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Sparse and dense matrices

I Sparse matrices are sparsely populated by nonzero elements.

I Dense matrices are densely populated by nonzeros.

I Sparse matrix computations save time: operations with zeros
can be skipped or simplified; only the nonzeros must be
handled.

I Sparse matrix computations also save memory: only the
nonzeros need to be stored (together with their location).
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Sparse matrix cage6

I n = 93 rows/columns

I nz = 785 nonzeros

I c = 8.4 nonzeros per row

I d = 9.1% density
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Matrix statistics

I Number of nonzeros is

nz = nz(A) = |{aij : 0 ≤ i , j < n ∧ aij 6= 0}|.

I Average number of nonzeros per row or column is

c = c(A) =
nz(A)

n
.

I Density is

d = d(A) =
nz(A)

n2
.

I Matrix is sparse if nz(A)� n2, or c(A)� n, or d(A)� 1.
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Application: cage model for gel electrophoresis of DNA
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I 3D cubic lattice models a gel, in which a DNA polymer moves.

I DNA reptates, i.e., moves like a snake: its kinks and end
points move under the influence of an electric field E .

I Gel electrophoresis was used in first-generation DNA
sequencing to separate DNA fragments by length.

I Shorter fragments move faster.

A. van Heukelum, G. T. Barkema, R. H. Bisseling, Journal of
Computational Physics 180 (2002) pp. 313–326.
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Transition matrix for the cage model

I Matrix element aij is the probability that a polymer in state j
moves to a state i .

I Hence, the matrix is stochastic, i.e. 0 ≤ aij ≤ 1 and

n−1∑
i=0

aij = 1, for all j .
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Transition matrix is sparse

I Polymer has 6 monomers for cage6. We can move only one
monomer at a time.

I Hence, each state has only a few connected states and the
matrix is sparse.
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Sparsity structure of cage6

I Each move can be reversed, hence aij 6= 0⇐⇒ aji 6= 0, i.e.,
the matrix is structurally symmetric.

I A move against the electric field has a different probability
than a move with the field. Hence aij 6= aji , so that the matrix
is unsymmetric.
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Power method

I Let x be the vector of state frequencies: component xi
represents the relative frequency of state i , with 0 ≤ xi ≤ 1
and

∑
i xi = 1.

I The power method computes Ax,A2x,A3x, . . ., until
convergence.

I The final component xi represents the frequency of state i in
the steady-state situation, where Ax = x.

I Main operation: multiplication of sparse matrix A and dense
vector x.
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Sparse matrix–vector multiplication (SpMV)

I Let A be a sparse n × n matrix and v a dense input vector of
length n.

I We consider the problem of computing the dense output
vector u,

u := Av.

I The components of u are

ui =
n−1∑
j=0

aijvj , for 0 ≤ i < n.
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Sparse matrix–vector multiplication algorithm

input: A : sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

for i := 0 to n − 1 do
ui := 0;

for all (i , j) : 0 ≤ i , j < n ∧ aij 6= 0 do
ui := ui + aijvj ;

I The sparsity of A is expressed by the test aij 6= 0.

I Such a test is never executed in practice, and instead a sparse
data structure is used.
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Application of SpMV: iterative solution methods

I Sparse matrix–vector multiplication is the main computation
step in iterative solution methods for linear systems or
eigensystems.

I Iterative methods start with an initial guess x0 and then
successively improve the solution by finding better
approximations xk , k = 1, 2, . . ., until the error is tolerable.

I Examples:
I Linear systems Ax = b, solved by the conjugate gradient (CG)

method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR,
IDR(s), SOR, FOM, . . .

I Eigensystems Ax=λx solved by the Lanczos method,
Jacobi–Davidson, . . .

I One size does not fit all. Different applications require
different iterative methods.
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Web searching: which page ranks first?
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The weblink matrix A

I Given n web pages with hyperlinks between them, we can
define the sparse n × n weblink matrix A by

aij =

{
1 if there is a hyperlink from page j to page i
0 otherwise.

I Let e = (1, 1, . . . , 1)T, represent an initial uniform importance
(rank) of all web pages. Then

(Ae)i =
∑
j

aijej =
∑
j

aij

is the total number of hyperlinks pointing to page i .

I The vector Ae represents the importance of the pages; A2e
takes the importance of the pointing pages into account as
well; and so on.
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Weblink matrix bspww500

I This matrix with n = 500 and nz = 13 400 represents 500 web
pages and the hyperlinks connecting them.

I It was obtained by a breadth-first search in 2017 of the World
Wide Web starting at http://www.bsp-worldwide.org and
using the web crawler surfer.m by Cleve Moler.
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The random surfer model

I A random web surfer chooses each of the cj outgoing
hyperlinks from page j with equal probability 1

cj
.

I To incorporate this behaviour, we define the n × n diagonal
scaling matrix D by

djj = cj ,

and multiply the weblink matrix A from the right by D−1.

I This divides each column j of A by cj .

16 / 22



Lecture 4.1 Sequential Sparse Matrix–Vector Multiplication

The Google matrix

I Let α be the probability that a surfer follows an outlink of the
current page. Typically α = 0.85. The surfer jumps to a
random page with probability 1− α.

I The Google matrix is defined by

G = αAD−1 + (1− α)
1

n
eeT.

I Note that this definition is under the assumption that all
cj > 0.

I The PageRank of a set of web pages is obtained by repeated
multiplication by G , involving sparse matrix–vector
multiplication by A and some vector operations.

S. Brin and L. Page, Computer Networks and ISDN Systems, 30(1–7)
(1998) pp. 107–117.
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Vector operation

I The vector e can be viewed as an n× 1 matrix of all ones and
the vector eT as a 1× n matrix.

I The matrix eeT is an n × n matrix with all elements equal
to 1.

I Multiplication of a vector x by eeT is cheap:

eeTx = e(eTx) = (
n−1∑
i=0

xi )e.

18 / 22



Lecture 4.1 Sequential Sparse Matrix–Vector Multiplication

Escaping from dangling nodes

I If cj = 0, column j must be empty and page j a dangling
node; it could be a PDF file or an image file.

I To avoid division by zero, the diagonal element is then
redefined as djj = 1.

I To make the Google matrix stochastic (with all column sums
equal to 1), we must add to G an extra term

α
1

n
eêT.

I Here, the vector ê is defined by

êj =

{
1 if cj = 0
0 otherwise.
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Insight into other applications
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I A molecular dynamics domain of size 1.0× 1.0 with 15
particles.

I The cut-off radius for interaction between particles is rc = 0.2.
The circles shown have radius rc/2 = 0.1.

I Particles interact if their circles intersect.
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Force matrix F represents particle interactions
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I Shown is the matrix F + I , where F is the sparse 15× 15
force matrix corresponding to the particle interactions.

I If particles i and j interact, nonzeros fij and fji appear in F .
I Row i of F + I expresses the information needed to compute

the next position of particle i in a molecular dynamics
simulation: forces fij 6= 0 and the current position and velocity
of i .
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Summary

I Sparse matrices are the rule, rather than the exception. In
many applications, variables are connected to only a few
others, leading to sparse matrices.

I Sparse matrices occur in many application areas:
I transition matrices in Markov models;
I finite-element matrices in engineering;
I linear programming matrices in optimization;
I weblink matrices in Google PageRank computation.

I Sparse matrix–vector multiplication is important for iterative
solvers and it is the workhorse of the PageRank computation.

I It can also capture other applications such as molecular
dynamics.

I The sequential computation is simple, but its parallelization is
a challenge.
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