
Lecture 4.8 Random Sparse Matrices

Random Sparse Matrices
Section 4.8 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 20

Lecture 4.8 Random Sparse Matrices

Sparse matrix random100

I Random sparse matrix with n = 100, nz = 982, d = 0.0982,
created by using the random number generator Ran from
Numerical Recipes.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, Third edition, 2007,
Cambridge University Press.

2 / 20

Lecture 4.8 Random Sparse Matrices

Generating a random sparse matrix

I A random sparse matrix A can be generated by determining,
randomly and independently, for each element aij whether it is
0 or not.

I If the probability of creating a nonzero is d , the matrix has:
I an expected density d(A) = d ;
I an expected number of nonzeros nz(A) = dn2.

I Random sparse matrices have a very special property: every
subset of the matrix elements, chosen independently from the
sparsity pattern, has an expected fraction d of nonzeros.

I This property provides a powerful tool for analysing algorithms
involving random sparse matrices.

3 / 20

Lecture 4.8 Random Sparse Matrices

A structured, nonrandom sparse matrix: cage6

I Urban Dictionary: a ‘random person’ often means an
unknown, unexpected, or unfamiliar person.

I Google can help find a (truly?) random person.
I However, don’t use the term ‘random sparse matrix’ for a

sparse matrix with a structure that is unfamiliar or not
immediately visible.

4 / 20

Lecture 4.8 Random Sparse Matrices

Parallel sparse matrix–vector multiplication

I Generate a random sparse matrix A by drawing for each index
pair (i , j) a real random number rij ∈ [0, 1], doing this
independently and uniformly (with each outcome equally
likely), creating a nonzero aij if rij < d .

I Distribute A over p processors in a manner independent of the
sparsity pattern by assigning an equal number of elements
(whether 0 or not) to each processor.

I Examples are:
I square block distribution;
I square cyclic distribution;
I cyclic row distribution.

5 / 20

Lecture 4.8 Random Sparse Matrices

Computational load balance

I The load balance can be estimated by using probability theory.

I The problem is to determine the expected maximum, taken
over all processors, of the local number of nonzeros.

I We cannot solve this problem exactly, but we can obtain a
useful bound on the probability of the maximum exceeding a
certain value.

I The bound is obtained by applying the Chernoff Theorem,
often used in the analysis of randomized algorithms.

6 / 20

Lecture 4.8 Random Sparse Matrices

Theorem 4.10 (Chernoff)

I Let 0 < d < 1.

I Let X0,X1, . . . ,Xm−1 be independent Bernoulli trials with
outcome 0 or 1, such that Pr[Xk = 1] = d , for 0 ≤ k < m.

I Let X =
∑m−1

k=0 Xk and µ = md .

I Then for every ε > 0,

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ
.

H. Chernoff, Annals of Mathematical Statistics, 23(4) (1952), pp.493–507.

7 / 20

Lecture 4.8 Random Sparse Matrices

Probability of X > 2µ

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ
.

I The bound for ε = 1 tells us that the probability of getting
more than twice the expected number µ is

Pr[X > 2µ] <
(e

4

)µ
≈ (0.68)md .

8 / 20

Lecture 4.8 Random Sparse Matrices

Application to a random sparse matrix

I The expected number of nonzeros per processor is

µ =
dn2

p
.

I Let Es be the event that processor P(s) has more than
(1 + ε)µ nonzeros and let

E =

p−1⋃
s=0

Es .

I Let q = Pr[Es], which is the same for all s.

I By looking at the probability that no event Es occurs in any
processor, we obtain the equality

Pr[E] = 1− (1− q)p.

9 / 20

Lecture 4.8 Random Sparse Matrices

Cost of the local sparse matrix–vector multiplication

I The cost T(1) of superstep (1) satisfies

Pr

[
T(1) >

2(1 + ε)dn2

p

]
= 1− (1− q)p

< 1−

1−
(

eε

(1 + ε)1+ε

) dn2

p

p

= F (ε).

10 / 20

Lecture 4.8 Random Sparse Matrices

Bound on probability of exceeding the normalized cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3
Pr

ob
ab

ili
ty

 o
f e

xc
ee

di
ng

 c
os

t
Normalized computation cost

d = 0.1
d = 0.01
d = 0.001

I Shown is the Chernoff probability F (ε) of exceeding the
normalized cost 1 + ε for a random sparse matrix of size
n = 1000 and density d distributed over p = 100 processors.

I The average normalized cost obtained by simulation for 10 000
matrices is:
I 1.076 for d = 0.1;
I 1.258 for d = 0.01;
I 1.876 for d = 0.001.

11 / 20

Lecture 4.8 Random Sparse Matrices

Measured probability of exceeding the normalized cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6

Pr
ob

ab
ili

ty
 o

f e
xc

ee
di

ng
 c

os
t

Normalized computation cost

Measured
Chernoff bound

I Shown is the measured probability of exceeding the
normalized cost 1 + ε for a random sparse matrix with
n = 1000, d = 0.01, p = 100, based on 100 000 matrices.

