Experiments with bsplu
Sections 2.6-2.7 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 2.6-2.7 Experiments with bsplu

1/20

Tall-and-skinny matrix

b

Ao

Ar

Az

mA3

Ay

Ag

Ag

7

m x b matrix A Burj Khalifa, Dubai (828 m)
m> b Source: https://www.burjkhalifa.ae

Lecture 2.6-2.7 Experiments with bsplu

2/20

https://www.burjkhalifa.ae

Operation C := C — AB? for tall-and-skinny A, B

n

b |Bf[Bf | BY |Bf | Bf | B
b
Ao Ao By Ao BT Ao B |40 B A0 B
A 1A; BY|A1 B |AL B |AL BE|AL BY
As 1A, By'|A2 B |A2 BY 1A, BI A, B
m | As A3 By |As B |As B3 |As BE |As BY
As A, By |A4 BE|A, BY |As B |AL B
As 1As By'|As B |As By |As By |As BY
As As By |As B |JAs By |Ac B3 |As B

Lecture 2.6-2.7 Experiments with bsplu

3/20

Sequential tall-and-skinny matrix multiplication function

void matmat_tall_skinny(double xxA, double xxB,
double *xC,
long m, long n, long b,
long i0, long jO){

/+ This function multiplies the m by b matrix A
and the transpose of the n by b matrix B
and subtracts the result A(B"T) from
the submatrix C(i0:i0+m—1, jO:jO+n—1).

The function is written in a cache—friendly way
for tall—and—skinny matrices A and B (b << m, n),
using a block size b.

*/

» Good habit: write the interface and the input/output
specification of a function before you write its program text.

» b x b blocks fit into cache.

Lecture 2.6-2.7 Experiments with bsplu

4/20

Loops of the matrix multiplication function

for (long ia=0; ia<m; ia+=b){
long imax= MIN(ia+b,m);
for (long jb=0; jb<n; jb+=b){
long jmax= MIN(jb+b,n);

// Multiply a block from A with a block from B
for (long i=ia; i<imax; i++){
for (long j=jb; j<jmax; j++){
double sum= 0.0;
for (long k=0; k<b; k++)
sum += A[i][k]*B[j][k];
C[i0+i][jO+]] —= sum;
13391

» 2 outer loops running over the blocks of A and B.

» 3 inner loops to multiply a block of A and a block of B.

> A, B, C are accessed by row: good for row-wise storage.

Lecture 2.6-2.7 Experiments with bsplu

5/20

Two-phase broadcast in blocks

PO)[o]1fof2[4]6]12f2|-13[5]7]

a

Phase 0

Po)[o]1]o[2]4]6]12[2[-13]5]7]

Il ‘lw .

P(1) [2]4]6]

P2) Phase 1
P(3)

Lecture 2.6-2.7 Experiments with bsplu

6/20

Broadcast function

void bsp_broadcast(double xx, long n, long src, long s0,
long stride, long p0, long phase){

/+* Broadcast the vector x of length n from processor
src to processors sO+txstride, 0<=t < p0.
The vector x must have been registered previously.
Processors are numbered in 1D fashion.

phase = phase of two—phase broadcast (0 or 1)
Only one phase is performed, without synchronization .

*/
» Standard 1D-2D identification P(s,t) = P(s + tM).

> stride = 1, p0 = M: broadcast within processor column.
stride = M, p0 = N: broadcast within processor row.

» No sync inside the function to allow combining supersteps.

Lecture 2.6-2.7 Experiments with bsplu

7/20

Main loop of the broadcast function

long s= bsp_pid(); // 1D processor number
long b= (n%p0==0 ? n/p0 : n/p0+1); // block size

if ((phase==0 && s=src) ||
(phase==1 && s0 <= s && s < sO+pOxstride &&
(s—s0)%stride==0)){

/x Participate x/

» In phase 0, only P(0) participates.

» In phase 1, all destination processors of phase 0.

