
Lecture 4.7 Vector distribution

Vector distribution
Section 4.7 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 22



Lecture 4.7 Vector distribution

Matrix and vector distribution

Matrix and vector distribution
for prime60

Broadway Boogie Woogie
Piet Mondriaan 1943

2 / 22



Lecture 4.7 Vector distribution

Balancing the communication

I Our aim is to reduce the BSP cost hg , where

h = max
0≤s<p

h(s), h(s) = max(hs(s), hr(s)).

I Thus, given a matrix distribution φ, we have to find a vector
distribution φv that
I minimizes h for the fanout, thus balancing the communication,
I satisfies the consistency constraint

j ∈ Jφv(j), for 0 ≤ j < n.

I The constraint means: the processor P(s) = P(φv(j)) that
owns vj must own a nonzero in matrix column j , i.e., j ∈ Js .

I We also have to find a vector distribution φu that minimizes h
for the fanin and satisfies the constraint

i ∈ Iφu(i), for 0 ≤ i < n.

3 / 22



Lecture 4.7 Vector distribution

Global view of prime60 distribution

I Matrix prime60 is defined by

aij 6= 0 if i mod j = 0 ∨ j mod i = 0, for 1 ≤ i , j < n.

I We start counting at 1, for once!
I Both consistency constraints are satisfied. Check this for row

and column 59 (a prime) and 60.
4 / 22



Lecture 4.7 Vector distribution

Local view of prime60 distribution

I The locally available components of the vector u are placed to
the left for P(0) and P(2), and to the right for P(1) and P(3).

I Those of v are placed at the top for P(0) and P(1), and at
the bottom for P(2) and P(3).

5 / 22



Lecture 4.7 Vector distribution

The two vector distribution problems are similar

I The nonzero pattern of row i of A equals the nonzero pattern
of column i of AT.

I Therefore, uis is sent from P(s) to P(t) in the multiplication
by A if and only if vi is sent from P(t) to P(s) in the
multiplication by AT.

I Sending and receiving is equally costly in the BSP model.

I Therefore, we can find a good distribution φu given φ = φA by
finding a good distribution φv given φ = φAT .

I Hence, we need only one distribution method, namely for
distributing v. We can then apply this method for u with AT

instead of A.

6 / 22



Lecture 4.7 Vector distribution

General case: arbitrary µj values

I µj = #processors that need vector component vj .

I Columns with µj = 0 or µj = 1 do not cause communication
and can be omitted from the problem.

I Hence, we assume µj ≥ 2, for all j .

I For processor P(s):

hs(s) =
n−1∑
j=0

φv(j)=s

(µj − 1),

and
hr(s) = |{j : j ∈ Js ∧ φv(j) 6= s}|.

I Our aim: for a given matrix distribution φ and hence a given
communication volume V = Vφ, minimize

h = max
0≤s<p

max (hs(s), hr(s)) .

7 / 22



Lecture 4.7 Vector distribution

Egoistic local bound

I An egoistic processor tries to minimize its own
h(s) = max(hr(s), hs(s)) without consideration for others.

I To minimize hr(s), it just has to maximize the number of
components vj with j ∈ Js that it owns.

I To minimize hs(s), it has to minimize the total weight of
these components, where the weight of vj is µj − 1.

I A locally optimal strategy is to start with hs(s) = 0 and
hr(s) = |Js | and grab the components in order of increasing
weight, each time adjusting hs(s) and hr(s), as long as
hs(s) ≤ hr(s).

8 / 22



Lecture 4.7 Vector distribution

Optimal values

I Denote the resulting optimal value of hr(s) by ĥr(s), that of
hs(s) by ĥs(s), and that of h(s) by ĥ(s). We have

ĥs(s) ≤ ĥr(s) = ĥ(s), for 0 ≤ s < p.

I The value ĥ(s) is a local lower bound on the actual value that
can be achieved: ĥ(s) ≤ h(s), for all s.

9 / 22



Lecture 4.7 Vector distribution

Example vector distribution problem

s = 0 1 · 1 · 1 1 1 1
1 1 1 · 1 1 1 1 ·
2 · 1 · · · 1 1 1
3 · · 1 1 1 · · 1

µj = 2 2 2 2 3 3 3 3

j = 0 1 2 3 4 5 6 7

I In the table, a 1 denotes that P(s) owns a nonzero in column
j and hence needs vj .

I Columns are ordered by increasing µj .

I Processor P(0) wants v0 and v2, but nothing more, so that
ĥs(0) = 2, ĥr(0) = 4, and ĥ(0) = 4.

I Other processors have a lower local bound ĥ(s).

I The fanout will cost at least 4g .

10 / 22



Lecture 4.7 Vector distribution

An algorithm based on the local bound

I Define the generalized lower bound ĥ(J, ns0, nr0) for a given
index set J ⊆ Js and a given initial number of sends ns0 and
receives nr0.

I The initial communications may be due to columns outside J.

I The bound is computed by the same method, but starting
with hs(s) = ns0 and hr(s) = nr0 + |J|.

I The original bound is retrieved from ĥ(s) = ĥ(Js , 0, 0).

I Our algorithm gives preference to the processor that faces the
toughest future, i.e., the processor with the highest current
value ĥ(s).

