Sequential Fast Fourier Transform
Sections 3.1-3.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 3.1-3.2 Sequential FFT

1/23

Applications of Fourier analysis

» Fourier analysis studies the decomposition of functions into
their frequency components.

» Mozart piano sonata recorded 50 years ago: enhance high
frequencies.

» Chest picture by Computed Tomography (CT): reconstruct
your interior without slicing you up.

» Star picture by Hubble Space Telescope before its mirrors
were repaired: remove blur.

Lecture 3.1-3.2 Sequential FFT

2/23

Periodic function

» The original function f(x) with period T = 2.

Lecture 3.1-3.2 Sequential FFT

3/23

Decomposing a function into sines and cosines

sin x o
-15}101sin2x ——
0.2cos3x ——

0 2 4 6 8 10 12

f(x) = sinx + 0.1sin2x 4 0.2 cos 3x.

Lecture 3.1-3.2 Sequential FF

4/23

Fourier series
> Let f: R — C be a T-periodic function:
f(t+T)=f(t), forallteR.
» Fourier series associated with f:
f(t Z cpe?mikt/ T
k=—00

where i is the complex number with /2 = —1.

» Fourier coefficients ¢, are given by

17 .
ck = / F(t)e 2Kt/ T dt.
T Jo

» The Fourier series converges if f is piecewise smooth
(continuously differentiable).

Lecture 3.1-3.2 Sequential FFT

5/23

Fourier coefficients for a real-valued function

» Complex Fourier coefficients ¢, and corresponding real
coefficients ay, bk for T-periodic f : R — R are given by

1 T
Ck:ak—ibk:T/ f(t
0

1 T
= f
F o

» Since c_, = ¢k, we have:

Ck + Ck
=T

)ef2wikt/T dt.

2wkt . . 2wkt
) | cos 7 —isin—— dt.

(1)

_ (Ck —Cik)l.‘

by 5

Lecture 3.1-3.2 Sequential | FFT

6/23

Fourier series for a real-valued function

Substituting ax = (ck + Tk)/2 and bx = (cx — Cx)i/2 gives:

[e.9]

o0 (e 9]
F(t) = Z o2k T — N gro2mikt/ T oo Z et/ T

k=—o00 k=1 k=1
o [e.e]
- 2mkt o .. 2wkt
=c+ E (Ck + ck) cos =+ g (—Ck + cx)isin T
k=1 k=1
e.) o
2wkt 2wkt
—ao+2kg_1akcos 7;_ —|—2kE_1bksin 7;_ .

This gives the decomposition of a real-valued function into sines
and cosines.

Lecture 3.1-3.2 Sequential FFT

7/23

It's a discrete world

» One second of audio on a compact disc contains 44 100
function values f(t;) in regularly spaced sample points
T _
tj = L, 0<j<n
n
» This is also the sampling rate for many streaming audio
applications.

» A high-resolution digital image may contain 4096 x 4 096
pixels (picture elements).

» A CT scan may have 1024 x 1024 x 1024 voxels (volume
elements).

Lecture 3.1-3.2 Sequential FFT

8/23

Approximation of Fourier coefficients

» Trapezoidal rule on interval [t;, tj 1] = [J:, (H_:)T}

b+ f(t;)+ f(t; T
/’ (1) de ~) (1) T
; 2 n

J

» On the whole interval [0, T]:

1 /7 ,
k= — / f(t)e 27Kt/ T gt
T Jo

~

1T f(O) Yo 2mikty/ T f(T)
T +Zf T

1 n—1

== D f(ty)e 2 /M (since £(0) = (T) = f(to)).
j=0

Lecture 3.1-3.2 Sequent

ial FFT

9/23

Discrete Fourier transform

» The discrete Fourier transform (DFT) of a vector
x = (x0,...,xn_1)" is the vector y = (yo,...,yn_1)" with

n—1 n—1
Vi = ij-e_%“k/” = E waan, for 0 < k < n.
j=0 =0

Here, w, = e~ 2mi/n

» Compare:
1 n—1

~ = f(t: —2mijk/n
G~ J—Zo (tj)e

Thus ¢ =~ DFT(x), where x; = f(t;)/n.

Lecture 3.1-3.2 Sequential FFT

10/23

Inverse DFT

» Easy to prove: the inverse DFT (IDFT) of a vector
x = (x0,...,xn_1)" is the vector y = (yo,...,yn_1)" with

~1
1+ ,
Yk = — g xje+2””k/”, for 0 < k < n.
n
j=0

» Same as DFT formula, except for the scaling % and the sign
of the exponent.

Lecture 3.1-3.2 Sequential FFT

11/23

Roots of unity

> Here, w = ws = e 2™/8 = /4 = 1/2 — 1,/2].

—2min/n —2mi _ q

> w,"=¢ —e
> wnn/2 — o=2mi(n/2)/n — o—mi — _1

> an — e747ri/n — ef2ﬂi/(n/2) = Wp/2-

Lecture 3.1-3.2 Sequential FFT

12/23

Matrix—vector multiplication

» Define the n x n Fourier matrix F, by
(Fn)jk = wd ™k, for 0<j, k< n.

» Hence F,x = DFT(x):
n—1
(Fox); = Z(Fn)jkxk
k=0

n—1
= g Xw ik
k=0

= (DFT(x));.

