
Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Parallel Sparse Matrix–Vector Multiplication
Section 4.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Distribution option 1: represent first, distribute later

First build a global data structure to represent the sparse matrix,
then distribute it over the processors:

I A parallelizing compiler would do this.

I It requires global collaboration between the processors.

I Simple operations become complicated: in a linked list, 3
processors must work together and communicate to insert a
new nonzero.

2 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Distribution option 2: distribute first, represent later

Distribute the matrix first, and then let each processor represent
the local nonzeros in a local data structure:

I This assigns subsets of nonzeros to processors.

I The subsets form a partitioning of the nonzero set: subsets
are disjoint and together they contain all nonzeros.

I Sequential sparse data structures can be used.

I Simple operations remain simple: insertion and deletion are
local operations without communication.

I This is the preferred approach.

3 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Most general matrix distribution

I The most general scheme maps nonzeros to processors,

aij 7−→ P(φ(i , j)), for 0 ≤ i , j < n and aij 6= 0,

where 0 ≤ φ(i , j) < p.

I Zeros are not assigned to processors. For convenience, we
define φ(i , j) = −1 if aij = 0.

I Here, we use a 1D processor numbering.

4 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Distribution of matrix and vectors

Global view Local view

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u

3

4 1

5 9

6

P(0)

0

1

2

3

0 1 2

1

2

5 3

5 8 9

P(1)

0

2

3

4

2 3 4

I p = 2, n = 5, nz = 13.

I P(0) red cells, P(1) blue cells.

I Matrix distribution is non-Cartesian.

5 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Where to compute aij · vj?

I Usually, there are many more nonzeros than vector
components,

nz(A)� n,

so we should move the vector components vj to the nonzeros
aij , not the other way round.

I Add the local products aijvj belonging to the same row i . The
resulting partial sum on P(s) is the local contribution uis to ui .

I Send uis to the owner of ui .

I Thus, we do not communicate elements of A, but only
components of v and contributions to components of u.

6 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

How to distribute the vectors?

I We map vector components to processors by

ui 7−→ P(φu(i)), for 0 ≤ i < n.

I In many iterative solvers, the same vector is repeatedly
multiplied by a matrix A.

I Usually, a few vector operations are interspersed, such as
DAXPYs y := αx + y or inner products α := xTy.

I All vectors should then be distributed in the same way:
distr(u) = distr(v) for the operation u := Av.

7 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Different distributions for input and output vectors

I The Hyperlink-Induced Topic Search (HITS) algorithm by Jon
Kleinberg repeatedly computes ATAv instead of Av, where A
is a web link matrix, to obtain two page-ranking values:
I the authority value ui which says how authoritative page i is as

a source of information,
I the hub value vi which says in how far its hyperlinks point to

authorities.

I An authority vector u can be computed from a hub vector v
by u := Av, and vice versa by v := ATu.

I In this case, the output vector for A is taken as the input
vector for AT, and we do not need to revert immediately to
the input distribution, allowing

distr(u) 6= distr(v).

J. M. Kleinberg, Journal of the ACM, 46(5) (1999) pp. 604–632.

8 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Deriving a parallel algorithm

I Once we have chosen the data distribution and decided to
compute the products aijvj on the processor that owns aij ,
the parallel algorithm follows naturally.

I The main computation for processor P(s) is multiplying each
local nonzero element aij by vj and adding the result into a
local partial sum,

uis =
n−1∑
j=0

φ(i ,j)=s

aijvj ,

I Sparsity is exploited because
I only terms with aij 6= 0 are summed;
I only local partial sums uis are computed for which
{j : 0 ≤ j < n ∧ φ(i , j) = s} 6= ∅.

9 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Row index set

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u

3

4 1

5 9

6

P(0)

0

1

2

3

0 1 2

1

2

5 3

5 8 9

P(1)

0

2

3

4

2 3 4

I The index set of rows that are locally nonempty in P(s) is

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i , j) = s)}.

I On P(0), row 4 is empty, so I0 = {0, 1, 2, 3}
I On P(1), row 1 is empty, so I1 = {0, 2, 3, 4}.

10 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Local sparse matrix–vector multiplication

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i , j) = s)}

{ Local sparse matrix–vector multiplication } . Superstep (1)
for all i ∈ Is do

uis := 0;
for all j : 0 ≤ j < n ∧ φ(i , j) = s do

uis := uis + aijvj ;

11 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Data structure for local sparse matrix

I Compressed row storage (CRS) suits row-oriented local sparse
matrix–vector multiplication.

I CRS must be adapted to avoid overhead of many empty rows,
which typically occurs if c � p.

I We number the nonempty local rows from 0 to |Is | − 1. The
corresponding indices i are the local indices.

I The original global indices from the set Is are stored in
increasing order in an array rowindex of length |Is |:

i = rowindex [i].

I The address of the first local nonzero of row i is start[i].