R. H. Bisseling and W. Meesen, Electronic Transactions on Numerical
Analysis 21 (2005) pp. 47–65.

11 / 22



Lecture 4.7 Vector distribution

Initialization of the algorithm

for s := 0 to p − 1 do
Ls := Js ;
hs(s) := 0;
hr(s) := 0;

I The matrix columns corresponding to Js are assumed to be
ordered by increasing µj .

I Ls is the index set of vector components that may still be
assigned to P(s).

I The number of sends caused by the assignments done so far is
registered as hs(s); the number of receives as hr(s).

I The current state of P(s) is represented by the triple
(Ls , hs(s), hr(s)).

12 / 22



Lecture 4.7 Vector distribution

Termination of the algorithm

for s := 0 to p − 1 do
if hs(s) < ĥs(Ls , hs(s), hr(s)) then

active(s) := true;
else

active(s) := false;

I Note that ns0 ≤ ĥs(J, ns0, nr0), so that by substitution

hs(s) ≤ ĥs(Ls , hs(s), hr(s)).

I A processor will not accept more components once it has
achieved its optimum, i.e., when

hs(s) = ĥs(Ls , hs(s), hr(s)).

13 / 22



Lecture 4.7 Vector distribution

Main loop of the algorithm
while ∃s : 0 ≤ s < p ∧ active(s) do

{ Choose processor with highest local bound }
smax := argmax0≤s<p(ĥr(Ls , hs(s), hr(s)) : active(s));
j := min(Lsmax);
φv(j) := smax;

{ Update sends and receives }
hs(smax) := hs(smax) + µj − 1;
for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do

hr(s) := hr(s) + 1;

{ Remove index }
for all s : 0 ≤ s < p ∧ j ∈ Js do

Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;

14 / 22



Lecture 4.7 Vector distribution

Main loop of the algorithm
while ∃s : 0 ≤ s < p ∧ active(s) do

{ Choose processor with highest local bound }
smax := argmax0≤s<p(ĥr(Ls , hs(s), hr(s)) : active(s));
j := min(Lsmax);
φv(j) := smax;

{ Update sends and receives }
hs(smax) := hs(smax) + µj − 1;
for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do

hr(s) := hr(s) + 1;

{ Remove index }
for all s : 0 ≤ s < p ∧ j ∈ Js do

Ls := Ls\{j};
if hs(s) = ĥs(Ls , hs(s), hr(s)) then

active(s) := false;
14 / 22



Lecture 4.7 Vector distribution

Special case: all µj ≤ 2

3

1

3

66

2
1

5

3

3
5

1

3
1

3
4

2217

3

2

4

55
66

2

3

3
1

3

1

5
4

1 2

2

We first create a weighted undirected graph, the communication
graph, where:

I vertex s = processor P(s), for 0 ≤ s < p.

I edge (s, t) = processor pair (P(s),P(t)) sharing one or more
matrix columns.

I edge weight ω(s, t) = the number of matrix columns shared.

Problem: assign each matrix column (i.e., vector component) to a
processor, while balancing the number of data words sent and
received.

15 / 22



Lecture 4.7 Vector distribution

Reduce the weights by pairing matrix columns

5

3

3
5

1

11
3

17

3

55

3

3
1

3

1

5

1

3 3

1

3

I Assign shared matrix columns in pairs: one column to
processor P(s), one to P(t).

I Reduce the weight accordingly, by ω(s, t) := ω(s, t)− 2.

I Shown here: the result of doing this for edges with even
weight.

16 / 22



Lecture 4.7 Vector distribution

Transform the graph into an unweighted undirected graph

I Repeat the paired assignment until all edge weights are 0 or 1.

I The result can be viewed as an unweighted undirected graph.

17 / 22



Lecture 4.7 Vector distribution

Transform the undirected graph into a directed graph

I Walk a path in the undirected graph starting at a vertex with
an odd degree (number of incident edges).

I Transform each walked edge (s, t) into a directed edge s → t,
which means that processor P(s) sends and P(t) receives.

I Walk until you reach a dead end.

I Note that even-degree vertices remain even-degree.

I Repeat the procedure until all degrees in the undirected graph
are even.

18 / 22



Lecture 4.7 Vector distribution

Transform into a directed graph (starting at odd degree)

19 / 22



Lecture 4.7 Vector distribution

Transform into a directed graph (starting at odd degree)

20 / 22



Lecture 4.7 Vector distribution

Transform into a directed graph (starting at even degree)

I Final phase (no more odd-degree vertices): walk a path in the
undirected graph starting at a vertex with an even degree.

I Repeat the procedure until the undirected graph has no more
edges.

I The resulting vector distribution is provably optimal.

21 / 22



Lecture 4.7 Vector distribution

Summary

I The BSP cost is a natural metric that encourages
communication balancing.

I The general vector distribution problem is NP-complete, as
shown by Ali Pinar. We have developed a heuristic method
that works well in practice.

I This heuristic method is based on assigning vector
components to the processor with the toughest future, as
predicted by an egoistic local bound.

I For the special case with at most 2 processors per matrix
column, we have obtained an optimal method based on
walking paths in an associated communication graph.

I Here, optimal does not mean perfect, because some
processors may still communicate more than others.

22 / 22


