Parallel algorithm for hybrid-BSP

Section 4.10 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 4.10 Parallel algorithm for hybrid-BSP

1/17



Hierarchical architecture of the Fugaku supercomputer

X8

x8 = = =
5 2 Shelf
(Bunch of Blades) 48 Nodes, 3 BoBs

CPU 16 Nodes,
1CPU/Node

oMU
(CPU Memory Unit)
2 Nodes, 2 CPUs

Rack
384 Nodes, 8 Shelves

Courtesy of FUITSU LIMITED

» Hybrid shared/distributed-memory computer.

Lecture 4.10 Parallel algorithm for hybrid-BSP

> 1 node = 4 x 12 compute cores.

2/17



Architecture of a hybrid-BSP computer

Communication
(p2, 82, h)

Communication Communication
(p1,81,h) (p1,81,h)

» p> = 2 nodes with p; = 4 cores per node.
> Assumption: g1 < g» and | < b.

Lecture 4.10 Parallel algorithm for hybrid-BSP

3/17



Superstep structure of a hybrid-BSP algorithm

Sync(h)

» The algorithm has global supersteps involving all processors
and local supersteps carried out within a node,

ure 4.10 Parallel algorithm for hybrid-BSP

4/17



Hybrid-BSP cost model: global communication

» P(s,t) represents processor (core) t in node s, where
0<s<pand 0<t < py.

» The cost of a global communication superstep is

Tcomm, global(h) = hg2 + I27

where h is the maximum number of data words
sent/received by any node.

Lecture 4.10 Parallel algorithm for hybrid-BSP

5/17



Hybrid-BSP cost model: global computation

» The cost of a global computation superstep is

7-comp, global — Oénsa<)§32(as + bsgl + Csll) + /27

where node P(s, x) executes a BSP algorithm with cost
as + bsg1 + csh.

» Taking the maximum of costs instead of summing makes the
hybrid-BSP cost model more difficult to use.

» |t becomes easier if all nodes perform the same BSP algorithm
with the same number of supersteps.

Lecture 4.10 Parallel algorithm for hybrid-BSP

6/17



Distribution for hybrid-BSP SpMV

» Every node P(s, x) obtains the components v; it needs
directly from the source processor P(¢y(J)).

» Component v; is stored at one designated processor in the
node, P(s, ¢3(j)), which becomes the local owner of a copy
of vj.

» Every processor that needs v; obtains it from the local owner
in a local communication superstep.

» We define

as the owner of a;; # 0, and ¢(i,j) = —1if a;j = 0.

Lecture 4.10 Parallel algorithm for hybrid-BSP

7/17



Hybrid-BSP sparse matrix—vector multiplication

input: A sparse n x n matrix, distr(A) = ¢ = (¢o, ¢1),
v : dense vector of length n, distr(v) = ¢y.
output: u : dense vector of length n, u = Av, distr(u) = ¢y.

J)=s)}
=-1

Js={/:0<j<nA@i:0<i<nA ¢o(i,
0 < @i(j) < p1, for all j € Js, otherwise ¢3())

{ Global fanout } > Superstep (0)
forallj:0<j<nA ¢;(j)=tdo
get v; from P(éu()));

Je={j:0<j<nA@i:0<i<nA¢(i,j)=(s,t))}
{ Local fanout } > Superstep (1)

for all j € Js; do
get v; from P(s, ¢3(j));

Lecture 4.10 Parallel algorithm for hybrid-BSP

8/17



Hybrid-BSP sparse matrix—vector multiplication (cont'd)
le={i:0<i<nA(F:0<j<nA¢(i,j)=(s 1)}

{ Local sparse matrix—vector multiplication } > Superstep (2)
for all i € I; do
ujst := 0;
forall j:0<j<nA ¢(i,j)=(s,t) do
Ujst = Ujst + ajjVj,

{ Local fanin } > Superstep (3)
for all j € [;; do

put ujst in P(s, ¢5(1));

{ Local summation of nonzero partial sums } > Superstep (4)
foralli:0<i<nA¢(i)=tdo
uis :=0;
forallt':0<t <p; A ujsw # 0 do
Ujs 1= Ujs + Ujst/;

