the identification

P(s, t) ≡ P(s + tM).

I We have seen the example of a tridiagonal matrix, where we
obtained a 2D matrix distribution, slightly different from a 1D
block row distribution.

I A square Cartesian matrix distribution based on a cyclic
distribution of the matrix diagonal and the vectors is an
optimal data distribution for dense matrices and for sparse
matrices that are relatively dense.

I This distribution (or a block-based alternative) can also be
applied to the neurons and the weights of a dense artificial
neural network.

22 / 22


