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Inner product of two vectors

The inner product of two vectors x = (x0, . . . , xn−1)T and
y = (y0, . . . , yn−1)T is defined by

α = xTy =
n−1∑
i=0

xiyi .

Here, ‘T’ denotes transposition. All vectors are column vectors.
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Data distributions for a vector

P(0) P(0) P(0)P(1) P(1) P(1)P(2) P(2)P(3) P(3)Cyclic

P(0) P(0) P(0) P(1) P(1) P(1) P(2) P(2) P(2) P(3)Block

p = # processors = 4
n = vector length = 10
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Block distribution

P(0) P(0) P(0) P(1) P(1) P(1) P(2) P(2) P(2) P(3)Block

I The block distribution is defined by

xi 7−→ P(i div b), for 0 ≤ i < n.

I Here, the div operator stands for dividing and rounding
down:

i div b = bi/bc.

I The block size is b = dnp e (rounded up).
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Load balance

I For n = 9 and p = 4, we have a block size b = d94e = 3, so
the block distribution assigns 3, 3, 3, 0 vector components to
the processors, respectively.

I The load balance of an algorithm is determined by the
processor with the maximum amount of work, here 3.

I For good load balance, this should be close
to the average amount of work, here 2.25.

I A variant of the block distribution would
assign 3, 2, 2, 2 components. Just as good!
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Cyclic distribution

P(0) P(0) P(0)P(1) P(1) P(1)P(2) P(2)P(3) P(3)Cyclic

I The cyclic distribution is defined by

xi 7−→ P(i mod p), for 0 ≤ i < n.

I This distribution is based on the modulo-operator.
I For p = 4, x7 is assigned to processor P(7 mod 4) = P(3).
I Starting to count at 0 simplifies the formula.

Some kids have been raised
to start counting at 0.
Now they work in C.
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Parallel inner product computation

Design decisions:

I Assign xi and yi to the same processor, for all i . This makes
computing xi · yi a local operation. Thus distr(x) = distr(y).

I Choose a distribution with an even spread of vector
components. Both block and cyclic distributions are fine. We
choose cyclic, following the way card players deal their cards.

I The data distribution naturally leads to a work distribution
and a parallel algorithm.
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Example for n = 10 and p = 4

12 0 4 7 −1 2 15 11 3 −2x

1 9 2 0 −1 12 1 1 3 8y

·

+

22 8 23 11

22 8 23 11 22 8 23 11 22 8 23 11 22 8 23 11

64 64 64 64

+

α
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Parallel inner product algorithm for P(s)

input: x, y : vector of length n,
distr(x) = distr(y) = φ,
φ(i) = i mod p, for 0 ≤ i < n.

output: α = xTy, repl(α) = P(∗).

αs := 0; . Superstep (0)
for i := s to n − 1 step p do

αs := αs + xiyi ;

for t := 0 to p − 1 do . Superstep (1)
put αs in P(t);

α := 0; . Superstep (2)
for t := 0 to p − 1 do

α := α + αt ;
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Single Program, Multiple Data (SPMD)

I Only one program text needs to be written. All processors run
the same program, but on their own data.

I The program text is parametrized in the processor number s,
0 ≤ s < p, also called processor identity. The actual
execution of the program depends on s.

I Processor P(s) computes a local partial inner product

αs =
∑

0≤i<n
i mod p=s

xiyi .

I The corresponding computation superstep (0) has 1 addition
and 1 multiplication per local vector component and costs

2

⌈
n

p

⌉
+ l .
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Redundant computation

I The partial inner products must be added. This could have
been done by P(0), i.e., processor 0.

I Sending the αs to P(0) is a (p − 1)-relation. Sending them to
P(∗), i.e., to all the processors, costs the same. The cost is
(p − 1)g + l .

I Computing α on P(0) costs the same as computing it on all
the processors redundantly, i.e., in a replicated fashion. The
cost is p + l .

I Therefore, we send αs to all the processors and compute α
redundantly.

I This approach saves the superstep of sending α back from
P(0) to all other processors, which would cost (p − 1)g + l .

I The reduction from the local αs to a single number α available
on all processors is sometimes called an Allreduce operation.
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Result needed on all processors

I Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

I Sending the local result to all processors is best if each
processor contributes one value.

I If there are more values per processor, then a different
approach might be better.
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Total BSP cost of inner product algorithm

Tinprod = 2

⌈
n

p

⌉
+ p + (p − 1)g + 3l .
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One-sided communication

I We expressed communication by using the ‘put’ operation,
which involves an active sender and a passive receiver.

I We assume all puts are accepted. Thus, we can define each
data transfer by giving only the action of one side.

I No clutter in programs: shorter and simpler texts.

I No danger of the dreaded deadlock. What happens if both
processors want to receive first?

I Deadlock can easily occur in message passing, with an active
sender and an active receiver that must shake hands, or kiss.
This may cause lots of problems.

I Another one-sided communication is the ‘get’.

I One-sided communications are more efficient.
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Summary

I We design algorithms in Single Program, Multiple Data style.
Each processor runs its own copy of the same program, on its
own data.

I The block and cyclic distributions are commonly used in
parallel computing. Both are suitable for an inner product
computation.

I The BSP style encourages balancing the communication
among the processors. Sending all data to one processor is
discouraged. Better: all to all.

I One-sided communications such as puts and gets are easy to
use and efficient.
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