Lecture 4.10 Parallel algorithm for hybrid-BSP

9/17



Hybrid-BSP sparse matrix—vector multiplication (cont’d)

{ Global fanin } > Superstep (5)
forall i:0<i<nA ¢;(i)=1tdo
put ujs in P(¢u(i));

{ Global summation of nonzero partial sums } > Superstep (6)
forall i:0<i<nA ¢u(i) = (s,t) do
u; = 0;
foralls:0<s <pr A uiw #0 do
uj == uj + ujs;

Lecture 4.10 Parallel algorithm for hybrid-BSP

10/17



Partitioning the data for a hybrid-BSP algorithm

» First, we partition the matrix A using Mondriaan into p, parts
with an allowed imbalance ¢ < ¢, to be discussed later.

» Then, we partition each resulting part s into p; parts using

Mondriaan with an allowed imbalance €;(s) that corresponds

to allowing at most (1 + e)# NONZeros per processor.

Lecture 4.10 Parallel algorithm for hybrid-BSP

11/17



Communication cost of global and local fanouts

» The communication cost of the global fanout is

Vogo
Toy=—"
p2

where V5 is the communication volume, and we assume
perfect communication balance.

» The communication cost of the local fanout is

Here, Vi is the total communication volume for all processors

in all the nodes, and each processor performs a local

- ; ; -\ _w
h-relation with h = oip P

Lecture 4.10 Parallel algorithm for hybrid-BSP

12/17



Distributed /shared-memory communication cost ratio 3

V. V;
Ty — 282’ Ty = 1g1‘
(0) (1)

P2 P

» Communication per data word is more expensive in the
distributed-memory global superstep (0) than in the
shared-memory local superstep (1), by a factor

_&/p _ &P
g/p &

» 3 depends on pi1, because we model p; processors as a single
node in the global superstep.

Lecture 4.10 Parallel algorithm for hybrid-BSP

13/17



Growth of V as a function of p

» The communication volume grows with p.

» We can model this by a function V = O(p®).

» Unfortunately, the value of « is problem-dependent.
» For 2D Laplacian matrices, o = 1/2.

» For3D, a=1/3

Lecture 4.10 Parallel algorithm for hybrid-BSP

14 /17



How to choose the initial allowed imbalance €57

» Having the equivalent of 8 times more volume in the global
fanout,
Vo = Bps = (87 p2)"*,
is the same as having § extra levels of recursive bipartitioning,
where
g = log, 5Y/°.
» These levels can be considered interspersed with the top
g2 = log, po levels.
» Recall that for the first split of a partitioning into g = log, p
parts, we choose an allowable imbalance of 6 = €/q.

» Since the total number of levels now increases from g = log, p
to g + §, and we treat all these levels equally, we choose

g2+ 4§
qg+4q

€ = €.

Lecture 4.10 Parallel algorithm for hybrid-BSP

15/17



Vector distribution for the fanout

» Our goal is to determine:
> the unique owner P(¢y(j)) of the component v;;
» for each node P(s,*) with j € Js,
the owner P(s, #3(j)) of the local copy.

P> Matrix partitioning minimizes the communication volume;
the subsequent vector partitioning tries to balance the
communication load.

» The vector partitioning after the global matrix partitioning
determines for each v; the node P(s, x) that owns it,
and we write

o) = (s, 5()))-
» The vector partitioning after the local matrix partitioning
within node P(s, ) then determines ¢3(J).

Lecture 4.10 Parallel algorithm for hybrid-BSP

16/17



Summary

» The hybrid-BSP model has a hierarchical architecture with py
nodes, each containing p; cores.

» A large value of the distributed/shared-memory
communication cost ratio 3 = &2 s the motivation
for the hybrid-BSP model.

» A hybrid-BSP algorithm has local supersteps (with
communication and synchronization within a node)
and global supersteps.

» For a hybrid-BSP SpMV, this leads to 4 local supersteps and
3 global supersteps.

» The partitioning of the sparse matrix is first done for the
nodes, and then for the cores, with a suitable choice of € in
each stage.

Lecture 4.10 Parallel algorithm for hybrid-BSP

17/17



