
Bulk Synchronous Message Passing

Bulk Synchronous Message Passing: bspsort

Section 1.9 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 14

Bulk Synchronous Message Passing

Parallel regular samplesort

I Function bspsort is an implementation of Algorithm 1.4 for
bulk synchronous parallel regular samplesort.

I The communication pattern of its main communication
superstep (3) is irregular, because varying amounts of data are
being sent between the processors.

I For irregular communications, a different way of
communicating data is convenient, called bulk synchronous
message passing.

2 / 14

Bulk Synchronous Message Passing

Bulk synchronous message passing (BSMP)

I The bsp send primitive allows us to send data to a given
processor without specifying the location where the data is to
be stored.

I We view bsp send as a bsp put with a wildcard for the
destination address.

I BSMP is one-sided communication, since it does not require
any activity by the receiver in the same superstep.

I In the next superstep, the receiver must do something, at
least if she wants to use the received data.

I BSPlib has 5 primitives for BSMP, which we will discuss, and
2 high-performance versions, which we will ignore.

3 / 14

Bulk Synchronous Message Passing

Motivation for BSMP

I Superstep (3) of samplesort uses bsp send to send a local
data set Xst of variable size from P(s) to P(t). The set size is
only known to the sender.

I A sender does not know what others send to the same
destination. Processors do not know what they will receive.

I If we were to use a bsp put, we would have to specify a
destination address.

I Reserving sufficient space for each possible set size would
require too much memory.

I First telling how much is going to be sent, then reserving the
right amount of space, and finally asking the senders to put
data there is clumsy, and requires 3 supersteps.

4 / 14

Bulk Synchronous Message Passing

Send operation from BSPlib

I bsp send just sends the data to the right destination
processor, without worrying about what happens afterwards.

I In the next superstep, bsp move moves all or part of the
received data into the desired location.

5 / 14

Bulk Synchronous Message Passing

Primitive bsp send

bsp pid

Message

nbytes

tag payload

bsp sendsource

b s p s e n d (pid , tag , s o u r c e , n b y t e s) ;

I bsp send copies nbytes of data from the local processor
bsp pid into a message, adds a tag, and sends the message
to the destination processor pid.

I source points to the start of the data to be copied.

6 / 14

Bulk Synchronous Message Passing

Sending a data set

long i= 0 ;
f o r (long t =0; t<p ; t++){

/∗ Send the v a l u e s f o r P(t) ∗/
long i 0= i ; // i ndex o f f i r s t v a l u e to be s en t
long count= 0 ; // number o f v a l u e s to be s en t
whi le (i < n l o c (n , s , p) &&

(t==p−1 | |
(x [i] < S p l i t t e r [t +1] . w e i g h t) | |

x [i] ==S p l i t t e r [t +1] . w e i g h t && . . .)
){

count++;
i ++;

}
i f (count > 0)

b s p s e n d (t ,& count ,& x [i 0] , count ∗ s i z eo f (double)) ;
}

I Here, the tag is the data count (for demonstration purposes).

7 / 14

Bulk Synchronous Message Passing

Primitive bsp move

Message

pid

tag payload

maxnbytes

bsp move

dest

bsp move (dest , maxnbytes) ;

I bsp move writes at most maxnbytes into the memory pointed
to by dest.

8 / 14

Bulk Synchronous Message Passing

Use it or lose it

I The message sent using bsp send is first stored by the system
in a local send buffer, and then sent and stored in a buffer on
the receiving processor.

I Some time after the message has been sent, it becomes
available to the receiver. BSP philosophy: this happens at the
end of the current superstep.

I In the next superstep, the messages can be read; reading
messages means moving them from the receive buffer into the
desired destination memory.

I At the end of the next superstep, all remaining unmoved
messages will be lost, which saves buffer memory and forces
the receiver into the right habit of cleaning her desk.

9 / 14

Bulk Synchronous Message Passing

Getting information on the received data

b s p n p r o c s t n p a r t s r e c v d ;
b s p s i z e t n b y t e s r e c v d ;

b s p q s i z e (& n p a r t s r e c v d ,& n b y t e s r e c v d) ;

I bsp qsize gives the number of messages (parts) in the
receive buffer, which is a queue, and the total number of
bytes.

I bsp nprocs t and bsp size t are integer types that can be
used as wrappers to ensure compatibility with both the
modernized version of BSPlib and the previous one.

10 / 14

Bulk Synchronous Message Passing

Getting the tag of the first message in the queue

s t a r t [0]= 0 ;
f o r (long j =0; j<n p a r t s r e c v d ; j ++){

b s p s i z e t p a y l o a d s i z e ;
long count ;
b s p g e t t a g (& p a y l o a d s i z e ,& count) ;
. . .

}

I bsp get tag obtains the size in bytes and the tag of the first
message in the queue.

I Here, we used the tag to give the data count of the message
(which we also could derive from payload size).

11 / 14

Bulk Synchronous Message Passing

Concatenating the received parts

s t a r t [0]= 0 ;
f o r (long j =0; j<n p a r t s r e c v d ; j ++){

b s p s i z e t p a y l o a d s i z e ;
long count ;
b s p g e t t a g (& p a y l o a d s i z e ,& count) ;

bsp move(&x [s t a r t [j]] , count ∗ s i z eo f (double)) ;
s t a r t [j +1]= s t a r t [j] + count ;

}

I The data words of the message are moved into locations
start[j] to start[j+1]-1 of the array x.

12 / 14

Bulk Synchronous Message Passing

Setting the tag size

b s p s i z e t t a g s i z e= s i z eo f (long) ;
b s p s e t t a g s i z e (& t a g s i z e) ;
b s p s y n c () ;

I When calling bsp set tagsize, the variable tag size

represents the desired tag size.

I As a result, the system uses the desired tag size for all
messages to be sent by bsp send, starting from the next
superstep.

I All processors must call the function with the same tag size.

I Side effect: tag size is modified so that after the call it
contains the previous tag size of the system, thus preserving
the old system value.

13 / 14

Bulk Synchronous Message Passing

Summary

I We have encountered a new style of communication: bulk
synchronous message passing (BSMP), which uses the
bsp send primitive.

I In one superstep, an arbitrary number of communication
operations can be performed, using either bsp put, bsp get,
or bsp send. These can be mixed freely.

I The BSP model and BSPlib do not favour any particular type
of communication. It is up to the user to choose the most
convenient primitive in a given situation. Apart from this,
BSPlib is pretty paternalistic, forcing you to do the right thing.

I Irregular algorithms benefit most from bsp send.

I You now know the complete BSPlib, except for the advanced
(dangerous!) high-performance primitives.

14 / 14

