
Lecture 2.4 Two-phase Broadcasting

Two-phase Broadcasting
Section 2.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23



Lecture 2.4 Two-phase Broadcasting

Optimizing a parallel algorithm

I Computation: well-balanced, little redundancy. Hence no
room for improvement.

I Communication: every bit of communication is one bit too
much. We can always try harder.

2 / 23



Lecture 2.4 Two-phase Broadcasting

Communication volume

I The communication volume of an h-relation is the total
number of data words communicated,

V =

p−1∑
s=0

hs(s) =

p−1∑
s=0

hr(s).

I hs(s) is the number of data words sent by processor P(s) and
hr(s) is the number received.

I Note that

V ≤
p−1∑
s=0

h = ph.

3 / 23



Lecture 2.4 Two-phase Broadcasting

Communication balance

I An h-relation is balanced if

h =
V

p
.

I A balanced h-relation satisfies

V =

p−1∑
s=0

hs(s) = ph,

so that hs(s) = h for all s. (Because hs(s) ≤ h.)

I The reverse is trivially true: if hs(s) = h for all s, then
V = ph.

I Similar statements hold for the hr(s).

I Therefore, a balanced h-relation and a full h-relation are the
same.

4 / 23



Lecture 2.4 Two-phase Broadcasting

hs 6= hr implies unbalanced communication

I If an h-relation is balanced, we have

hs = hr,

where hs = maxs hs(s) and hr = maxs hr(s).

I The reverse is not true: some processors may be overloaded
sending, others receiving, and hs = hr may happen while the
h-relation is still unbalanced, possibly with h� V /p.

I If hs 6= hr, we are sure that the communication is unbalanced.

5 / 23



Lecture 2.4 Two-phase Broadcasting

Communication imbalance in LU decomposition

I Send cost in superstep (10), the row/column broadcast,
assuming M = N =

√
p:

hs = Rk+1(N − 1) + Ck+1(M − 1) = 2Rk+1(
√
p − 1).

I Receive cost in superstep (10):

hr = Rk+1 + Ck+1 = 2Rk+1.

I Large discrepancy: hs � hr. The balance for senders must be
improved to reduce the communication cost.

6 / 23



Lecture 2.4 Two-phase Broadcasting

Cause of the communication imbalance

if φ1(k) = t then . Superstep (10a)
for all i : k < i < n ∧ φ0(i) = s do

put aik in P(s, ∗);

I The sending part of the broadcast of column k is unbalanced:
only the

√
p processors in P(∗, φ1(k)) send, each sending

Rk+1(
√
p − 1) =

⌈
n − k − 1
√
p

⌉
(
√
p − 1) ≈ n − k − 1

data words.

I The receiving part is balanced: all processors except the
senders receive

Rk+1 ≈
n − k − 1
√
p

data words.

7 / 23



Lecture 2.4 Two-phase Broadcasting

Broadcast is a bottleneck

I The total contribution of superstep (10) to the LU cost is
about

n−1∑
k=0

2(n − k − 1)g = 2g
n−1∑
k=0

k = 2g
(n − 1)n

2
≈ n2g .

I This is a bottleneck compared to the computation cost 2n3

3p .

8 / 23



Lecture 2.4 Two-phase Broadcasting

One-phase broadcast of a vector

input: x : vector of length n, repl(x) = P(0).
output: x : vector of length n, repl(x) = P(∗).

function Broadcast 1Phase(x,P(0),P(∗))

if s = 0 then
for t := 1 to p − 1 do

for i := 0 to n − 1 do
put xi in P(t);

I repl(x) = P(∗) means that x is replicated such that each
processor has a copy.

9 / 23



Lecture 2.4 Two-phase Broadcasting

Two-phase broadcast in blocks

0 1 0 2 4 6

2 4 6

12 2 −1

12 2 −1

3 5 7

3 5 7

P(0)

P(1)

P(2)

P(3)

Phase 0

0 1 0 2 4 6 12 2 −1 3 5 7

2 4 6

12 2 −1

3 5 7

P(0)

P(1)

P(2)

P(3)

Phase 1

10 / 23



Lecture 2.4 Two-phase Broadcasting

The two-phase idea

I First spread the data, then broadcast them. This lets every
processor participate.

I This method is also used in the BitTorrent protocol for
peer-to-peer file sharing.

I BitTorrent splits a file to be distributed into small pieces and
spreads these pieces among downloaders, who in turn make
the pieces available for further distribution.

I The idea is similar to two-phase randomized routing (Valiant
1982): first send data to a randomly chosen intermediate
location, then route them to their final destination. This
avoids congestion.

I We don’t need randomness here: in our regular problem, we
can choose the intermediate location optimally and
deterministically.

11 / 23



Lecture 2.4 Two-phase Broadcasting

Two-phase broadcast of a vector
input: x : vector of length n, repl(x) = P(0).
output: x : vector of length n, repl(x) = P(∗).

function Broadcast 2Phase(x,P(0),P(∗))

b := dn/pe;

{ Spread the vector }
if s = 0 then . Superstep (0)

for t := 1 to p − 1 do
for i := tb to min{(t + 1)b, n} − 1 do

put xi in P(t);

{ Broadcast the subvectors }
for t := 1 to p − 1 do . Superstep (1)

for i := sb to min{(s + 1)b, n} − 1 do
put xi in P(t);

12 / 23



Lecture 2.4 Two-phase Broadcasting

Cost analysis of two-phase broadcast

I Phase 0 costs (n − b)g , where b = dnp e is the block size.

I Phase 1 costs (p − 1)bg .

