
Lecture 5.4 Parallel Graph Matching

Parallel Graph Matching
Section 5.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 20

Lecture 5.4 Parallel Graph Matching

p-way vertex partitioning

I A p-way vertex partitioning V0, . . . ,Vp−1 is a set of p
nonempty subsets of V that satisfy

V =

p−1⋃
s=0

Vs ,

and
Vs ∩ Vt = ∅, for all s 6= t.

I Vs is the local vertex set of processor P(s).

I φ(v) is the processor number of vertex v .

I The adjacency list Adjv of a vertex v is stored together with
v on processor P(φ(v)).

I Adjv may contain vertices u from another processor.

2 / 20

Lecture 5.4 Parallel Graph Matching

Halo vertices

I The halo of a processor is the set of surrounding data that
interact directly with the processor, causing communication.

I The halo set of processor P(s) is the vertex set

Hs =

(⋃
v∈Vs

Adjv

)
\ Vs .

I For a good partitioning, |Hs | � |Vs |.
3 / 20

Lecture 5.4 Parallel Graph Matching

Internal and external edges

n = 8, m = 10, p = 2

I P(0) owns four red vertices.
I Its halo set H0 consists of two blue vertices

marked by a red circle.
I The edge set of processor P(s) is

Es = {(u, v) ∈ E : v ∈ Vs}.
I The edge set of P(0) consists of:

I 4 internal edges, with both ends in V0, shown in red;
I 2 external edges (cut edges), with one end in V0 and

one in H0, shown as pairs of red/blue edges.

4 / 20

Lecture 5.4 Parallel Graph Matching

Parallel local domination algorithm for P(s): main loop

Ms := ∅; . matches
Rs := ∅; . received messages
Qs := Vs ; . queue of vertices

done := false;
while not done do

dones := (Rs = ∅ ∧ Qs = ∅);
put dones in P(∗);
ProcessReceivedMessages(Rs ,Qs ,Ms ,Vs , ω, . . .);
while Qs 6= ∅ do

pick a vertex v ∈ Qs ;
...

Sync;
done :=

∧p−1
t=0 donet ;

5 / 20

Lecture 5.4 Parallel Graph Matching

Detecting termination of the algorithm

I The algorithm terminates when all processors have an empty
receive buffer Rs and an empty work queue Qs .

I Received messages can give rise to new work, hence both Rs

and Qs must be empty when declaring the local work done.

I Termination is expressed in a boolean variable done, which is
true if all local booleans dones are true.

I This can be checked without requiring extra synchronization
by broadcasting the local booleans once every superstep.

6 / 20

Lecture 5.4 Parallel Graph Matching

Parallel local domination algorithm for P(s): inner loop
while Qs 6= ∅ do

pick a vertex v ∈ Qs ; Qs := Qs \ {v};
FindAlive(v ,Adjv , ω, alive, suitor , d);
r := FindSplitter(v ,Adjv , ω, alive, splitter v , suitor , d);
(u, v) := FindPref(Adjv , ω, r , dv − 1);
dv := dv − 1;
pref (v) := u;

if u = suitor(v) then . Register a match or propose
Ms :=Ms ∪ {(u, v)};
dv := 0;
if u ∈ Vs then

du := 0;
else

put accept(v , u) in P(φ(u));

else if u /∈ Vs then
put propose(v , u) in P(φ(u)); ...

7 / 20

Lecture 5.4 Parallel Graph Matching

How to propose

Source: The Guardian, June 1, 2010.
Photo by Getty.

I propose(v , u) means: v proposes to u

8 / 20

Lecture 5.4 Parallel Graph Matching

How not to propose

IJsselstein, the Netherlands. Source: ANP, December 13, 2014.

I No one got hurt, she accepted, and they ran off to Paris to
celebrate.

I accept(v , u) means: v accepts u

9 / 20

Lecture 5.4 Parallel Graph Matching

Mixed superstep

. . .
put accept(v , u) in P(φ(u));
. . .
put propose(v , u) in P(φ(u));
. . .

I The strongest point of BSP for graph computations: we can
freely mix computation and communication and initiate
communication from anywhere in the algorithm.

I Still, we achieve a superstep structure by assuming delayed
communication executed at the next synchronization (Sync).

I This helps us in thinking about algorithms, analysing their
time complexity, and proving their correctness.

10 / 20

Lecture 5.4 Parallel Graph Matching

One-sided communication gives flexibility

I One-sided communication is the basis for the ability to send
data from anywhere in a program text, without any worries
about corresponding receive operations.

