
Lecture 4.11 Program bspmv

Program bspmv

Section 4.11 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 14

Lecture 4.11 Program bspmv

Parallel sparse matrix–vector multiplication

I The function bspmv is an implementation of Algorithm 4.5 for
parallel sparse matrix–vector multiplication.

I It can handle every possible distribution of the matrix and the
vectors.

2 / 14

Lecture 4.11 Program bspmv

Data structure: indexing

void b s p m v i n i t (long n , long nrows , long n c o l s ,
long nv , long nu ,
long ∗ rowindex , long ∗ c o l i n d e x , . . .) {

I Each processor first builds its own local data structure for
representing the local part of the sparse matrix.

I Local nonempty rows are numbered i = 0, . . . , nrows− 1,
where nrows = |Is |.

I The global index of the row with local index i is
i = rowindex[i].

I The global index of the column with local index j is
j = colindex[j].

3 / 14

Lecture 4.11 Program bspmv

Data structure: nonzeros

void bspmv (long n , long nz , long nrows , long n c o l s ,
double ∗a , long ∗ i n c , . . .) {

I Nonzeros are stored in order of increasing local row index i.

I The nonzeros of each local row are stored consecutively in
order of increasing local column index j, using the
Incremental Compressed Row Storage (ICRS) data structure.

I The kth nonzero is stored as a pair (a[k], inc[k]), where a[k]
is the numerical value of the nonzero and inc[k] the
increment in the local column index.

4 / 14

Lecture 4.11 Program bspmv

Creating the matrix data structure

I Each triple (i , j , aij) is read from an input file and sent to the
responsible processor, as determined by the matrix
distribution.

I This is done in batches of size at most MAXSEND to save buffer
space, at the expense of an increase in the number of
supersteps.

I The local triples are then sorted by increasing global column
index.

I This enables conversion to local column indices. During the
conversion, the global indices are registered in colindex.

I The triples are sorted again, now by global row index. The
original mutual precedences between triples from the same
matrix row are maintained (i.e., the sort is stable).

5 / 14

Lecture 4.11 Program bspmv

Data structure: vector components

void b s p m v i n i t (long n , long nrows , long n c o l s ,
long nv , long nu ,
long ∗ rowindex , long ∗ c o l i n d e x ,
long ∗ v i n d e x , long ∗ uindex , . . .) {

I Vector component vj corresponds to a local component v[k]
in P(φv(j)), where j = vindex[k]. Here, 0 ≤ k < nv.

I All the needed vector components vj , whether obtained from
other processors or already present locally, are written into a
local array vloc, which has the same local indices as the
matrix columns.

I vloc[j] stores a copy of vj , where j = colindex[j]. Here,
0 ≤ j < ncols.

6 / 14

Lecture 4.11 Program bspmv

Where to get the input vector components

void bspmv (long n , long nz , long nrows , long n c o l s ,
double ∗a , long ∗ i n c ,
long ∗ s r c p r o c v , long ∗ s r c i n d v , . . .) {

. . .
b s p g e t (s r c p r o c v [j] , v , s r c i n d v [j]∗ s i z eo f (double) ,

&v l o c [j] , s i z eo f (double)) ;
. . .

I bsp get is used to obtain vj , because the receiver knows it
needs vj .

I The processor from which to get the value has processor
number φv(j) = srcprocv[j].

I The source processor needs to be determined only once. Its
processor number can be used without additional cost in
repeated application of the matrix–vector multiplication.

I We also store the location of vj in the source processor as the
local index srcindv[j].

7 / 14

Lecture 4.11 Program bspmv

Possible optimizations

I We use bsp get to obtain vj , but we still need preprocessing
to determine srcprocv[j] and srcindv[j].

I With some extra preprocessing we could have used bsp put

instead.

I With even more preprocessing we could have put all the data
for the same destination together, as one packet. This would
attain optimistic g -values.

I Principle: more preprocessing gives less work in repeated
multiplications.

I Optimization makes a program faster but sometimes it also
creates a mess. Therefore, we did not implement the above
optimizations in BSPedupack.

I A straightforward optimization is the direct assignment in the
fanout of the value vj to vloc[j] in case vj is local.

I We implemented this to avoid the substantial overhead of a
call to bsp get in the local case.

