Sequential LU Decomposition
Sections 2.1-2.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 2.1-2.2 Sequential LU Decompositiol




Solving a linear system of equations

Find xg, x1, xo such that

X0 + dx; + 6X2 = 16
2x0 + 10xy + 17xo = 44
3 + 16x3 + 31lxx = 78

In matrix language, solve
Ax = b,
where

1 4 6 X0
2 10 17 |, x=1| x1
3 16 31 X

A




Solving linear systems is important

Applications often have as their core a linear system solver:

» Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

» Designing aircraft. Wind tunnels have been replaced by
numerical simulations, which routinely solve linear systems
with millions of equations and variables.

» Minimizing energy consumption. Many industrial companies
minimize their energy costs under given constraints by linear
programming, repeatedly solving a large sparse linear system
(with many zero coefficients).
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Lower and upper triangular matrices

1 4 6 1 00 1 46
A=112 10 17 | =12 1 0 0 2 5 |=LU
3 16 31 321 0 0 3

» L is lower triangular if [; = 0 for all i < j.
» U is upper triangular if u; = 0 for all i > j.

» LU decomposition is the factorization of A into A = LU, with
L lower triangular and U upper triangular.

» We assume L is unit lower triangular, i.e., [; = 1 for all i.
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Triangular systems are easier to solve

Let A= LU. Then

Ax=b <<= [(Ux)=b <= Ly=band Ux=y.

10077 y 16 Yo [ 16
210 4t = 44 - b4t = 12
13 2 1] [y ] | 78 | BZe | 6
[ 1 4 67 [ x | [ 16 ] [ xo | [0
0 2 5 X1 = 12 - X1 = 1
| 0 0 3| [ x| | 6 | | X2 | | 2




Deriving an algorithm for LU decomposition

Some simple algebra:

n—1
A=LU <+ aj= Z/,-,u,j for all /.
r=0

Assume i < j. Then:

n—1 i
aj = Z lrug = Z lirug (because l;; =0 for r > i)
r=0 r=0

i—1 i—1
= Z liruy + lijuj; = Z liruyj + ujj  (because [ = 1)
r=0 r=0

<~

i—1
uj = aj — E /,-,u,j.
r=0
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Formulae for computing /;; and uj;

Aim: rewrite the linear system to express /;; and uj; in terms of aj;
and previously computed /; and uj;.

We have obtained

i—1

uj = aj — E liruy; for i <.
r=0

Similarly,

1 ==
lj=—a;— Z/,-,u,j for i > j.
Ujj r=0
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Modifying the matrix A in stages

For 0 < k < n, define the intermediate matrix AK) of stage k:

k—1

(k) Z
a,-j = djj — /,-,u,j.

r=0

Note that A(®) = A and A(") = 0. In this notation,

i—1 )

v g | . ()

ujj = ajj irUrj < uy = aij
r=0

. j-1 L0
/,:,'Z — a,-j—Z/,-,u,j < /,'j: l
U_U r=0 qu

We retrieve values uyj = a%f) (j > k) and [y = af,f) (i > k) in

stage k.
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Sequential LU decomposition algorithm

input: A: n X n matrix.
output: L: n X n unit lower triangular matrix,

U : n x n upper triangular matrix,
such that LU = A.

A(0) = A
for k:=0ton—1do

for j;=kton—1do
Ugj = a%f);
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Sequential LU decomposition algorithm

input: A: n X n matrix.
output: L: n X n unit lower triangular matrix,

U : n x n upper triangular matrix,
such that LU = A.

A(0) = A
for k:=0ton—1do

for j;=kton—1do

k

ukj = af(j);
for i .= k—({;)l ton—1do

_ %k .

llk = ukk'
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Sequential LU decomposition algorithm

input: A: n X n matrix.
output: L: n X n unit lower triangular matrix,

U : n x n upper triangular matrix,
such that LU = A.

