
Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU Decomposition
Sections 2.1-2.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Solving a linear system of equations

Find x0, x1, x2 such that

x0 + 4x1 + 6x2 = 16
2x0 + 10x1 + 17x2 = 44
3x0 + 16x1 + 31x2 = 78

In matrix language, solve

Ax = b,

where

A =

 1 4 6
2 10 17
3 16 31

 , x =

 x0
x1
x2

 , b =

 16
44
78

2 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Solving linear systems is important

Applications often have as their core a linear system solver:

I Building bridges. Finite element models in engineering give
rise to linear systems involving a stiffness matrix.

I Designing aircraft. Wind tunnels have been replaced by
numerical simulations, which routinely solve linear systems
with millions of equations and variables.

I Minimizing energy consumption. Many industrial companies
minimize their energy costs under given constraints by linear
programming, repeatedly solving a large sparse linear system
(with many zero coefficients).

3 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Lower and upper triangular matrices

A =

 1 4 6
2 10 17
3 16 31

 =

 1 0 0
2 1 0
3 2 1

 1 4 6
0 2 5
0 0 3

 = LU.

I L is lower triangular if lij = 0 for all i < j .

I U is upper triangular if uij = 0 for all i > j .

I LU decomposition is the factorization of A into A = LU, with
L lower triangular and U upper triangular.

I We assume L is unit lower triangular, i.e., lii = 1 for all i .

4 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Triangular systems are easier to solve

Let A = LU. Then

Ax = b ⇐⇒ L(Ux) = b ⇐⇒ Ly = b and Ux = y.

 1 0 0
2 1 0
3 2 1

 y0
y1
y2

 =

 16
44
78

 =⇒

 y0
y1
y2

 =

 16
12

6

 1 4 6

0 2 5
0 0 3

 x0
x1
x2

 =

 16
12

6

 =⇒

 x0
x1
x2

 =

 0
1
2

 .

5 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Deriving an algorithm for LU decomposition
Some simple algebra:

A = LU ⇐⇒ aij =
n−1∑
r=0

lirurj for all i , j .

Assume i ≤ j . Then:

aij =
n−1∑
r=0

lirurj =
i∑

r=0

lirurj (because lir = 0 for r > i)

=
i−1∑
r=0

lirurj + liiuij =
i−1∑
r=0

lirurj + uij (because lii = 1)

⇐⇒

uij = aij −
i−1∑
r=0

lirurj .

6 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Formulae for computing lij and uij

Aim: rewrite the linear system to express lij and uij in terms of aij
and previously computed lij and uij .

We have obtained

uij = aij −
i−1∑
r=0

lirurj for i ≤ j .

Similarly,

lij =
1

ujj

(
aij −

j−1∑
r=0

lirurj

)
for i > j .

7 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Modifying the matrix A in stages

For 0 ≤ k ≤ n, define the intermediate matrix A(k) of stage k :

a
(k)
ij = aij −

k−1∑
r=0

lirurj .

Note that A(0) = A and A(n) = 0. In this notation,

uij = aij −
i−1∑
r=0

lirurj ⇐⇒ uij = a
(i)
ij

lij =
1

ujj

(
aij −

j−1∑
r=0

lirurj

)
⇐⇒ lij =

a
(j)
ij

ujj

We retrieve values ukj = a
(k)
kj (j ≥ k) and lik = a

(k)
ik (i > k) in

stage k.

8 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU decomposition algorithm

input: A : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A.

A(0) := A;
for k := 0 to n − 1 do

for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik :=
a
(k)
ik
ukk

;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU decomposition algorithm

input: A : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A.

A(0) := A;
for k := 0 to n − 1 do

for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik :=
a
(k)
ik
ukk

;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU decomposition algorithm

input: A : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A.

A(0) := A;
for k := 0 to n − 1 do

for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik :=
a
(k)
ik
ukk

;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

9 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Loop invariant

I A loop invariant is a statement that remains true while a loop
is being executed; usually it depends on a changing loop index.

I For LU decomposition, we state

Invariant(k) : a
(k)
ij = aij −

k−1∑
r=0

lirurj for all i , j ≥ k .

I Giving an invariant at the right place in an algorithm text
helps in proving the correctness of the algorithm.

I You can use the assert facility in the C-language to check
invariants (and other statements).

10 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential algorithm with loop invariant
input: A : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A.

A(0) := A;
for k := 0 to n − 1 do
{ Invariant(k) }
for j := k to n − 1 do . Use the invariant

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do

lik :=
a
(k)
ik
ukk

;

for i := k + 1 to n − 1 do . Maintain the invariant
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj ;

{ Invariant(k + 1) }
11 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Storing L, U , A(k) in the space of A

L

U

A(k)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

I Already computed at the start of stage k = 3: rows 0, 1, 2 of
U on or above the diagonal and columns 0, 1, 2 of L below
the diagonal.

12 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Memory-efficient sequential LU decomposition

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix, such that LU = A(0).

for k := 0 to n − 1 do
for i := k + 1 to n − 1 do

aik := aik
akk

;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

aij := aij − aikakj ;

13 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Transformations of A by LU decomposition

A =

 1 4 6
2 10 17
3 16 31

 (0)−→

 1 4 6
2 2 5
3 4 13

 (1)−→

 1 4 6
2 2 5
3 2 3

 .
Hence,

L =

 1 0 0
2 1 0
3 2 1

 , U =

 1 4 6
0 2 5
0 0 3

 .

14 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Row permutations needed

I LU decomposition breaks down immediately in stage 0 for

A =

[
0 1
1 0

]
,

because we try to divide by 0.