I In contrast, think of the horrors of using two-sided
communication: we would have to match send-statements
hidden somewhere with receive-statements hidden somewhere
else.

11 / 20

Lecture 5.4 Parallel Graph Matching

Inner loop (cont’d)

while Qs 6= ∅ do
...
pref (v) := u;
...
if u ∈ Vs then . Replace the previous suitor

x := suitor(u);
suitor(u) := v ;
RejectSuitor(u, x ,Qs ,Vs , alive, pref)

SplitAdj(Adjv , ω, splitter v , r , dv − 1); . Split adjacency list

12 / 20

Lecture 5.4 Parallel Graph Matching

Rejecting a suitor

function RejectSuitor(v , x ,Qs ,Vs , alive, pref)

if x 6= nil then
if x ∈ Vs then

Qs := Qs ∪ {x};
pref (x) := nil;

else
put reject(v , x) in P(φ(x));

alive(v , x) := false;

I reject(v , u) means: v rejects u

13 / 20

Lecture 5.4 Parallel Graph Matching

Processing received messages: main loop

function ProcessReceivedMessages(Rs ,Qs , . . .)

while Rs 6= ∅ do
pick a message msg ∈ Rs ;
Rs := Rs \ {msg};

if msg = propose(u, v) then
{ Register a match }
if u = pref (v) then
Ms :=Ms ∪ {(u, v)};
dv := 0;

...
else if msg = accept(u, v) then

...
else if msg = reject(u, v) then

...

14 / 20

Lecture 5.4 Parallel Graph Matching

Remember your proposals!

if msg = propose(u, v) then
{ Register a match }
if u = pref (v) then
Ms :=Ms ∪ {(u, v)};

...

I If v prefers a remote u and sends a proposal to u, it needs to
remember this. Just as in real life.

I In the parallel algorithm, we need to store both suitor(v) and
pref (v) for each local vertex v , because suitor information is
spread across different processors.

15 / 20

Lecture 5.4 Parallel Graph Matching

Reasoning with supersteps

I In case u proposes to v , where v has already proposed to u,
this will be detected by the condition u = pref (v).

I The proposal by v to u must have been sent simultaneously
with the proposal by u to v in the previous superstep.

I It cannot have been sent earlier, because in that case u would
have answered with an accept message instead of sending a
proposal.

I Here, our reasoning is based on supersteps that
I first process received messages;
I after that, set preferences and send proposals.

I The proposal is then tacitly accepted, without sending an
accept message, because both sides know about the match.

16 / 20

Lecture 5.4 Parallel Graph Matching

Processing a proposal: the complete text

if msg = propose(u, v) then
{ Register a match }
if u = pref (v) then
Ms :=Ms ∪ {(u, v)};
dv := 0;

{ Assign new suitor }
x := suitor(v);
if ω(u, v) > ω(x , v) then

suitor(v) := u;
RejectSuitor(v , x ,Qs ,Vs , alive, pref)

else
put reject(v , u) in P(φ(u));
alive(u, v) := false;

17 / 20

Lecture 5.4 Parallel Graph Matching

Processing an accept message

if msg = accept(u, v) then
Ms :=Ms ∪ {(u, v)};
dv := 0;
x := suitor(v);
suitor(v) := u;
RejectSuitor(v , x ,Qs ,Vs , alive, pref)

I If u accepts v , the match (u, v) is registered, the degree dv of
v is set to 0, and the previous suitor x is rejected.

I To ward off others, u is still registered as the suitor of v .

18 / 20

Lecture 5.4 Parallel Graph Matching

Processing a reject message

if msg = reject(u, v) then
Qs := Qs ∪ {v};
pref (v) := nil;
alive(u, v) := false;

I If u rejects v , the vertex v is reinserted into the queue, its
preference is reset to nil, and the edge (u, v) is declared dead.

19 / 20

Lecture 5.4 Parallel Graph Matching

Summary

I We parallelized the local domination algorithm by partitioning
the vertex set V into subsets Vs .

I Each processor P(s) obtains a vertex set Vs , a halo set

Hs = {u ∈ V \ Vs : (∃v ∈ Vs : (u, v) ∈ E)},

and an edge set

Es = {(u, v) ∈ E : v ∈ Vs}.

I The parallel algorithm is based on mixed supersteps, where
communication can conveniently be initiated from anywhere
within the superstep.

I Each superstep starts with processing received messages, of
type propose, accept, or reject; then, it repeatedly sets
preferences; and finally, it sends out new messages.

20 / 20