Lecture 2.6-2.7 Experiments with bsplu

8/20

Loop for participating processor

for (long t=0; t<p0; t++){
long dest= sO+txstride;
long t1 = (phase==0 ? t : (s—s0)/stride);

long nbytes= MIN(b,n—tlxb)+sizeof (double);
if (nbytes>0 && destl=src)
bsp_put(dest,&x[tlxb],x,
tlxbxsizeof (double),nbytes);

» In phase 0, the block number t1 of the target for the bsp_put
is simply t. In phase 1, it satisfies s= sO+tl*stride.

» The phases are similar, so we combined the program texts and
saved a few lines of code.

» Still, the combined program text is easiest to understand if
you read it for each phase separately.

Lecture 2.6-2.7 Experiments with bsplu

9/20

Data are not sent back to the source

if (nbytes>0 && dest!=src)
bsp_put(dest ,&x[tlxb],x,tl*bxsizeof(double),nbytes);

» This optimization does not affect the BSP cost, but it reduces
the communication volume, which cannot be bad.

Lecture 2.6-2.7 Experiments with bsplu

10/20

Two-phase broadcast of row and column k

void bsp_broadcast(double xx, long n, long src, long s0,
long stride, long p0, long phase);

/+* Phase 0 of two—phase broadcasts x/
if (K/N=t){

/% Store new column k in Lk x/
for (long i=krl; i<nr; i++4)
Lk[i—krl]= a[i][kec];

}

bsp_broadcast (Lk,nr—krl ,s+(k%N)*M,s ,M,N,0);
bsp_broadcast (Uk, kOcb—kcl , (k%V)+t=+M, t+M,1,M,0);
bsp_sync ();

/+* Phase 1 of two—phase broadcasts x/
bsp_broadcast (Lk,nr—krl ,s+(k%N)*M,s ,M,N,1);
bsp_broadcast (Uk, kOcb—kcl , (k%V)+t=+M, t+M,1 ,M,1);
bsp_sync (); Lot 26-27 Exermars wi bep1 BB

11/20

Local and global indices for cyclic distribution

Global |12 0 [/l 15 11

0O 12 3 4 5 6 7 8 9
ocal [21]3] [0]2]2
o 1 2 o 1 2 0o 1 0 1

Global index: i
Local index on P(s): i
Relation: i =i -p + s

/+ Initialize permutation vector pi */
for (long i=0; i<nr; i++)
pi[i]= i*Mts; /x global row index x/

Lecture 2.6-2.7 Experiments with bsplu

12/20

Putting data directly into a 2D array

a = matallocd(nr, nc); // in bsplu_test.c

void bsplu(long M, long N, long n, long x*pi, double xxa)
/x Set pointer for 1D access to A x/
double xpa= NULL;
if (nr>0)
pa= a[0];
bsp_push_reg(pa,nrxncxsizeof(double));

/+x Swap rows k and r for cols in range kO..kO+b—1 %/
bsp_permute_rows (M, Src, Dest , nperm, pa,nc, kOc, kOcb);

}

/+* Store row Src[i] of A in row r=Dest[i] on P(r%M, t) x/

long r= Dest[i];

bsp_put (r%vHt«M&pa[(Src[i]/M)*xnc+jc],pa,
((r/M)snct+jc)«sizeof (double),
(jel—jc)*sizeof (double));

Lecture 2.6-2.7 Experiments with bsplu

13/20

Rebroadcast of invalidated column elements

/+ Obtain column kO of L in range kO+1..kO+b—1 x/
long kOrl= nloc(M,s,k0+1);
long kOrb= nloc(M,s, k0+b);
for (long i= kOrl; i<kOrb; i++){
long tj= kO%N;
long ncj= nloc(N,tj,n);
bsp_get(s+tj*M,pa,(i*ncj+k0/N)*sizeof(double),
&Lk[i—kOrl],sizeof(double));
}

bsp_sync ();

» Some elements of L were not valid any more, because their
permutation was postponed.