8 / 14

Lecture 4.11 Program bspmv

Motivation for using Bulk Synchronous Message Passing

I The fanin uses bsp send to send nonzero partial sum uit to
P(φu(i)).

I The information whether a nonzero partial sum for a certain
row exists is only available at the sender.

I A sender does not know what others send to the same
destination. Processors do not know what they will receive.

I If we were to use a bsp put, we would have to specify a
destination address.

I bsp send is convenient here: it just sends the data to the
right destination, without worrying about what happens
afterwards.

9 / 14

Lecture 4.11 Program bspmv

Sending a partial sum

f o r (long i =0; i<nrows ; i ++){
double sum= 0 . 0 ;
. . . /∗ compute sum ∗/

i f (d e s t p r o c u [i] == s)
u [d e s t i n d u [i]]= sum ;

e l s e
b s p s e n d (d e s t p r o c u [i] ,& d e s t i n d u [i] ,

&sum , s i z eo f (double)) ;

I The tag is an index destindu[i] corresponding to i and the
payload is sum = uit consisting of 1 double.

I The tag should be chosen such that it enables the receiver to
handle the payload easily.

I The destination processor, given by φu(i) = destprocu[i],
has been initialized beforehand by bspmv init.

I The identity of the source processor is irrelevant and is not
sent along with the data.

10 / 14

Lecture 4.11 Program bspmv

Summation of received partial sums

b s p q s i z e (&nsums ,& n b y t e s) ;
b s p g e t t a g (& s t a t u s ,& i) ;

f o r (long k=0; k<nsums ; k++){
/∗ s t a t u s != −1, but i t s v a l u e i s not used ∗/
double sum ;
bsp move(&sum , s i z eo f (double)) ;
u [i] += sum ;
b s p g e t t a g (& s t a t u s ,& i) ;

}

I bsp qsize gives the number of messages received, i.e., the
number nsums of partial sums.

I The index i of a message is obtained from its tag and the
sum from its payload. The index i is the local index at the
receiver.

11 / 14

Lecture 4.11 Program bspmv

Pointer magic for ICRS in local SpMV
double ∗pa= a ; // p o i n t e r to a
long ∗ p i n c= i n c ;
double ∗ p v l o c= v l o c ;
double ∗ p v l o c e n d= p v l o c + n c o l s ;

f o r (long i =0; i<nu ; i ++)
u [i]= 0 . 0 ;

p v l o c += ∗ p i n c ;
f o r (long i =0; i<nrows ; i ++){

double sum= 0 . 0 ;
whi le (p v l o c<p v l o c e n d){

sum += (∗ pa) ∗ (∗ p v l o c) ; // = a [k]∗ v l o c [j]
pa++;
p i n c ++;
p v l o c += ∗ p i n c ;

}
. . . // send sum
p v l o c −= n c o l s ;

} 12 / 14

Lecture 4.11 Program bspmv

Initialization function bspmv init

I This is what I have. Write the owner of every local
component vj cyclically into a temporary array.

f o r (long j =0; j<nv ; j ++){
long j g l o b= v i n d e x [j] ;
b s p p u t (j g l o b%p,& s , tmpprocv ,

(j g l o b /p)∗ s i z eo f (long) , s i z eo f (long)) ;
}

I Where can I find what I need? In processor P(j mod p) at
location P(j div p).

f o r (long j =0; j<n c o l s ; j ++){
long j g l o b= c o l i n d e x [j] ;
b s p g e t (j g l o b%p , tmpprocv , (j g l o b /p)∗ s i z eo f (long) ,

&s r c p r o c v [j] , s i z eo f (long)) ;
}

I I can get vj from P(srcprocv[j]). Similar for its location
srcindv[j].

13 / 14

Lecture 4.11 Program bspmv

Summary

I The input of a sparse matrix requires a lot of preprocessing:
I we send the matrix nonzeros as triples (i , j , aij) to the

processors that own them according to the matrix distribution;
I we sort the local nonzeros twice, in a stable way, first by global

column index and then by global row index;
I we create the Incremental Compressed Row Storage (ICRS)

data structure.

I Furthermore, we announce the owner and location of vector
components to the processors that need this information.

I It is often worthwhile to remove the overhead of a function
call to bsp put, bsp get, or bsp send in case
communication stays within a processor.

I Bulk Synchronous Message Passing (BSMP) is convenient for
irregular computations such as sparse matrix–vector
multiplication.

14 / 14

