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The Cartesius supercomputer

Rob Bisseling dwarfed by Cartesius, October 2013

I The Dutch national supercomputer Cartesius was installed at
SURFsara in Amsterdam, the Netherlands, in June 2013.

I YouTube movie of installation:
https://www.youtube.com/watch?v=01buSTm9p4Q
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The BullSequana cell added to Cartesius in 2016

BullSequana cell. Source: https://tweakers.net

I A BullSequana cell with two cabinets, each containing up to
24 blades at the front and 24 at the back, and a cabinet in the
middle with cables and switching devices for communication.

I YouTube movie of extension:
https://www.youtube.com/watch?v=p9imWg4pHeI
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One blade of the BullSequana cell

BullSequana X1120 blade. Source: https://atos.net

I One BullSequana blade contains three thin nodes.

I In total, Cartesius has 177 thin nodes of type Broadwell.

I Each thin node has two 16-core 2.6 GHz Intel Xeon E5-2697A
v4 (Broadwell) CPUs and a memory of 64 GB.
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Benchmarked BSP parameters of a BullSequana cell

p g l Tcomm(0)

1 315 25 999 16 270
2 352 63 146 47 270
4 333 122 716 96 964
8 328 216 380 146 945

16 350 330 632 221 014
32 450 469 605 312 097
64 500 2 437 872 1 733 434

128 1 800 2 646 273 2 647 049
256 756 5 045 305 4 310 730
512 1 114 4 098 700 3 078 612

I r = 5.912 Gflop/s.

I Tcomm(0) is the time of a 0-relation.

I BSPonMPI communication library v1.1 on top of Intel MPI
v5.0.3.
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Time of an h-relation with MPI Alltoallv for p = 256
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I We investigated the inconsistent behaviour of the parameter g
in the range p = 64–512.

I Using mpibench from the first edition, we observe two
straight lines with a downwards jump indicating a suboptimal
switching point between two communication mechanisms.

I Therefore, the culprit is most likely MPI.
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Time of a parallel FFT of length n = 226
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What do you think? Good or bad?

Surprise! This is the time of a theoretical, perfectly parallelized
FFT, based on a time of 7.035 s for p = 1.
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Measured time Tp(n) (in ms) of parallel FFT

p Length n

216 218 220 222 224 226

1 (seq) 2.6 13.9 67.6 356 1 603 7 035
1 (par) 2.6 13.5 65.9 372 1 603 7 017
2 1.6 6.9 37.3 177 927 3 972
4 0.9 3.5 18.9 90 510 2 160
8 0.4 1.9 9.2 48 278 1 238

16 0.2 1.0 4.4 25 195 842
32 0.2 0.6 2.5 16 172 743
64 4.3 4.5 5.5 12 85 382

128 0.8 12.8 13.0 17 36 214
256 1.1 1.3 32.1 33 45 147
512 1.4 0.8 1.3 72 76 107

blue: problem fits in L2 cache
red: problem fits in L1 cache (fastest, smallest)
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Competing trends with an increase in p

I Computation time decreases because more processors do the
work.

I Computation time may also decrease because we have more
caches, so that the local problems may fit into cache.

I Communication time increases because g = g(p) increases.

I Synchronization time increases because l = l(p) increases.

I The measured time is a result of all these competing trends.
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Time Tp of an actual parallel FFT of length n = 226
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Warning: this kind of picture gives some insight, but it is not the
best representation of the results.
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Measured speedup Sp(n) of parallel FFT
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I The speedup on p processors for a problem of length n is
defined by

Sp(n) =
Tseq(n)

Tp(n)
.

I A speedup picture gives much more insight and it allows
comparing different problem sizes.
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Measured efficiency Ep(n) of parallel FFT
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I The efficiency on p processors is defined by

Ep(n) =
Sp(n)

p
=

Tseq(n)

pTp(n)
.

I The ideal value is 1.
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Normalized cost

I The normalized cost (or inefficiency) Cp(n) is the ratio
between the time of the parallel program and the time of a
perfectly parallelized version of the sequential program,

Cp(n) =
Tp(n)

Tseq(n)/p
=

pTp(n)

Tseq(n)
=

1

Ep(n)
.

