
Lecture 1.8 Sorting

Sorting
Section 1.8 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 18

Lecture 1.8 Sorting

Recursive function Quicksort

input: x : vector of length n, interval [lo, hi], 0 ≤ lo ≤ hi < n.
output: x is sorted with xi ≤ xj for all i , j with lo ≤ i ≤ j ≤ hi .

function Quicksort(x, lo, hi)

i := Split(x, lo, hi);
if i − 1 > lo then

Quicksort(x, lo, i − 1);

if i + 1 < hi then
Quicksort(x, i + 1, hi);

C. A. R. Hoare, Communications of the ACM, 4(7) (1961), p. 321.

2 / 18

Lecture 1.8 Sorting

Splitter

I Index r , with 0 ≤ r < n, is a splitter if

xi ≤ xr for i < r ,

xi ≥ xr for i > r .

I The vector x of length n = 10 has one splitter, i = 5, with
splitting value x5 = 8:

xi = 3 6 2 7 5 8 13 14 10 11

i = 0 1 2 3 4 5 6 7 8 9

3 / 18

Lecture 1.8 Sorting

Splitting a vector based on a random pivot

function Split(x, lo, hi)

pick piv , with lo ≤ piv ≤ hi ;
val := xpiv ;
swap(xpiv , xhi);
i := lo;
for j := lo to hi − 1 do
{ Loop invariant:

x [lo, i) < val
x [i , j) ≥ val
x [j , hi) not yet processed }

if xj < val then
swap(xi , xj);
i := i + 1;

swap(xi , xhi);
return i ;

4 / 18

Lecture 1.8 Sorting

Parallel regular sample sort

13 7 11 19 23 3 2 17 5 18 6 10 16 14 4 12 0 8 20 9 21 26 22 15 25 24 1

2 3 5 7 11 13 17 19 23 0 4 6 8 10 12 14 16 18 1 9 15 20 21 22 24 25 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

H. Shi and J. Schaeffer, Journal of Parallel and Distributed Computing,
14(4) (1992), pp. 361–372.

5 / 18

Lecture 1.8 Sorting

BSP sorting algorithm: supersteps 0, 1

input: x : vector of length n with n mod p2 = 0,
xi 6= xj for all i 6= j (no ties).
x is block distributed with block size b = n/p.

output: x is sorted with xi ≤ xj for all i < j .
x is block distributed with variable block size bs ≤ 2b.

{ Sort the local block and create samples } . Superstep (0)
Quicksort(x , sb, (s + 1)b − 1);
for i := 0 to p − 1 do

samples [i] := x [sb + i · n
p2

];

{ Broadcast the samples } . Superstep (1)
for t := 0 to p − 1 do

put samples in P(t);

. . .

6 / 18

Lecture 1.8 Sorting

Cost analysis: supersteps 0, 1

I Assumption: n mod p = 0, so each processor has a block of
exactly n

p array elements.

I Assumption: n
p mod p = 0, so each processor has p subblocks

of exactly n
p2

array elements.

I Sorting an array of length n
p costs

T(0) =
n

p
log2

n

p
+ l .

I Broadcasting p local samples to p − 1 other processors costs

T(1) = p(p − 1)g + l .

7 / 18

Lecture 1.8 Sorting

BSP sorting algorithm: superstep 2

{ Concatenate and sort the samples }
for t := 0 to p − 1 do

for i := 0 to p − 1 do
sample[tp + i] := samplet [i];

start[t] := tp;

start[p] := p2;
Mergesort(sample, start, p);

{ Create splitters }
for t := 0 to p − 1 do

splitval [t] := sample[tp];

splitval [p] :=∞;

8 / 18

Lecture 1.8 Sorting

Cost analysis: superstep 2

I The p2 samples are already arranged as p sorted parts, so we
use a mergesort instead of a quicksort.

I Mergesort repeatedly merges a pair of sorted parts, in dlog2 pe
phases, each costing p2 flops.

I Mergesort(x, start, p) sorts the vector x using already sorted
intervals [start[t], start[t + 1]− 1], for t = 0, . . . , p − 1.

I The total cost of the mergesort of the samples is

T(2) = p2dlog2 pe+ l .

