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Reducing the number of proposals

I The parallel matching algorithm can be improved by trying to
reduce the number of proposals.

I Adding a motivation to each rejection of a proposal may help
the receiving processor avoid sending futile proposals in the
future.

I If vertex v proposes to u, but u rejects because it has a:
I better suitor x , then processor P(φ(u)) can send back the

weight ωsuitor(u) = ω(u, x) to P(φ(v)) as a motivation;
I match, then the processor can send back ωsuitor(u) =∞.

I No vertex residing on P(φ(v)) with a weight < ωsuitor(u) will
ever propose again to vertex u.

I This might save many proposals, especially at a later stage,
when the suitor weights have increased.
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Wedding rings

I Wedding rings are commonly exchanged as a symbol of love
and to tell all the world about a marriage.

I In algorithms, the equivalent is to broadcast a match to all
processors in the vicinity.

I Proposing marriage to someone already wearing a wedding
ring or proposing a match to an already matched vertex is
useless.

I Thus, a further improvement is to broadcast ωsuitor(v) =∞ to
the whole set {P(φ(u)) : (u, v) ∈ Es}, once v ∈ Vs matches.
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Additional communication volume of broadcasts

I To get an upper bound on the extra costs, we assume that
I all vertices are matched during the algorithm;
I all matches are broadcast.

I In the worst case, this broadcast is based on the original edge
set Es , before any edges have been removed.

I The additional communication volume then depends
completely on the partitioning φ of the vertices.
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Correspondence between graph and adjacency matrix

I The worst-case additional communication volume of the
broadcasts equals the volume of a corresponding parallel
SpMV for a suitably defined matrix and vector.

I The adjacency matrix A = A(G) of an undirected simple
graph G = (V, E) is defined by

aij =

{
1 if (i , j) ∈ E
0 otherwise,

for 0 ≤ i , j < n.

I The adjacency matrix is binary (having only values 0 and 1),
sparse, symmetric, and it has a zero diagonal.
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Social network of dolphins
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I A social network of 62 bottlenose dolphins with 159 frequent
associations between them in a community living off the
Doubtful Sound fjord, New Zealand.
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Adjacency matrix of dolphins network
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I 62× 62 symmetric sparse matrix A.
nz(A) = 318.
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Distributing the vertices as rows of A+ I

I We provide the matrix with a unit diagonal by adding the
identity matrix I = In.

I We define a row distribution φA+I of the matrix A + I
corresponding to the vertex partitioning φ of the graph G by

φA+I (i , j) = φ(i), for aij 6= 0 ∨ i = j .

I We define a corresponding vector distribution by setting
φv = φu = φ.

I Here, v is the input vector and u the output vector of the
parallel SpMV u := (A + I )v.
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Partitioning of the matrix A+ I for p = 4 and ε = 0.2
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I Partitioning with V = 47, EC = 47 (coincidence!) obtained
by using Mondriaan in 1D row mode.
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Why add the unit diagonal?

I This ensures that the processor P(φ(j)) owning vertex j and
hence matrix row j of A + I is also represented in matrix
column j .

I The remote processors owning nonzeros in column j of A + I
are exactly the processors connected by a cut edge to vertex j ,
which receive the broadcast of the matching of j .

I Therefore, the communication volume VφA+I
of the fanout of

the parallel SpMV (and hence the whole SpMV) equals that
of the match broadcasts.
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Matched social network of dolphins

I The dolphins are matched on 4 processors based on uniform
edge weights and with preference for local matches, giving 23
internal matches and 1 external match.
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Load balancing constraint

I When partitioning the vertices of the graph, we can either
balance the number of vertices, or the number of edges.

I Both are only approximate indications of the amount of work
of the matching algorithm, which is more dynamic in nature
than the SpMV, where the nonzero balance represents the
true work balance.

I Because processors with more edges will have more work
searching and splitting adjacency lists, balancing the edges
better reflects the load balance of the matching algorithm.

I This also balances the memory requirements.

I Using Mondriaan, we can add a unit diagonal to the input
matrix A without affecting load balance by setting the options
SquareMatrix DistributeVectorsEqual and
SquareMatrix DistributeVectorsEqual AddDummies.
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Theorem 5.3: communication volume and edge cut

Theorem
Let Vφ be the communication volume of a broadcast induced by
vertex partitioning φ of an undirected graph G = (V, E),

Vφ =
∑
v∈V
|{φ(u) : (u, v) ∈ E ∧ φ(u) 6= φ(v)}|.

Let ECφ be the edge cut of the vertex partitioning,

ECφ = |{(u, v) ∈ E : φ(u) 6= φ(v)}|.

Then
Vφ ≤ 2 · ECφ.
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Proof of Theorem 5.3
I Define the indicator function 1X as 1 if the statement X

holds, and 0 otherwise.
I Because every edge is connected to two vertices, we have that

2 · ECφ =
∑
v∈V

∑
(u,v)∈E
φ(u)6=φ(v)

1

=
∑
v∈V

p−1∑
s=0

s 6=φ(v)

∑
(u,v)∈E
φ(u)=s

1

≥
∑
v∈V

p−1∑
s=0

s 6=φ(v)

1∃u:(u,v)∈E ∧φ(u)=s

=
∑
v∈V
|{φ(u) : (u, v) ∈ E ∧ φ(u) 6= φ(v)}|

= Vφ. �
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Potential gains of broadcasting matches

I In the worst case, the communication cost is doubled when a
broadcast volume of Vφ = 2 · ECφ is added to the volume of
ECφ proposals and ECφ answers.

I But the worst case is highly unlikely, because then all cut
edges of each vertex must be connected to different
processors. Usually, however,

Vφ � ECφ.

I In the best case, most proposals are prevented and the total
communication volume is close to Vφ.

I In that case, the hypergraph-based partitioning obtained for
parallel SpMV is also the right partitioning for the graph
matching algorithm.

I The potential gains of broadcasting matches outweigh the
potential losses.
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Final possible improvement: 2D partitioning

I We can use a 2D matrix distribution instead of a 1D row
distribution, partitioning the matrix nonzeros instead of the
rows.

I For the graph, this means partitioning the edges instead of the
vertices.

I The 2D approach is more general and gives partitionings with
lower communication volume and better load balance.

I The 2D approach may especially be beneficial for graphs with
widely varying vertex degrees, such as power-law graphs,
where the fraction of vertices of degree d scales as O(d−α).

I In a 1D approach, a high-degree vertex with a long adjacency
list requires much more computation than other vertices, thus
harming load balance.
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2D matching algorithm

I A 2D matching algorithm is more complicated than a 1D
matching algorithm.

I For 2D, both the vertices and edges will be distributed.

I We need to find the preferences in a distributed manner,
because the edges connected to a vertex v will not all be
stored on processor P(φ(v)).

I Thus, P(φ(v)) will first have to request candidates for its new
preference and only then can it decide on the best.
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Summary
I The number of proposals sent in the parallel matching

algorithm can be reduced by sending motivated rejections and
by broadcasting matches,

I The adjacency matrix A = A(G) of an undirected graph
G = (V, E) is defined by

aij =

{
1 if (i , j) ∈ E
0 otherwise,

for 0 ≤ i , j < n.

I The additional communication volume of the match
broadcasts is at most the volume Vφ of a parallel SpMV for
the row-distributed matrix A + I ,

I An upper bound on Vφ is

Vφ ≤ 2 · ECφ,

where ECφ is the edge cut. But usually, Vφ � ECφ.
I 2D matrix partitioning can further reduce communication

volume and improve load balance.
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