I The total cost of a two-phase broadcast of a vector of length
n to p processors is

Tbroadcast =

(
n + (p − 2)

⌈
n

p

⌉)
g + 2l ≈ 2ng + 2l .

I Much less than the cost (p − 1)ng + l of a one-phase
broadcast, except for large l .

13 / 23



Lecture 2.4 Two-phase Broadcasting

Two-phase broadcast in LU decomposition

. Superstep (6)–(7)
Broadcast((aik : k < i < n ∧ i mod M = s),

P(s, k mod N),P(s, ∗));
Broadcast((akj : k < j < n ∧ j mod N = t),

P(k mod M, t),P(∗, t));

I Phase 0 of the row broadcast and phase 0 of the column
broadcast are done together in superstep (6).

I Phases 1 are done together in (7).

I This is less modular, but more efficient.

14 / 23



Lecture 2.4 Two-phase Broadcasting

Optimization: use already known pivot value

if φ0(k) = s ∧ φ1(k) = t then . Superstep (8)
put akk in P(∗, t);

I Delete superstep (8) from the basic Algorithm 2.4, because

akk (after swap) = ark (before swap)

and the pivot value ark is already known locally.

I Instead, divide immediately by ark in superstep (2) of the
improved Algorithm 2.8:

if k mod N = t then . Superstep (2)
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;
for all i : k ≤ i < n ∧ i mod M = s ∧ i 6= r do

aik := aik/ark ;

15 / 23



Lecture 2.4 Two-phase Broadcasting

Optimization: combine index and row swaps

if k mod M = s then . Superstep (4)
put πk as π̂k in P(r mod M, t);
for all j : 0 ≤ j < n ∧ j mod N = t do

put akj as âkj in P(r mod M, t);

if r mod M = s then
put πr as π̂r in P(k mod M, t);
for all j : 0 ≤ j < n ∧ j mod N = t do

put arj as ârj in P(k mod M, t);

I Combining communication supersteps saves synchronizations.

16 / 23



Lecture 2.4 Two-phase Broadcasting

Optimization: combine first and last superstep

for k := 0 to n − 1 do

if k mod N = t then . Superstep (0)
rs := argmax(|aik | : k ≤ i < n ∧ i mod M = s);

. . .

for all i : k < i < n ∧ i mod M = s do . Superstep (0’)
for all j : k < j < n ∧ j mod N = t do

aij := aij − aikakj ;

I Combining the first and last superstep of the loop saves a
synchronization.

I In an implementation: no unnecessary bsp sync at the end of
the main loop.

17 / 23



Lecture 2.4 Two-phase Broadcasting

Is the choice M = N still optimal?

I The two-phase approach reduces the cost of the row and
column broadcasts to about 2(Rk+1 + Ck+1)g .

I A bound on the cost is obtained by

Rk+1 + Ck+1 <

(
n − k − 1

M
+ 1

)
+

(
n − k − 1

N
+ 1

)
= (n − k − 1)

M + N

p
+ 2,

which is indeed minimal for M = N =
√
p.

18 / 23



Lecture 2.4 Two-phase Broadcasting

Choice of M ,N for row swaps

I The row and index swap in superstep (4) costs (C0 + 1)g ,
where C0 = dn/Ne, which is minimal for M = 1 and N = p.

I The swap cost for M = N, however, is of the same order as
the broadcast cost, so we cannot gain much by decreasing M.

I Conclusion: M should be close to N, but slightly below.

19 / 23



Lecture 2.4 Two-phase Broadcasting

Exact cost analysis

We need to compute sums of the form

n−1∑
k=0

Rk =
n−1∑
k=0

⌈
n − k
√
p

⌉
=

n∑
k=1

⌈
k
√
p

⌉
.

Lemma 2.10. Let n, q ≥ 1 be integers with n mod q = 0. Then

n∑
k=0

⌈
k

q

⌉
=

n(n + q)

2q
,

n∑
k=0

⌈
k

q

⌉2
=

n(n + q)(2n + q)

6q2
.

20 / 23



Lecture 2.4 Two-phase Broadcasting

Proof of first part of Lemma 2.10

n∑
k=0

⌈
k

q

⌉
=

⌈
0

q

⌉
+

(⌈
1

q

⌉
+ · · ·+

⌈
q

q

⌉)
+ · · ·

+

(⌈
n − q + 1

q

⌉
+ · · ·+

⌈
n

q

⌉)
= q · 1 + q · 2 + · · ·+ q · n

q

= q

n/q∑
k=1

k

= q
n

2q

(
n

q
+ 1

)
=

n(n + q)

2q
.

21 / 23



Lecture 2.4 Two-phase Broadcasting

Total BSP cost of LU decomposition

TLU =
2n3

3p
+

(
3

2
√
p
− 2

p

)
n2 +

5n

6

+

((
3
√
p
− 2

p

)
n2 +

(
4
√
p − 4
√
p

+
4

p
− 3

)
n

)
g

+ 8nl

≈ 2n3

3p
+

3n2

2
√
p

+
3n2g
√
p

+ 8nl .

22 / 23



Lecture 2.4 Two-phase Broadcasting

Summary

I Cost analysis gives a diagnosis of underperformance, such as
an imbalance hs � hr.

I We have optimized our basic parallel LU decomposition
algorithm by
I performing two-phase broadcasting to spread the

communication load evenly;
I exploiting local information on the pivot value to avoid

unnecessary communication;
I reorganizing the algorithm to combine supersteps, thus saving

synchronizations.

I The resulting LU decomposition is efficient if

2n3

3p
≥ 3n2g
√
p

and
2n3

3p
≥ 8nl ,

i.e.,
n ≥ max{4.5g , 2

√
3l} · √p.

23 / 23