12 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Column index set

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u

3

4 1

5 9

6

P(0)

0

1

2

3

0 1 2

1

2

5 3

5 8 9

P(1)

0

2

3

4

2 3 4

I The index set Js of columns that are locally nonempty in P(s)
is

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i , j) = s)}.

I J0 = {0, 1, 2} and J1 = {2, 3, 4}.

13 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Fanout

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i , j) = s)}

{ Fanout } . Superstep (0)
for all j ∈ Js do

get vj from P(φv(j));

I The receiver knows (from its index set Js) that it needs the
vector component vj . The sender is unaware of this. Thus,
the receiver initiates the communication by using a ‘get’.

I In dense algorithms, communication patterns are predictable
and thus known to every processor, so that we only need ‘put’
primitives.

I In sparse algorithms, we also have to use ‘get’ primitives.

I In sparse programs, we must know the exact address where to
get the data. This may require additional preprocessing.

14 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Fanin and final summation

{ Fanin } . Superstep (2)
for all i ∈ Is do

put uis in P(φu(i));

{ Summation of nonzero partial sums } . Superstep (3)
for all i : 0 ≤ i < n ∧ φu(i) = s do

ui := 0;
for all t : 0 ≤ t < p ∧ uit 6= 0 do

ui := ui + uit ;

15 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Communication

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u

I Vertical arrows: communication of vector components vj .

I v0 is sent from P(1) to P(0), because of the nonzeros a10 = 4
and a30 = 6 owned by P(0).

I v1, v3, v4 need not be sent.

I Horizontal arrows: communication of partial sums uis .

16 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Cost analysis

Wat kost het? (Dutch for: How much does it cost?)

I The answer depends on the matrix A and the distributions
φ, φv, φu.

I We can obtain an upper bound on the BSP cost, assuming
that:
I the matrix nonzeros are evenly spread over the processors,

each processor having cn
p nonzeros;

I the vector components are also evenly spread, each processor
having n

p components.

17 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Cost of supersteps (0), (1)

I Superstep (0): P(s) must receive at most all n components
vj , but not the n

p local components, so that

hr = n − n

p
.

Furthermore,

hs =
n

p
(p − 1),

because the n
p local components must be sent to all the other

p − 1 processors. Therefore,

T(0) = (1− 1

p
)ng + l .

I Superstep (1): 2 flops are needed for each local nonzero.

T(1) =
2cn

p
+ l .

18 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Cost of supersteps (2), (3)

I Superstep (2): Similar to (0).

T(2) = (1− 1

p
)ng + l .

I Superstep (3): Each of the n
p local vector components is

computed by adding at most p partial sums.

T(3) = n + l .

I The total BSP cost under the equal-spreading assumptions is
bounded by

TMV ≤
2cn

p
+ n + 2(1− 1

p
)ng + 4l .

I This bound may be overly pessimistic for particular
distributions that are well-tailored to the matrix.

19 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Efficient computation

TMV ≤
2cn

p
+ n + 2(1− 1

p
)ng + 4l .

I Computation can be considered efficient if 2cn
p > 2ng , i.e.,

c > pg . But this happens rarely: only for very dense matrices.

I The number of nonzeros per row c , and not the density d ,
determines the efficiency directly.

I To make the computation efficient for smaller c , we can:
I use a Cartesian distribution and exploit its 2D nature;
I refine the general distribution using an automatic procedure to

detect the underlying matrix structure;
I exploit properties of specific matrix classes, such as random

sparse matrices and Laplacian matrices.

This will be done later on.

20 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Communication volume

I The communication volume V of an algorithm is the total
number of data words sent.

I For the parallel SpMV, V depends on φ, φu, φv.
I For a given φ, we can count

I the number of processors λi with a nonzero aij in matrix row i
(at least λi − 1 processors must send a contribution uis);

I the number of processors µj with a nonzero aij in matrix
column j (at least µj − 1 processors must receive vj).

I Thus, we obtain a lower bound Vφ on V ,

Vφ =
n−1∑
i=0
λi≥1

(λi − 1) +
n−1∑
j=0
µj≥1

(µj − 1).

I An upper bound is Vφ + 2n, because in the worst case all n
components ui are owned by processors without a nonzero in
row i , and similar for the components vj .

21 / 22

Lecture 4.3 Parallel Sparse Matrix–Vector Multiplication

Summary

I Distribute first, represent later.
I The most general mapping of nonzeros and vector

components to processors is:

aij 7−→ P(φ(i , j)), for 0 ≤ i , j < n and aij 6= 0,

ui 7−→ P(φu(i)), for 0 ≤ i < n.

I We have derived a parallel algorithm with 4 supersteps:
fanout, local matrix–vector multiplication, fanin, summation
of partial sums.

I The row index set Is and column index set Js are used for
exploiting the sparsity in the algorithm.

I A lower bound on the total communication volume is

Vφ =
n−1∑
i=0
λi≥1

(λi − 1) +
n−1∑
j=0
µj≥1

(µj − 1).

22 / 22