I Lower bound on the inefficiency:

Cp(n) ≥ 1.

I The parallel overhead equals Cp(n)− 1. It usually consists of:
I load imbalance,
I communication time,
I synchronization time.
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Normalized cost Cp(n) of parallel FFT
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I The ideal value is 1.
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Breakdown of predicted and measured execution time

p Predicted Measured

Tcomp Tcomm Tsync T Tcomp Tcomm T
+Tsync

1 1 476 0 0.004 1 476 7 048 0 7 048
2 738 4 004 0.032 4 742 3 548 593 4 141
4 369 1 882 0.062 2 251 1 788 428 2 223
8 184 925 0.109 1 109 942 315 1 268

16 92 492 0.167 584 640 209 852
32 46 319 0.238 365 601 154 757

I Time (in ms) for n = 226. T is the total time.

I Prediction is based on

Tp(n) = 5
n

p
log2 n + 2

n

p
g + 3l .
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Insights gained from the breakdown

I It is difficult to predict the total time correctly, for instance
due to misprediction of the sequential computation time.

I The DAXPY benchmark of length n = 210 fits in L1 cache,
but the FFT of length n = 226 does not fit in any cache.

I This reduces the computing rate from r = 5.91 Gflop/s to
1.26 Gflop/s.

I Of course, the benchmark of r can be adapted to the
application, if desired.
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More insights

I Communication is the bottleneck, even though we perform
only one data permutation.

I The prediction overestimates the communication time,
because it is based on pessimistic g -values.

I The actual parallel FFT, however, was optimized to send data
in packets, so that it attains optimistic g -values.

I Synchronization time is insignificant for this problem size.
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“Predictions are difficult, especially about the future”

I Wisdom often attributed to Danish quantum physicist Niels
Bohr and sometimes to US baseball player Yogi Berra, but
never to Dutch soccer player Johan Cruijff.

I The quote probably was first expressed by an anonymous
person in Danish in or before 1948, according to
https://quoteinvestigator.com

I We can improve our predictions by using more specific
measurements: in-cache flop rates, optimistic g -values, etc.

I This way, we end up predicting the past.
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Total computing rate Rp(n)

I The total computing rate of the FFT is defined by

Rp(n) =
5n log2 n

Tp(n)
.

I The rate is based on the sequential flop count 5n log2 n. This
count is commonly used to measure FFT rates, even for FFT
variants with fewer actual flops.

I Radix-4 FFTs have 4.25n log2 n flops.
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Computing rate Rp(n) (in Gflop/s) of parallel FFT

p Length n

216 218 220 222 224 226

1 (seq) 2.04 1.74 1.58 1.32 1.28 1.26
1 (par) 2.10 1.79 1.62 1.26 1.28 1.26
2 3.32 3.47 2.87 2.66 2.21 2.23
4 6.28 6.83 5.65 5.19 4.01 4.10
8 12.64 12.70 11.59 9.79 7.37 7.16

16 21.65 24.90 24.37 18.70 10.47 10.52
32 27.48 41.63 42.23 28.76 11.90 11.92
64 1.24 5.42 19.44 40.52 24.15 23.16

128 6.96 1.89 8.22 28.45 56.76 41.36
256 5.02 18.94 3.33 14.33 45.74 60.40
512 3.78 28.44 83.85 6.49 27.05 82.54

I Computing rate Rp(n) is useful for comparing different
problem sizes and different applications.
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Summary

I We have introduced several metrics to express the
performance of a parallel program:
I Tp(n), the time (in s)
I Sp(n) = Tseq(n)/Tp(n), the speedup
I Ep(n) = Sp(n)/p, the efficiency
I Cp(n) = 1/Ep(n), the normalized cost or inefficiency
I Cp(n) − 1, the overhead
I Rp(n) = (5n log2 n)/Tp(n), the total computing rate (in

flop/s).

I Speedup plots give much insight.

I Cache effects play a major role for the FFT.

I Parallelizing the FFT only makes sense for large problem sizes.
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