
Lecture 4.10 Parallel algorithm for hybrid-BSP

Parallel algorithm for hybrid-BSP
Section 4.10 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hierarchical architecture of the Fugaku supercomputer

I Hybrid shared/distributed-memory computer.
I 1 node = 4× 12 compute cores.

2 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Architecture of a hybrid-BSP computer

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

Communication
(p1, g1, l1)

Communication
(p1, g1, l1)

Communication
(p2, g2, l2)

I p2 = 2 nodes with p1 = 4 cores per node.

I Assumption: g1 � g2 and l1 � l2.

3 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Superstep structure of a hybrid-BSP algorithm

P(0, 0)P(0, 1)P(0, 2)P(0, 3) P(1, 0)P(1, 1)P(1, 2)P(1, 3)

Sync(l1)
Sync(l1)

Sync(l1)
Sync(l1)

Sync(l1)
Sync(l1)

Sync(l1)
Sync(l1)

Sync(l2)

Sync(l2)

I The algorithm has global supersteps involving all processors
and local supersteps carried out within a node.

4 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hybrid-BSP cost model: global communication

I P(s, t) represents processor (core) t in node s, where
0 ≤ s < p2 and 0 ≤ t < p1.

I The cost of a global communication superstep is

Tcomm, global(h) = hg2 + l2,

where h is the maximum number of data words
sent/received by any node.

5 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hybrid-BSP cost model: global computation

I The cost of a global computation superstep is

Tcomp, global = max
0≤s<p2

(as + bsg1 + cs l1) + l2,

where node P(s, ∗) executes a BSP algorithm with cost
as + bsg1 + cs l1.

I Taking the maximum of costs instead of summing makes the
hybrid-BSP cost model more difficult to use.

I It becomes easier if all nodes perform the same BSP algorithm
with the same number of supersteps.

6 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Distribution for hybrid-BSP SpMV

I Every node P(s, ∗) obtains the components vj it needs
directly from the source processor P(φv(j)).

I Component vj is stored at one designated processor in the
node, P(s, φsv(j)), which becomes the local owner of a copy
of vj .

I Every processor that needs vj obtains it from the local owner
in a local communication superstep.

I We define
φ(i , j) = (φ0(i , j), φ1(i , j))

as the owner of aij 6= 0, and φ(i , j) = −1 if aij = 0.

7 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hybrid-BSP sparse matrix–vector multiplication

input: A : sparse n × n matrix, distr(A) = φ = (φ0, φ1),
v : dense vector of length n, distr(v) = φv.

output: u : dense vector of length n, u = Av, distr(u) = φu.

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ0(i , j) = s)}
0 ≤ φsv(j) < p1, for all j ∈ Js , otherwise φsv(j) = −1

{ Global fanout } . Superstep (0)
for all j : 0 ≤ j < n ∧ φsv(j) = t do

get vj from P(φv(j));

Jst = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i , j) = (s, t))}

{ Local fanout } . Superstep (1)
for all j ∈ Jst do

get vj from P(s, φsv(j));

8 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hybrid-BSP sparse matrix–vector multiplication (cont’d)
Ist = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i , j) = (s, t))}

{ Local sparse matrix–vector multiplication } . Superstep (2)
for all i ∈ Ist do

uist := 0;
for all j : 0 ≤ j < n ∧ φ(i , j) = (s, t) do

uist := uist + aijvj ;

{ Local fanin } . Superstep (3)
for all i ∈ Ist do

put uist in P(s, φsu(i));

{ Local summation of nonzero partial sums } . Superstep (4)
for all i : 0 ≤ i < n ∧ φsu(i) = t do

uis := 0;
for all t ′ : 0 ≤ t ′ < p1 ∧ uist′ 6= 0 do

uis := uis + uist′ ;
9 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Hybrid-BSP sparse matrix–vector multiplication (cont’d)

{ Global fanin } . Superstep (5)
for all i : 0 ≤ i < n ∧ φsu(i) = t do

put uis in P(φu(i));

{ Global summation of nonzero partial sums } . Superstep (6)
for all i : 0 ≤ i < n ∧ φu(i) = (s, t) do

ui := 0;
for all s ′ : 0 ≤ s ′ < p2 ∧ uis′ 6= 0 do

ui := ui + uis′ ;

10 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Partitioning the data for a hybrid-BSP algorithm

I First, we partition the matrix A using Mondriaan into p2 parts
with an allowed imbalance ε2 < ε, to be discussed later.

I Then, we partition each resulting part s into p1 parts using
Mondriaan with an allowed imbalance ε1(s) that corresponds

to allowing at most (1 + ε)nz(A)p nonzeros per processor.

11 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Communication cost of global and local fanouts

I The communication cost of the global fanout is

T(0) =
V2g2
p2

,

where V2 is the communication volume, and we assume
perfect communication balance.

I The communication cost of the local fanout is

T(1) =
V1g1
p

.

Here, V1 is the total communication volume for all processors
in all the nodes, and each processor performs a local
h-relation with h = V1

p1p2
= V1

p .

12 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Distributed/shared-memory communication cost ratio β

T(0) =
V2g2
p2

, T(1) =
V1g1
p

.

I Communication per data word is more expensive in the
distributed-memory global superstep (0) than in the
shared-memory local superstep (1), by a factor

β =
g2/p2
g1/p

=
g2p1
g1

.

I β depends on p1, because we model p1 processors as a single
node in the global superstep.

13 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Growth of V as a function of p

p = 4 p = 16

I The communication volume grows with p.

I We can model this by a function V = O(pα).

I Unfortunately, the value of α is problem-dependent.

I For 2D Laplacian matrices, α = 1/2.

I For 3D, α = 1/3

14 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

How to choose the initial allowed imbalance ε2?

I Having the equivalent of β times more volume in the global
fanout,

V2 = βpα2 = (β1/αp2)1/α,

is the same as having q̂ extra levels of recursive bipartitioning,
where

q̂ = log2 β
1/α.

I These levels can be considered interspersed with the top
q2 = log2 p2 levels.

I Recall that for the first split of a partitioning into q = log2 p
parts, we choose an allowable imbalance of δ = ε/q.

I Since the total number of levels now increases from q = log2 p
to q + q̂, and we treat all these levels equally, we choose

ε2 =
q2 + q̂

q + q̂
ε.

15 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Vector distribution for the fanout

I Our goal is to determine:
I the unique owner P(φv(j)) of the component vj ;
I for each node P(s, ∗) with j ∈ Js ,

the owner P(s, φsv(j)) of the local copy.

I Matrix partitioning minimizes the communication volume;
the subsequent vector partitioning tries to balance the
communication load.

I The vector partitioning after the global matrix partitioning
determines for each vj the node P(s, ∗) that owns it,
and we write

φv(j) = (s, φsv(j)).

I The vector partitioning after the local matrix partitioning
within node P(s, ∗) then determines φsv(j).

16 / 17



Lecture 4.10 Parallel algorithm for hybrid-BSP

Summary

I The hybrid-BSP model has a hierarchical architecture with p2
nodes, each containing p1 cores.

I A large value of the distributed/shared-memory
communication cost ratio β = g2p1

g1
is the motivation

for the hybrid-BSP model.

I A hybrid-BSP algorithm has local supersteps (with
communication and synchronization within a node)
and global supersteps.

I For a hybrid-BSP SpMV, this leads to 4 local supersteps and
3 global supersteps.

I The partitioning of the sparse matrix is first done for the
nodes, and then for the cores, with a suitable choice of ε in
each stage.

17 / 17