» The program text shows how to get the correct values for

column kg in rows kg + 1,..., kg + b — 1 after the postponed
permutations were carried out.

Lecture 2.6-2.7 Experiments with bsplu

14 /20

Cori supercomputer at NERSC in Berkeley

» Supercomputer named after Nobel-prize winning biochemist
Gerty Cori (1896-1957).

» Cray XC40 architecture consisting of 2388 Intel Haswell nodes,
each with 32 cores running at 2.3 GHz, and 9688 Intel Knights
Landing nodes, each with 68 cores running at 1.4 GHz.

» For two Haswell nodes, running BSPonMPI on top of Cray
MPICH, the BSP parameters are p = 64, r = 9.32 Gflop/s,

g = 1066, | = 1842436.

Lecture 2.6-2.7 Experiments with bsplu

15/20

https://www.nersc.gov

Broadcast time and total time T (in s) of LU

n One-phase Two-phase

phase 0 T phase 0 phase 1 T
1000 0.36 1.64 0.23 0.23 1.75
2000 0.75 3.30 0.49 0.51 3.57
3000 1.33 5.19 0.77 0.80 5.53
4000 2.09 7.33 1.07 1.12 7.53
5000 2.99 9.78 1.40 1.46 9.72
6000 4.02 12.53 1.75 1.82 12.16
7000 5.20 15.60 2.11 2.20 14.75
8000 6.53 18.81 2.53 2.64 17.55
9000 8.00 22.38 2.98 3.34 20.85
10000 9.64 26.47 3.44 4.42 24.80

> p =064, b=16, 1 x 64 cyclic distribution.

» This column distribution leads to prominent column
broadcasts, and no row swaps or row broadcasts.)

» Time of the phases of the two-phase broadcast is about equal, [

as predicted by BSP cost analysis. Lectus 26-27 Expaiments with bipl
16 /20

Any actual savings by two-phase broadcast?

» Small difference in total time between one-phase and
two-phase approach.

» For n < 4000, one-phase broadcast is better.
» For n > 4000, two-phase is better.

» The savings are modest compared to the total time: up to
9.4% for n = 10000.

Lecture 2.6-2.7 Experiments with bsplu

17/20

Time of LU as a function of algorithmic block size b

80

Total ——
Rank-b update --+--
60 | g

]
o

Time (in s)

> p =064, n=10000, 8 x 8 cyclic distribution. 7
» Choice b = 64 is optimal, but whole range b = 16-256 is fine. B

Lecture 2.6-2.7 Experiments with bsplu

18/20

Breakdown of execution time of LU

Superstep Operation Time
(0)/(1) local pivot search 69
(2)/(3) global pivot search 71
(4)/(5) row swap 51

(6) phase 0 of column broadcast 72
) phase 1 of column broadcast 189
(0 instant matrix update 73
(8) postponed row permutation 2
9) phase 0 of postponed row broadcast 49
(10) phase 1 of postponed row broadcast 73
(9) postponed rank-1 update 48
(Rb) postponed rank-b update 424
Total LU decomposition 1122

> p =256, n=100000, b = 64, 16 x 16 cyclic distribution.

» The time given is the total time (in s) of the superstep in the
whole algorithm.

» The rank-b update takes 37.8% of the total time, which
indicates reasonable efficiency. Lecture 2627 Expeimets wih bsplu

19/20

Summary

» High performance in linear algebra computations can be
achieved by formulating algorithms using matrix
multiplication.

» Tall-and-skinny matrices can be multiplied in cache by
splitting them into smaller square blocks.

» Broadcasts of large vectors were observed to be fastest when
using the two-phase approach.

P> A parallel algorithm is best described using global indices, but
an actual parallel program should use local indices.

» Measuring the time of separate supersteps is a way of getting
intimate knowledge of your program.

Lecture 2.6-2.7 Experiments with bsplu

20/20

