Experimental results on Cartesius
Section 5.10 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 5.10 Experimental results on Cartesiu:

1/1

Test set of graphs from SuiteSparse Matrix Collection

Name n m d A Origin

tx2010 914231 2228136 4.9 121 redistricting Texas
mouse_gene 45101 14461095 641.3 8031 gene regulatory network
cagelb 5154859 47022346 18.2 46 DNA electrophoresis
kmer_Pla 139353211 148914992 2.1 40 protein k-mer

P> Parameters: n = number of vertices, m = number of edges,
d = average degree, A = maximum degree.
> tx2010: V = Texas land areas from the 2010 US Census;
E = connections to neighbouring areas;
w = length of the shared border.
> mouse_gene: V = probes from a DNA microarray;
E = regulatory interactions; w = mutual information value.
> cagelb5: V = states of a polymer of length 15;
E = possible state transitions; w = probability.

> kmer Pla: V = segments of length k of amino acids;
E = overlapping segment pairs; w = 1.

Lecture 5.10 Experimental results on Cartesius

2/1

Partitioning time vs. matching time

» The vertices of the test graphs were partitioned by a run of
the Mondriaan partitioner in 1D row mode for the purpose of
a parallel SpMV with p =1,2,4,...,1024.

» Here, the input graph was translated to a matrix by creating
the sparse symmetric adjacency matrix A and adding a
diagonal /.

» Partitioning a test graph takes much longer than running a
matching algorithm on a partitioned test graph. Still, this
resembles a likely use case, where the graph is available in a
sensible distributed form as part of a larger application.

» In contrast, randomly distributing the vertices would be
cheap, but would cut most edges and make the algorithm
communication-bound.

Lecture 5.10 Experimental results on Cartesiu:

3/1

Measured execution time (in ms) for graph matching

P tx2010 mouse_gene cagelb kmer Pla

1 2085 671 2358 59057

2 107.0 356 1237 32473

4 52.4 322 646 17618

8 28.1 305 424 9054
16 151 251 194 4454
32 9.1 317 178 2756
64 75 538 88 911
128 7.9 836 76 561
256 8.3 2005 7 299
512 151 2526 129 204
1024 29.3 6295 218 302

» Experiments performed on p processor cores of the Broadwell
subsystem of Cartesius running BSPonMPI.

» The largest speedup achieved, compared to the parallel

program with p = 1, is Sg1o = 289 for kmer_Pla. The
smallest speedup is S16 = 2.7 for mouse_gene.

Lecture 5.10 Experimental results on Cartesius

4/1

Upper bound on the number of matches

» A trivial upper bound on the number of matches is

mi< | B,

because every match involves 2 vertices.

Lecture 5.10 Experimental results on Cartesiu:

5/1

Upper bound on the total matching weight

WM)=17+4=21< 317 +3+1+17+10+2+4) = 27

» An upper bound on the total matching weight is

w(M) < %Z max {w(u,v) : (u,v) € &},

vey

because every vertex v contributes at most the weight of one
half-edge to the total matching weight, and this weight is at
most half the weight of its heaviest edge.

Lecture 5.10 Experimental results on Cartesius

6/1

Number of matches and total matching weight

tx2010 mouse_gene cagelb kmer_Pla
Matches 375342 18273 2575446 59735594
Matches upper bound 457115 22550 2577429 69676605
Weight 28933021703 1287.998 76890.186 59735594
Weight upper bound 39547303 682 1553.424 77709.076 69676605

» Given are the total number of matches | M| and the total
matching weight w(M), together with their upper bounds, for

p=1

» The preference for a local match in tie-breaking causes a

variation of < 0.1% for varying p.

» The matching weight is between 73.2% of the upper bound
(tx2010) and 98.9% (cage15), so that the 50% guarantee of
the 1/2-approximation is more than satisfied.

» Compared to the (unknown) maximum matching weight, the

percentages will even be better.