9 / 18

Lecture 1.8 Sorting

BSP sorting algorithm: superstep 3

{ Split the local block and send the resulting parts }
for t := 0 to p − 1 do
{ Contribution from P(s) to P(t) }
Xst := {xi : sb ≤ i < (s + 1)b∧

splitval [t] ≤ xi < splitval [t + 1]};
put Xst in P(t);

10 / 18

Lecture 1.8 Sorting

Cost analysis: superstep 3

I Each processor sends at most all its data (b values), and
receives at most bs data, so

T(3) = max
s

max(b, bs)g + l .

I bs is the block size of P(s) on output.

11 / 18

Lecture 1.8 Sorting

BSP sorting algorithm: superstep 4

{ Concatenate the received parts }
Xs := ∪p−1

t=0Xts ;

{ Sort the local block }
starts [0] := 0;
for t := 1 to p do

starts [t] := starts [t − 1] + |Xt−1,s |;
bs := starts [p];

Mergesort(Xs , starts , p);

12 / 18

Lecture 1.8 Sorting

Cost analysis: superstep 4

I The starts are computed in p operations.

I Mergesort repeatedly merges a pair of sorted parts, in dlog2 pe
phases, each accessing at most all the bs local data, so

T(4) = p + max
s

bsdlog2 pe+ l .

13 / 18

Lecture 1.8 Sorting

Proof that bs ≤ 2b

2 3 5 7 11 13 17 19 23 0 4 6 8 10 12 14 16 18 1 9 15 20 21 22 24 25 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

I A subblock is a part of the locally sorted vector of length n
p2

that starts with a sample.

I There are p local subblocks.

I Subblock (17,19,23) with sample 17 contributes to P(2).

I Consider a fixed processor P(s), with bs output data.

I The local output block contains exactly p samples, and hence
exactly p subblocks contribute a sample. In total, these
subblocks contribute at most p · n

p2
= n

p = b data values.

14 / 18

Lecture 1.8 Sorting

Proof that bs ≤ 2b (cont’d)

2 3 5 7 11 13 17 19 23 0 4 6 8 10 12 14 16 18 1 9 15 20 21 22 24 25 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

I Thinking alert! Now consider contributions by a subblock that
does not contribute its sample.

I Example: subblock (14,16,18) only contributes 18 to P(2)
but not its sample 14.

I Each processor P(t) can contribute at most one such
subblock to P(s), because the subblock must have a value
< splitval [s] and a value ≥ splitval [s]. (Other subblocks of
processor P(t) are completely to the left or right.)

I In total, these subblocks contribute at most p · n
p2

= n
p = b

data values.
I By adding two terms b, we obtain the bound bs ≤ 2b.

15 / 18

Lecture 1.8 Sorting

Total BSP cost

Tsamplesort =
n

p
log2

n

p
+ p2dlog2 pe+

2n

p
· dlog2 pe+ p

+

(
p(p − 1) + 2

n

p

)
g + 5l

≈ n log2 n

p
+ p2 log2 p +

(
p2 + 2

n

p

)
g + 5l .

I We approximate and drop lower-order terms in the first cost
expression, to obtain a more insightful expression.

I We follow Richard Hamming’s motto:

The purpose of computing is insight, not numbers.

16 / 18

Lecture 1.8 Sorting

Total BSP cost

Tsamplesort ≈
n log2 n

p
+ p2 log2 p +

(
p2 + 2

n

p

)
g + 5l .

I If p ≤ n1/3, then p2 ≤ n
p and hence

p2 log2 p ≤
n

p
log2 n,

so that the computation is efficient.

I Otherwise, sorting the samples would dominate.

I If the condition holds, the communication cost is dominated
by the term 2n

pg .

I For communication to be efficient, this term should not
exceed the main computation term, i.e.,

2g ≤ log2 n.

17 / 18

Lecture 1.8 Sorting

Summary

I Parallel samplesort uses samples at regular intervals to split
local data into p subblocks.

I These subblocks are used to send the data to their destination
processor.

I The output block sizes are imbalanced, but at most by a
factor of 2.

I Further oversampling can reduce this factor.

I We presented a BSP samplesort algorithm with 3 computation
supersteps and 2 communication supersteps.

18 / 18