Lecture 3.1-3.2 Sequential FFT

13/23

Fourier matrix Fy4

ef27ri/4 _ e*ﬂ'l’/2 -

» Because wy =

(,U40 (,U40 w4° w40 1 1 1 1
F4 _ W4Z U.)4: w4i (JJ4Z _ 1 —i -1 i
W4 wa Wy W4 1 -1 1 -1
LU40 LU43 W46 OJ49 1 i =1 —i

Lecture 3.1-3.2 Sequential FFT

14/23

Cost of a straightforward DFT

» Complex addition
(a+bi)+(c+d)=(a+c)+(b+d)i

requires 2 real additions.

» Complex multiplication
(a+ bi)(c + di) = (ac — bd) + (ad + bc)i

requires 1 real addition, 1 real subtraction, 4 real
multiplications, hence a total of 6 flops.

> To compute y, = Z}’;ol)gwnjk, we need n complex
multiplications and n — 1 complex additions, so
6n+2(n—1) = 8n— 2 flops.

» To compute the n components of y, we need 8n® — 2n flops.

Lecture 3.1-3.2 Sequential | FFT

15/23

Splitting into even and odd components

n/2—1 n/2—1

2jk (2j+1)k
Yk—ZXJ sz, o+ szf 1w

Using w? = Wp/2 Gives

n/2—1 n/2—1 .
Vi = Z X2wa7/2 + w,’f Z x2j+1wf7k/2, for 0 < k < n.
Jj=0 j=0

» Each sum is a DFT of length n/2, for 0 < k < n/2.

» Thus, we can compute the first half of the DFT by a DFT on
the even components of x and a DFT on the odd
components, and then combining the results.

> Cost is 2- [8(n/2)? —2(n/2)] + 8(n/2) = 4n* + 2n flops.

Lecture 3.1-3.2 Sequential FFT

16/23

Computing the second half of the DFT

Let n/2 < k < n. Substituting kK = k' + n/2 into

n/2—1 n/2 1
Yk = Z xojw, n/2 + wy Z X0j 41w, n/2
j=0

gives 0 < k' < n/2 and

n/2—1 n/2—1
Yiitnj2 = Z “’L(/kzﬂ/z) + w,’f +n/2 Z X2j+1w{1/k2+"/2
j:0 jZO
n/2—1 n/2 1
— Z XQJ(-ULk/z - Z X2]+1 n/2,
n/2 /2

because Wi = 1 and w,/“ = —1. Now drop the primes.

Lecture 3.1-3.2 Sequential | FFT

17/23

Cost reduction of one split

n/2—1 n/2—1
Yktn/2 = Z X2jLJ:1k/2 — w,’j Z x2j+1wi7k/2, for 0 < k< n/2
j=0 Jj=0

» This is the same formula as for the first half, except for the
subtraction.

» Thus, we can compute the second half of the DFT almost
without extra work, performing just n/2 complex subtractions,
i.e., n flops.

» The total cost for the whole DFT with one split is 4n® + 3n
flops, thus saving about half the flops from the original
8n% — 2n.

Lecture 3.1-3.2 Sequential FFT

18/23

Recursive computation of DFT

o
~
N
(@)}
=
o1
w
-

» The problem is split recursively until its size is 1.

Lecture 3.1-3.2 Sequential FFT

19/23

Recursive fast Fourier transform (FFT) algorithm

input: x: vector of length n.
output: y : vector of length n, y = Fpx.

function FFT(x, n)

if n mod 2 =0 then
x¢:=x(0: 2: n—1); > pick the even components
x°:=x(1:2: n—1); > pick the odd components
y¢ := FFT(x%, n/2);
y° := FFT(x°,n/2);
for k:=0to n/2—1do
o= whye,
Yk =Y+ T
Yk4n/2 = y[((3 - T,
else
y := DFT(x, n);

Lecture 3.1-3.2 Sequential | FFT

20/23

Cost of fast Fourier transform

> The loop over k in the FFT algorithm has a complex
multiplication, addition, subtraction, together
6+ 2+ 2 =10 flops.

» n/2 iterations of the loop, hence a total of n/2-10 = 5n flops.
» For an FFT(n), we perform an FFT(n/2) twice and 5n flops :
n
2
=2 (2 T

T(n)=2T(<)+5n
n
4
=-.-=nT(1) + (logy n) - 5n = 5nlog, n.

)+5g)—|—5n:4T(£)+2-5n

» Much faster than 8n? time for direct computation of DFT.
» For n =227 = 134 217 728 (50 min 43 s audio, an average

CD), an FFT can be done in 18 s on a 1 Gflop/s PC, but it
would take over 4.6 years using the straightforward DFT.

Lecture 3.1-3.2 Sequential FFT

21/23

History

» The fast Fourier transform (FFT) idea was discovered by
Gauss (1805) and rediscovered by Danielson and Lanczos
(1942).

» It is commonly attributed to IBM researchers Cooley and
Tukey (1965), who rediscovered it in the digital era and made
the source code publicly available.

Lecture 3.1-3.2 Sequential | FFT

22/23

Summary

» The FFT is the computational workhorse in many applications,
from weather forecasting to signal and image processing.
Without the FFT, modern medicine would be impossible.

» The cost of an FFT of length n is 5nlog, n flops.

» We have derived a recursive FFT algorithm, i.e., an algorithm
that calls itself with a smaller problem size.

Lecture 3.1-3.2 Sequential FFT

23/23