Lecture 5.10 Experimental results on Cartesius

7/1

Number of operations performed

p tx2010 mouse_gene cagelb kmer Pla

Operations lower bound 8.9 58 188 596
Operations 1 9.5 59 193 873
32 9.5 148 206 872

1024 9.8 168 225 872

» The number of operations (in millions) performed was
obtained by summing the sizes of the ranges encountered.

» The lower bound given is 4m, the cost of partially sorting only
the upper parts of adjacency lists.

» The operation counts for p = 1 fit well with their lower
bound, meaning that in practice the partial sort leads to a
linear-time sequential algorithm.

» The number of operations grows a bit with p, because
operations are performed on the basis of increasingly
incomplete information, e.g., about a new suitor for a halo
vertex. Lecture 5.10 Experimental results on Cartesius

8/1

Number of supersteps

P tx2010 mouse_gene <cagelb kmer Pla

Supersteps 2 8 957 55 26
32 10 1613 69 67

1024 13 2099 82 72

Parallel depth 146 309 141 145

» The number of supersteps needed for parallel matching grows
with p, again because of increasingly incomplete information.

» The parallel depth of an algorithm is the length of its critical
path.

» An theorem by Ferdous et al. states that the parallel depth
for matching on a graph with uniformly random edge weights
is O((logy, m)log, A). Note: our test graphs are not random.

» The parallel depth given is (log, m)log, A, which we take as
an asymptotic lower bound on the number of supersteps for
p = oo in the random case.

@ S. M. Ferdous, A. Khan, and A. Pothen, In: Proceedings IPDPS 2018,
IEEE' pp . 22_33 Lecture 5.10 Experimental results on Cartesius

9/1

Load balancing for cagel5 and p = 8

Max operations Time (in ms) Supersteps

(x10%)
4 845 6618
8 657 3340
16 555 1694
32 500 875
64 465 465
128 445 261
256 429 159
512 417 108
1024 400 83
2048 377 71
4096 352 65
8192 346 62
16 384 341 60
00 341 60

> We can try to balance the computational work load by
imposing a maximum number of operations carried out by a
processor in a superstep. Lectre .10 Exprimentl resues on Crtson

10/1

Load balancing for cagel5 and p = 8

Max operations Time (in ms) Supersteps

(x10%)

4 845 6618
1024 400 83
2048 377 71
4096 352 65
8192 346 62

16384 341 60
00 341 60

» The total synchronization time for 60 supersteps based on the
benchmark value of / is only 2.2 ms, so that the cost of the
synchronizations themselves is insignificant.

» Still, we do not observe any gain from the load balancing
procedure, which indicates that our work counters are not
accurate enough: communication operations were not taken
into account, and, how sobering a thought, perhaps not all
O(1)-operations are created equal. Lacure 510 Expermental et o Cartesivn

11/1

Local preferences are beneficial

1
08 ! _ o
- i3 }\ih‘x Ep 1
§ 0.6 4‘:;" * Local pref ~ --v-- |
£ T No local pref =~ ---+---
& o4l o
021 v
0 b s .
1 64128 256 512 1024
P

» Shown is the eficiency (relative to p = 1) for the graph
kmer_Pla, with and without tie-breaking by preferring local

matches.

» This graph has unit weights, so that all weight comparisons
are ties.

> For p = 1024, the efficiency is 19.6% with local preferences,
and 10.7% without. Lecture 5.10 Experimental results on Cartesius

12/1

Summary

P Partitioning a test graph takes much longer than running a
matching algorithm. Still, parallel matching is useful as part
of a larger application.

» An upper bound on the total matching weight is

w(M) < %Z max {w(u,v) : (u,v) € E}.

vey

» In practice, the matching weight achieved by the parallel
1/2-approximation algorithm is much higher than the
guarantee of 50% and the total operation count is linear in
the number of edges.

» The load balancing procedure based on imposing a maximum
number of operations should be improved.

» There is always further work to do. Fortunately!

Lecture 5.10 Experimental results on Cartesius

13/1

