
Lecture 5.3 Suitors and Sorting

Suitors and Sorting
Section 5.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 17

Lecture 5.3 Suitors and Sorting

Data structure for the graph

I A data structure stores all the information about the vertices
and edges of the graph needed to run the matching algorithm.

I Let v0, . . . , vn−1 be the vertices and e0, . . . , em−1 be the edges.

I For an edge e = (vi , vj), we store the weight ω(e).
I For a vertex v = vi , we store:

I pref (v), the preferred partner, i.e., the neighbouring vertex
still available with the highest connecting edge weight;

I suitor(v), the suitor, i.e., the neighbouring vertex with the
highest edge weight that prefers v .

I Preferences and suitors are initialized to nil, i.e., no preference
or suitor has been set.

F. Manne and M. Halappanavar, In: Proceedings IPDPS 2014, IEEE, pp.
519–528.

2 / 17

Lecture 5.3 Suitors and Sorting

Only one preference and one suitor

I A vertex can have only one preference and one suitor, since
there are no ties.

I For each vertex v , it must hold that

ω(v , pref (v)) ≥ ω(v , suitor(v)),

because otherwise the suitor of v would be a better candidate
than the preferred choice of v .

3 / 17

Lecture 5.3 Suitors and Sorting

Setting a new, mutual preference

3

5

7

x

u

v

3

7

x

u

v

I Left (before setting): vertex v prefers u, where u already has
set a preference for v .

I Right (afterwards): the preference is mutual and yields a
match with weight 7. Vertex x loses its preference and must
set a new preference.

4 / 17

Lecture 5.3 Suitors and Sorting

Setting a new, nonmutual preference

3

5

7 2

4

10

12

9

x

u

v

3

5

7 2

10

12

9

x

u

v

I Vertex v prefers u, but u has a higher set preference.

I Vertex v becomes the suitor of u, replacing x .

I Vertex x loses its preference and must set a new preference.

5 / 17

Lecture 5.3 Suitors and Sorting

Finding the preference of a vertex
input: array Adj of length d , interval [lo, hi], 0 ≤ lo ≤ hi < d .
output: The preferred edge is returned and moved to the end.

function FindPref(Adj , ω, lo, hi)

ωmax := −∞;
for i := lo to hi do

if ω(eAdj[i]) > ωmax then
imax := i ;
ωmax := ω(eAdj[i]);

swap(Adj [imax],Adj [hi]);
return eAdj[hi];

I The array Adj stores the adjacency list of a vertex, i.e., the
indices k for which the edge ek is connected to the vertex.

I The function simply searches for the heaviest edge and swaps
its index into the end of the array.

6 / 17

Lecture 5.3 Suitors and Sorting

Getting an immediate rejection

3

5

7 2

9

10

12

8

x

u

v

3

5

7 2

10

12

9

x

u

v

I Vertex v prefers u, where u already has a better suitor x .

I The edge (u, v) is dead and can be removed from the graph.

7 / 17

Lecture 5.3 Suitors and Sorting

Finding the highest living edge while removing dead edges
input: v : a vertex,

Adj : its adjacency list of length dv ,
...

output: The living edge eAdj[i] with highest index i .

function FindAlive(v ,Adj , ω, alive, suitor , dv)

for i := dv − 1 to 0 step −1 do
(u, v) := eAdj[i] ;
if ω(u, suitor(u)) > ω(u, v) then

alive(u, v) := false;

if alive(u, v) then
return;

else
dv := dv − 1;

8 / 17

Lecture 5.3 Suitors and Sorting

Data structure for the adjacency set

I The adjacency set Adjv of vertex v can be stored as an array
of length dv representing the edges of v . This array is the
adjacency list of v .

I Here, dv is the degree of v , i.e., its number of neighbours.

I The adjacency list of a vertex corresponds to a matrix row in
the compressed row storage (CRS) scheme for sparse
symmetric matrices.

I Each edge (vi , vj) is represented twice, once corresponding to
a nonzero aij in row i (the list of vertex vi) and once
corresponding to aji in row j (the list of vertex vj).

9 / 17

Lecture 5.3 Suitors and Sorting

Creating the adjacency list data structure

I The adjacency lists of all the vertices together can be stored
in an array of length 2m, where m = |E|.

I This can be done by a counting sort in O(m + n) time for the
whole graph, similar to creating a CRS data structure for a
sparse matrix:
I first, we count the number of edges of each vertex;
I then, we determine the start and end of the space needed for

each vertex;
I finally, for each edge ek , we place the index k twice, in the

space corresponding to its two endpoints.

