Program bspmatch

Section 5.9 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 5.9 Program bspmatch

1/18

Parallel local domination algorithm

» The function bspmatch is an implementation of Algorithm 5.7
for parallel weighted graph matching.

» It can handle every possible vertex distribution ¢, where the
edges connected to a vertex are stored together with that
vertex in an adjacency list.

» The distribution of the edges thus corresponds to a 1D row
distribution of the adjacency matrix A of the graph.

Lecture 5.9 Program bspmatch

2/18

Driver program bspmatch test

» The driver program bspmatch_test from BSPedupack reads
a sparse matrix in Matrix Market format, distributed in a 1D
row distribution, without diagonal entries and with the
symmetric partner aj; included for every nonzero aj;.

» The distribution is represented by a list of nonzeros assigned
to P(0), followed by those assigned to P(1), and so on.

» The nonzeros are sent to the processors as prescribed by ¢,
where they become the edges in the adjacency lists of the
vertices.

» The input procedure of bspmatch has much in common with
that of the sparse matrix—vector multiplication function
bspmv; the common functions are included in the file
bspsparse_input.c.

Lecture 5.9 Program bspmatch

3/18

Data structure: edge numbers and weights

P> bspmatch test builds the data structures needed by
bspmatch, which are a list of

» internal edges, numbered e =0, ..., ,nedges — 1;
> external edges, numbered e = nedges, ...,
nedges + nhalo — 1.

» For each edge e = (u, v), we can look up its weight
weight[e] = w(e),
which is a double, and its secondary weight
weightl[e] = wi(e) - 2n + wa(e).

» Here, wi(e) =1 if e is internal and wi(e) = 0 if e is external,
and wy(e) = u+v.

» Since wa(e) < 2n, this breaks ties by first giving preference to &
internal edges.

Lecture 5.9 Program bspmatch

4/18

Comparing edges

bool heavier(long e0, long el,
double xweight, long xweightl){

/% This function checks whether edge e0 is heavier
than edge el x/

if (e0 = DUMMY)
return false;

if (el =— DUMMY || weight[e0] > weight[el] ||
(weight[e0] = weight[el] &&
weightl[e0] > weightl[el]))
return true,

return false;

Lecture 5.9 Program bspmatch

5/18

Data structure: vertex numbers

> We number the vertices locally, v =0, ... ,nvertices — 1,
where we include only those with a nonempty adjacency list.

» If an edge e is internal, we store the local vertex numbers
vO[e] and vi[e] of its two endpoints, where vO[e] < v1]e].

> If e is external, we store its local vertex number vO[e], but
v1[e] then stores the corresponding local edge number €’ on
the remote processor P(t) that shares the edge with P(s).

» The numbering with internal edges first makes it easy to see

whether an edge is internal or external, which can be done
simply by checking whether e < nedges.

Lecture 5.9 Program bspmatch

6/18

Communicating along an external edge

> If we send a message to a remote processor along an external
edge e, we communicate in the language of the receiver, who
can look up all information about the corresponding edge €',
such as its weight and its local vertex.

» For each external edge e, we store the remote owner P(t) as
destproc[e — nedges] = t.

Lecture 5.9 Program bspmatch

7/18

Rejecting a suitor
#define REJECT 2

void

reject_suitor(long v, long e, long q_lo, long xnq,
long nvertices, long nedges,
long *xv0, long xvl, long xdestproc,
bool xAlive, long *Pref){

/x This function rejects suitor e of vertex v %/

if (e < nedges){
/x Determine other end point of edge e x/
long x = (v0[e]==v ? vl[e] : v0[e]);
push(x, nvertices, q_-lo, nq, Q, Pref);

} else {
long tag= REJECT;
bsp_send(destproc [e—nedges], &tag,

&(vl[e]), sizeof(long));
}

Alive [e]= false;

Lecture 5.9 Program bspmatch

8/18

Finding the remote owners

» In the program bspmatch_test, each processor P(s) first
writes its processor number s into a cyclically distributed
temporary array, at all global indices corresponding to a local
vertex.

» This announces that P(s) is the owner of all its local vertices.

» Then, P(s) reads the owners of its halo vertices from the
temporary array.

» This procedure is similar to the notice board procedure used
for parallel sparse matrix—vector multiplication in bspmv_init.

Lecture 5.9 Program bspmatch

9/18

Establishing the correspondence between e and &’

» To talk in the language of the receiver, we need to establish
the correspondence between e and ¢’.

» To achieve this, the local edge numbers e of the halo edges are
first sent to the remote processors, together with their global
indices (/, /), corresponding to aj; in the adjacency matrix.

» The triples (e, ,j) are then sorted lexicographically by the
receiver, with primary key j and secondary key i.

» The local triples (¢’,1,;) on the remote processor were already
sorted lexicographically with primary key i and secondary key j
when creating the CRS data structure.