A(0) = A
for k:=0ton—1do

for j;=kton—1do

k
ukj = af(j);
fori=k+1ton—1do
| — a:(:).
Ik L ukk'

fori:=k+1ton—1do

forj;=k+1ton—1do
D) 0

if — likUkj,
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Loop invariant

>

| 2

A loop invariant is a statement that remains true while a loop
is being executed; usually it depends on a changing loop index.

For LU decomposition, we state
Invariant (k) : k) =ajj — Z liru;  for all i,j > k.

Giving an invariant at the right place in an algorithm text
helps in proving the correctness of the algorithm.

You can use the assert facility in the C-language to check
invariants (and other statements).
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Sequential algorithm with loop invariant

input: A: n X n matrix.
output: L: nx n unit lower triangular matrix,

U : n x n upper triangular matrix,
such that LU = A.

A0) . — A;
for k:=0ton—1do
{ Invariant(k) }

for j:=kton—1do > Use the invariant
Uyj = afg);

fori=k+1ton—1do
L
Ik L ukkv

fori:=k+1ton—1do > Maintain the invariant

forj:=k+1ton—1do

(k1) . (k)
a,-j = a,-j - /,kukj,
. Lecture 2.1-2.2 Sequential LU Decompositior
{ Invariant(k + 1) }



Storing L, U, A% in the space of A

01 2 3 4 5 6

0
1 U
2
3
4
AK)
5
6

» Already computed at the start of stage k = 3: rows 0, 1, 2 of
U on or above the diagonal and columns 0, 1, 2 of L below
the diagonal.
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Memory-efficient sequential LU decomposition

input:  A: n X n matrix, A= A,
output: A: nx nmatrix, A=L—I,+ U, with
L: n x n unit lower triangular matrix,
U: n x n upper triangular matrix, such that LU = A(®).

for k:=0ton—1do
fori:=k+1ton—-1do

Aik .
k'

fori:=k+1ton—1do
forj;:=k+1ton—1do
ajj \= ajj — djkakj,

ik ‘=
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Transformations of A by LU decomposition

1 4 6 ) 1 4 6 ) 1 4 6
A=1|2 10 17 | —> |2 2 5 | —> |2 2 5
3 16 31 3 4 13 3 2 3
Hence,
1 00 1 4 6
L=|2 10|, U=]0 25
3 21 0 0 3
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Row permutations needed

» LU decomposition breaks down immediately in stage O for
01
=[]
because we try to divide by 0.

P A solution is to permute the rows suitably.

» Thus, we compute a permuted LU decomposition,
PA=LU.

» Here, P is a permutation matrix, obtained by permuting the
rows of the identity matrix /,.

» The output of an LU decomposition of Ais L, U, P.
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Permutations and permutation matrices

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
We define the permutation matrix P, corresponding to o by

1 if i =o0o()),
0 otherwise.

(Ps)ij = {

Therefore, column j of P, is 1 in row o(j), and 0 everywhere else.
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Example of the relation between o and P,

Let 0(0) =1, 0(1) =2, and 0(2) = 0. Then

(For clarity, zeros are shown as dots.)
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Property of P,

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
Let x be a vector of length n. Then

n—1

(Pox)i = Z(Pa)ijxj = Xg-1(i)5

j=0

because only the term with o(j) = i is nonzero, i.e., with
j=o71).
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Lemma 2.5 : properties of P,

Let 0:{0,...,n—1} = {0,...,n— 1} be a permutation.
Let x be a vector of length n and A an n x n matrix. Then

(Pox)i = Xp-1(3j), for 0<i<n,
(PsA)ij = ag—1(jy,j, for 0<i,j<n,
(PUAPUT),'J' = ag-1(j),0-1(j) for 0 <i,j < n.

Proofs: similar to before.
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Lemma 2.6: permutation matrices are isomorphic to

permutations
Let o,7:4{0,...,n—1} = {0,...,n— 1} be permutations. Then

P,P, = P., and (P,)™* = P, 1.