10 / 17

Lecture 5.3 Suitors and Sorting

Local domination algorithm with suitors: initialization
for all v ∈ V do

suitor(v) := nil;

for all e ∈ E do
alive(e) := true;

M := ∅;
Q := V;

I M is the current set of matches.

I Q is the current set of unmatched but still matchable vertices
without a preference.

I Q can be represented by a list of vertex numbers, either as a
queue following the First In, First Out (FIFO) principle, or as
a stack, following Last In, First Out (LIFO).

I For the sequential algorithm, we need not store the value of
pref (v) explicitly, as it can be derived from the suitor values.
For the parallel algorithm, we need pref (v).

11 / 17

Lecture 5.3 Suitors and Sorting

Local domination algorithm with suitors: main loop
while Q 6= ∅ do

pick a vertex v ∈ Q;
Q := Q \ {v};
FindAlive(v ,Adjv , ω, alive, suitor , dv);

{ Set preference for v }
if dv > 0 then

(u, v) := FindPref(Adjv , ω, 0, dv − 1);
dv := dv − 1;
x := suitor(u);
if x 6= nil then

Q := Q ∪ {x};
alive(u, x) := false;

suitor(u) := v ;
if u = suitor(v) then
M :=M∪ {(u, v)};
dv := 0; du := 0;

12 / 17

Lecture 5.3 Suitors and Sorting

Improvement: partial sorting

I Partially sorting the adjacency lists by increasing weight helps
find a preference quickly.

I To do this, we use splitters that split the array into smaller
pieces, similar to the splitters of the quicksort algorithm.

I Here, we call an index r a splitter of the array x if

xi < xr for all i < r ,

xj ≥ xr for all j ≥ r .

I The maximum value xj can then be found by searching only
within the range j ≥ r .

I We apply this to an array x defined by

xi = ω(eAdjv [i]), for 0 ≤ i < dv .

13 / 17

Lecture 5.3 Suitors and Sorting

Incorporating partial sorting

while Q 6= ∅ do
...
FindAlive(v ,Adjv , ω, alive, suitor , d);
r := FindSplitter(v ,Adjv , ω, alive, splitter v , suitor , d);
(u, v) := FindPref(Adjv , ω, r , dv − 1);
...
SplitAdj(Adjv , ω, splitter v , r , dv − 1);

I The main loop of the algorithm calls a function FindSplitter,
which is similar to FindAlive and returns a splitter r .

I We can now call FindPref with lo = r instead of lo = 0.

I At the end of the main loop, a function SplitAdj is called,
which is similar to the Split function of quicksort, see
Section 1.8. It accelerates future searches for a preference.

14 / 17

Lecture 5.3 Suitors and Sorting

Computation time of Algorithm 5.3

I The initializations of the main algorithm cost O(m + n).
I In each iteration of the main loop, either:

I a vertex v is removed from Q and no vertex is put back, or
I a vertex x is put back but then also a living edge (u, x) is

killed.

I Therefore, the total number of iterations is at most m + n.

I The total computation time is O(m + n), excluding the cost
of the partial sorting.

15 / 17

Lecture 5.3 Suitors and Sorting

Computation time of the partial sorting
I The function SplitAdj chooses a random splitter and splits the

data into a lower and upper part.
I We may have to split the upper part again, since we are

interested in finding the highest weight. We only split the
lower part if this becomes necessary later on.

I In the worst case, we perform a full quicksort for every
vertex v , with an expected cost of dv log2 dv operations.

I The expected total time for the fully sorted case is of order∑
v

dv log2 dv ≤
∑
v

dv log2 ∆ = 2m log2 ∆,

where ∆ = maxv dv , the maximum vertex degree.
I Here, were we use that

∑
v dv = 2m (in this sum, every edge

is counted twice).
I In the favourable case where we never split a lower part, the

expected time for vertex v is dv + dv/2 + · · ·+ 1 ≈ 2dv , and
the total time is 4m.

16 / 17

Lecture 5.3 Suitors and Sorting

Summary

I A graph can be stored efficiently by a data structure
consisting of adjacency lists. Each list stores the edges of one
vertex. The total memory required for all n lists is 2m.

I We have presented a matching algorithm based on local
domination that repeatedly sets preferences for a vertex and
matches a pair of vertices if their preferences are mutual.

I The suitor of a vertex v is the neighbouring vertex with the
highest edge weight that prefers v .

I Storing the suitor allows for immediate rejection in case a
vertex sets a preference worse than that of the current suitor.

I Partial sorting of adjacency lists based on a random splitter
helps finding the heaviest edge quickly.

17 / 17