» The coupled nonzeros aji and aj;; are now stored in the same
order, so that their corresponding edge numbers e and e’ can
be coupled on the remote processor by setting

vi[e'] = e.

Lecture 5.9 Program bspmatch

10/18

Declaring edges dead

An edge (u, v) in the adjacency list of v can be declared dead:

» if u has a better suitor;

» if the degree d, = 0, meaning that v has been matched or its
adjacency list has been depleted; the exception is if u is the
suitor of v, which may have caused d, to become 0.

Lecture 5.9 Program bspmatch

11/18

Finding the highest living edge

void find_alive (long v, long xAdj, long nedges,
double xweight, long *weightl, long *xv0, long =xvl,
bool xAlive, long *Suitor, long lo, long xd){

/x Finds highest living edge in Adj[lo,lo+d[v]—1] %/

for (long i= lo+d[v]—1; i>=lo; i—){
long e = Adj[i];
if (e < nedges){ // e=(u,v) is internal
long u = (v0[e]==v 7 vl[e] : vO[e]);
if ((d[u]==0 && Suitor[v]l=e) ||
heavier (Suitor[u], e, weight, weightl))
Alive [e] = false;

if (Alive[e])
return;
else
d[v]——;

Lecture 5.9 Program bspmatch

12/18

Pushing a vertex onto the queue

void push(long v, long nvertices, long q_lo,
long #nq, long xQ, long xPref){

/+* This function pushes vertex v onto the queue x/

long q_hi= q_-lo + (%nq); // first free position
if (q-hi >= nvertices)

q_hi —= nvertices;

Qlq-hi]= v;

(xnq)++; // nq = number of vertices in the queue
Pref[v]= DUMMY;

» The queue is stored as a circular list in positions g_-1o to

g-lo+ng — 1 of array Q, wrapping around at nvertices (the
number of local vertices).

> A new vertex v is pushed onto the queue at the tail.

Lecture 5.9 Program bspmatch

13/18

Popping a vertex from the queue

long pop(long nvertices, long *q_lo,
long xnq, long *Q){

/+* This function pops a vertex v from the queue x/

long i= xq_lo;

(xq-lo)++;

if (xq_-lo >= nvertices)
xq_lo —= nvertices;

(¥nq)——;

return Q[i];

> A vertex v is popped at the head of the queue, q_lo is

incremented, again wrapping around at nvertices, and nq is
decremented.

Lecture 5.9 Program bspmatch

14/18

bspmatch: detecting termination

bool alldone= false;
while (lalldone){
for (long t=0; t<p; t++)
Done[t]= false;

bsp_qsize(&nmessages,&nbytes);
if (nmessages==0 && nq==0){
long done= true; // P[s] is done
for (long t=0; t<p; t++)
bsp_put(t,&done, Done,sx*sizeof(long),
sizeof (long));
bsp_sync();
alldone= true:
for (long t=0; t<p; t++)
if (Done[t] = false){
alldone= false;
break;

} Lecture 5.9 Program bspmatch

} 15/18

bspmatch: counting operations

while (ng > 0 && nops_step < maxops){
long v= pop(nvertices, &q_lo, &nq, Q);

/x Find highest living edge x/
if (degree[v] > 0){
long degree_old= degree[v];
find_alive (v,Adj,nedges,weight,6 weightl v0,6vl,
Alive , Suitor ,Start[v], degree);
nops_step += degree_old —degree[v]+1;

> find_alive contains a loop which runs downwards from the
old degree to the new (possibly smaller) degree, taking
degree_old-degree[v]+1 operations.

» The operation count is added to the number of operations
nops_step of the current superstep.

Lecture 5.9 Program bspmatch

16/18

bspmatch: registering a match or proposing

#define ACCEPT 1

#define REJECT 2

Pref[v]=e;

if (e==Suitor[v]){
match [« nmatch]= e;

(xnmatch)++; // number of matches registered so far

if (e < nedges){ // internal edge
degree[v0[e]]= O;
degree[vl[e]]= O;
} else {
degree[v]= O0;
long tag= ACCEPT;
bsp_send(destproc[e—nedges], &tag,
&(vl[e]), sizeof(long));
}
} else if (e >= nedges){
long tag= PROPOSE;
bsp_send(destproc[e—nedges], &tag,
&(vl[e]), sizeof(long));

Lecture 5.9 Program bspmatch

17/18

Summary

» We have presented the function bspmatch from BSPedupack,
which is an implementation of the parallel local domination
algorithm for weighted graph matching.

> If we send a message to a remote processor along an external
edge e of our graph, we prefer to communicate in the
language of the receiver.

» For this purpose, we established the correspondence between
a locally stored edge e and its remote partner e’ by sending a
triple (e, i,/) to the owner of e’.

» \We use bsp_send to send proposals, accepts and rejects,
because this BSP primitive is most convenient for an irregular
algorithm such as graph matching.

Lecture 5.9 Program bspmatch

18/18