Here, 7o denotes o followed by 7.

Proof first part:

n—1

(PrPo)i =Y (Pr)ic(Po)ig = (Po)r-1(iy,
k=0

because only one term k = 771(i) is nonzero. By the definition of
P,, the result is 1 if 771(i) = o(j), i.e., i = 7(c(j)) = (70)(j), and
0 otherwise. This is the same as for (Prs)j;. e
Therefore, (P;P,);j = (Prs)jj for all i,j. Hence PP, = P;,. [ '
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Sequential LU decomposition with partial row pivoting.
input:  A: n X n matrix, A= A0)
output: A: nx nmatrix, A=L— I, + U, with
L: n X nunit lower triangular matrix,
U : n x n upper triangular matrix,
7 . permutation vector of length n.

fori:=0ton—1do w; :=1;
for k:=0ton—1do
r:= argmax(|ajy| : k < i< n);
swap(mk, 7,);
for j:=0ton—1do
swap(axj, ar);
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Sequential LU decomposition with partial row pivoting.

input:  A: n X n matrix, A= A0)

output: A: nx nmatrix, A=L— I, + U, with
L: n X nunit lower triangular matrix,
U : n x n upper triangular matrix,
7 . permutation vector of length n.

fori:=0ton—1do 7 :=1;
for k:=0ton—1do
r:= argmax(|ajy| : k < i< n);
swap(7my, 7,);
for j:=0ton—1do
swap(axj, ar);
fori=k+1ton—1do
adjk = aik/akk;
fori:=k+1ton—1do
for j;=k+1ton—1do
ajj ‘= ajj — ajkdkj,

Lecture 2.1-2.2 Sequential LU Decompositiol



Partial row pivoting

» The pivot element in stage k is the largest element a, (in
absolute value) in column k. Everything revolves around it. It
is farthest from 0 and division by a, is most stable.

» The pivot row r is thus determined by
|lark| = max(|ai| : k <7< n).

» r is the argmax, the argument (or index) of the maximum.

» Full pivoting would take the largest pivot from the whole
submatrix A(k: n—1,k: n—1). This gives the best stability,
but is more costly. In practice, partial row pivoting suffices.

> |If you encounter a practical case where it fails, you should
know what James H. Wilkinson said, one of the founders of
the field of numerical linear algebra:

Anyone that unlucky has already been run over by a bus.
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The meaning of 7

» The algorithm multiplies the original matrix by an unknown
permutation matrix P,. We obtain the LU decomposition
P,A=LU.

» The same permutation matrix is applied to the initial vector
e=(0,1,2,...,n— 17T (with ¢ = i). We obtain 7 = P,e.
» Therefore, by the first part of Lemma 2.5,
m(i) = (Pse)i = e,-1(3j) = o L.

» Thus, 7 = o~ ! and consequently

P.-1A=LU.

™

» By the second part of Lemma 2.5, this is equivalent to

ar(iyj = (LU)j;, for all i, j.
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Sequential time complexity

We use Lemma 2.7:

N n(n+1) ~n(n+1)(2n+1)

Proof: By induction on n. Think of the kid Gauss.

The number of flops of the LU decomposition algorithm is

Tseq—§(2(n—k—1)2+n_k_1)_§(2k2+k)
k=0 k=0
(n—1)n(2n—1) (n—1)n

= 3 + >

2 1 2n3 2
:(nl),,<3"+6>:"nn'




Summary

P A linear system Ax = b can best be solved by:
» finding an LU decomposition PA = LU,
» permuting b into Pb;
» solving the triangular systems Ly = Pb and Ux =y.
» The LU decomposition costs about % flops and each
triangular system solve about n? flops.

> It is often difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

» We defined the matrix P,: its jth column is 1 in row o(j),
and 0 everywhere else.

> An important connection between a permutation ¢ and the
matrix Py is given by (Pox); = X,-1(j).
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