I For comparison, also the corresponding (pessimistic) Chernoff
bound is given.

I A maximum local nonzero count 124 (i.e., cost = 1.24)
occurs most often, with a frequency of 9.3%.

I The probability that one of the processors has
more than 124 nonzeros is 57.1%.

12 / 20

Lecture 4.8 Random Sparse Matrices

Communication cost for a random sparse matrix

I The communication volume for a dense matrix is an upper
bound on the volume for a sparse matrix distributed by the
same fixed, pattern-independent scheme.

I The communication obligations for a random sparse matrix
with a high density will almost be the same as for a dense
matrix.

I Therefore, we can try to find a good fixed distribution scheme
for random sparse matrices by applying methods from the
dense case.

13 / 20

Lecture 4.8 Random Sparse Matrices

Square Cartesian distribution for a dense matrix

A

vT

u

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

I n = 8, p = 4.

I Square 2× 2 Cartesian distribution based on a cyclic
distribution of the matrix diagonal.

14 / 20

Lecture 4.8 Random Sparse Matrices

Superstep (0): fanout

I Vector component vj is needed only in P(∗, φ1(j)).

I P(s, φ1(j)) does not need vj if all n√
p elements in the local

part of matrix column j are zero; this has probability
(1− d)n/

√
p.

I The probability that P(s, φ1(j)) needs vj is 1− (1− d)n/
√
p.

I Since
√
p − 1 off-diagonal processors each have to receive vj

with this probability, the expected number of receives for
component vj is (

√
p − 1)(1− (1− d)n/

√
p).

I Hence, the expected communication volume for the fanout is

n(
√
p − 1)(1− (1− d)n/

√
p).

I Ignoring communication imbalance, we divide by p, giving

T(0) =

(
1
√
p
− 1

p

)
(1− (1− d)n/

√
p)ng .

15 / 20

Lecture 4.8 Random Sparse Matrices

Total communication cost

I Cost of the fanin is the same as for the fanout.

I For n = 1000 and p = 100, the matrix with highest density
d = 0.1 has an expected communication cost of 179.995g ,
close to the cost of 180g for a dense matrix.

I The corresponding expected normalized communication cost is

T(0) + T(2)

2dn2/p
≈ 0.09g .

I We need a parallel computer with g ≤ 11 to run our algorithm
with more than 50% efficiency.

I For n = 1000 and p = 100, the matrix with lowest density
d = 0.001 has an expected normalized communication cost of
0.86g .

16 / 20

Lecture 4.8 Random Sparse Matrices

Tailor the distribution to the matrix

I Global permuted view of the sparse matrix random100 with
n = 100 and nz = 982, distributed for p = 2 and ε = 0.03 by
Mondriaan v4.2 with the medium-grain method.

I The matrix is shown in Separated Block Diagonal (SBD) form
with the 48 cut rows and 41 cut columns in the middle.

I The BSP cost is 982 + 45g + 4l .

17 / 20

Lecture 4.8 Random Sparse Matrices

Separated Block Diagonal (SBD) form

I The SBD form is useful for visualizing the communication
requirements of a parallel SpMV.

I It can also be used to speed up a sequential SpMV, by
keeping vector components vj longer in cache.

I The SpMV can start and end in cache, with a gradual
transition in between.

18 / 20

Lecture 4.8 Random Sparse Matrices

Communication volume for Cartesian vs. Mondriaan

p ε (in %) ε′ (in %) V (Cartesian) V (Mondriaan)

2 0.8 0.005 993 862
4 2.1 0.015 1 987 1 765
8 4.0 0.048 3 750 2 696

16 7.1 4.318 5 514 3 611
32 11.8 10.874 7 764 4 461

I Random sparse matrix of size n = 1000 and density d = 0.01
distributed over p processors by:
I pattern-independent Cartesian distribution, with an expected

imbalance ε;
I pattern-dependent distribution produced by the Mondriaan

package with the allowed imbalance set to ε;
the value actually achieved by Mondriaan is ε′.

I Result for p = 32: using Mondriaan reduces the
communication by 43%. (But it is still a lot!)

19 / 20

Lecture 4.8 Random Sparse Matrices

Summary

I Distributing a random sparse matrix independently of its
sparsity pattern spreads the computation well.

I We can quantify this by using the Chernoff bound

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ
.

I For the communication, we can use a pattern-independent
square Cartesian distribution which distributes the matrix
diagonal and the vectors cyclically over the processors.

I The distribution can be improved by tailoring it to the sparsity
pattern, e.g. by using the Mondriaan partitioner.

I Parallel multiplication of a random sparse matrix and a vector
remains a difficult problem, because there is relatively much
communication.

20 / 20