I A solution is to permute the rows suitably.

I Thus, we compute a permuted LU decomposition,

PA = LU.

I Here, P is a permutation matrix, obtained by permuting the
rows of the identity matrix In.

I The output of an LU decomposition of A is L, U, P.

15 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Permutations and permutation matrices

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
We define the permutation matrix Pσ corresponding to σ by

(Pσ)ij =

{
1 if i = σ(j),
0 otherwise.

Therefore, column j of Pσ is 1 in row σ(j), and 0 everywhere else.

16 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Example of the relation between σ and Pσ

Let σ(0) = 1, σ(1) = 2, and σ(2) = 0. Then

Pσ =

 · · 1
1 · ·
· 1 ·

 .
(For clarity, zeros are shown as dots.)

17 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Property of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n. Then

(Pσx)i =
n−1∑
j=0

(Pσ)ijxj = xσ−1(i),

because only the term with σ(j) = i is nonzero, i.e., with
j = σ−1(i).

18 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Lemma 2.5 : properties of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n and A an n × n matrix. Then

(Pσx)i = xσ−1(i), for 0 ≤ i < n,

(PσA)ij = aσ−1(i),j , for 0 ≤ i , j < n,

(PσAP
T
σ)ij = aσ−1(i),σ−1(j), for 0 ≤ i , j < n.

Proofs: similar to before.

19 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Lemma 2.6: permutation matrices are isomorphic to
permutations

Let σ, τ : {0, . . . , n − 1} → {0, . . . , n − 1} be permutations. Then

PτPσ = Pτσ and (Pσ)−1 = Pσ−1 .

Here, τσ denotes σ followed by τ .

Proof first part:

(PτPσ)ij =
n−1∑
k=0

(Pτ)ik(Pσ)kj = (Pσ)τ−1(i),j

because only one term k = τ−1(i) is nonzero. By the definition of
Pσ, the result is 1 if τ−1(i) = σ(j), i.e., i = τ(σ(j)) = (τσ)(j), and
0 otherwise. This is the same as for (Pτσ)ij .
Therefore, (PτPσ)ij = (Pτσ)ij for all i , j . Hence PτPσ = Pτσ. �

20 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU decomposition with partial row pivoting.
input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i ;

for k := 0 to n − 1 do
r := argmax(|aik | : k ≤ i < n);
swap(πk , πr);
for j := 0 to n − 1 do

swap(akj , arj);

for i := k + 1 to n − 1 do
aik := aik/akk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

aij := aij − aikakj ;

21 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential LU decomposition with partial row pivoting.
input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L− In + U, with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i ;

for k := 0 to n − 1 do
r := argmax(|aik | : k ≤ i < n);
swap(πk , πr);
for j := 0 to n − 1 do

swap(akj , arj);

for i := k + 1 to n − 1 do
aik := aik/akk ;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

aij := aij − aikakj ;
21 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Partial row pivoting

I The pivot element in stage k is the largest element ark (in
absolute value) in column k. Everything revolves around it. It
is farthest from 0 and division by ark is most stable.

I The pivot row r is thus determined by

|ark | = max(|aik | : k ≤ i < n).

I r is the argmax, the argument (or index) of the maximum.

I Full pivoting would take the largest pivot from the whole
submatrix A(k : n − 1, k : n − 1). This gives the best stability,
but is more costly. In practice, partial row pivoting suffices.

I If you encounter a practical case where it fails, you should
know what James H. Wilkinson said, one of the founders of
the field of numerical linear algebra:

Anyone that unlucky has already been run over by a bus.

22 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

The meaning of π

I The algorithm multiplies the original matrix by an unknown
permutation matrix Pσ. We obtain the LU decomposition
PσA = LU.

I The same permutation matrix is applied to the initial vector
e = (0, 1, 2, . . . , n − 1)T (with ei = i). We obtain π = Pσe.

I Therefore, by the first part of Lemma 2.5,

π(i) = (Pσe)i = eσ−1(i) = σ−1(i).

I Thus, π = σ−1 and consequently

Pπ−1A = LU.

I By the second part of Lemma 2.5, this is equivalent to

aπ(i),j = (LU)ij , for all i , j .

23 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Sequential time complexity

We use Lemma 2.7:

n∑
k=0

k =
n(n + 1)

2
,

n∑
k=0

k2 =
n(n + 1)(2n + 1)

6
.

Proof: By induction on n. Think of the kid Gauss.

The number of flops of the LU decomposition algorithm is

Tseq =
n−1∑
k=0

(2(n − k − 1)2 + n − k − 1) =
n−1∑
k=0

(2k2 + k)

=
(n − 1)n(2n − 1)

3
+

(n − 1)n

2

= (n − 1)n

(
2n

3
+

1

6

)
=

2n3

3
− n2

2
− n

6
.

24 / 25

Lecture 2.1–2.2 Sequential LU Decomposition

Summary

I A linear system Ax = b can best be solved by:
I finding an LU decomposition PA = LU;
I permuting b into Pb;
I solving the triangular systems Ly = Pb and Ux = y.

I The LU decomposition costs about 2n3

3 flops and each
triangular system solve about n2 flops.

I It is often difficult to keep permutations and their inverses
apart. In theoretical analysis, it is sometimes easier to work
with permutation matrices than with the corresponding
permutations.

I We defined the matrix Pσ: its jth column is 1 in row σ(j),
and 0 everywhere else.

I An important connection between a permutation σ and the
matrix Pσ is given by (Pσx)i = xσ−1(i).

25 / 25

