
Lecture 3.1–3.2 Sequential FFT

Sequential Fast Fourier Transform
Sections 3.1–3.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23

Lecture 3.1–3.2 Sequential FFT

Applications of Fourier analysis

I Fourier analysis studies the decomposition of functions into
their frequency components.

I Mozart piano sonata recorded 50 years ago: enhance high
frequencies.

I Chest picture by Computed Tomography (CT): reconstruct
your interior without slicing you up.

I Star picture by Hubble Space Telescope before its mirrors
were repaired: remove blur.

2 / 23

Lecture 3.1–3.2 Sequential FFT

Periodic function

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10 12

x

f(x)

I The original function f (x) with period T = 2π.

3 / 23

Lecture 3.1–3.2 Sequential FFT

Decomposing a function into sines and cosines

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10 12

x

f(x)
sin x
0.1 sin 2x
0.2 cos 3x

f (x) = sin x + 0.1 sin 2x + 0.2 cos 3x .

4 / 23

Lecture 3.1–3.2 Sequential FFT

Fourier series

I Let f : R→ C be a T -periodic function:

f (t + T) = f (t), for all t ∈ R.

I Fourier series associated with f :

f̃ (t) =
∞∑

k=−∞
cke

2πikt/T ,

where i is the complex number with i2 = −1.

I Fourier coefficients ck are given by

ck =
1

T

∫ T

0
f (t)e−2πikt/T dt.

I The Fourier series converges if f is piecewise smooth
(continuously differentiable).

5 / 23

Lecture 3.1–3.2 Sequential FFT

Fourier coefficients for a real-valued function

I Complex Fourier coefficients ck and corresponding real
coefficients ak , bk for T -periodic f : R→ R are given by

ck = ak − ibk =
1

T

∫ T

0
f (t)e−2πikt/T dt.

=
1

T

∫ T

0
f (t)

(
cos

2πkt

T
− i sin

2πkt

T

)
dt.

(1)

I Since c−k = ck , we have:

ak =
ck + ck

2
, bk =

(ck − ck)i

2
.

6 / 23

Lecture 3.1–3.2 Sequential FFT

Fourier series for a real-valued function

Substituting ak = (ck + ck)/2 and bk = (ck − ck)i/2 gives:

f̃ (t) =
∞∑

k=−∞
cke

2πikt/T =
∞∑
k=1

cke
−2πikt/T + c0 +

∞∑
k=1

cke
2πikt/T

= c0 +
∞∑
k=1

(ck + ck) cos
2πkt

T
+
∞∑
k=1

(−ck + ck)i sin
2πkt

T

= a0 + 2
∞∑
k=1

ak cos
2πkt

T
+ 2

∞∑
k=1

bk sin
2πkt

T
.

This gives the decomposition of a real-valued function into sines
and cosines.

7 / 23

Lecture 3.1–3.2 Sequential FFT

It’s a discrete world

I One second of audio on a compact disc contains 44 100
function values f (tj) in regularly spaced sample points

tj =
jT

n
, 0 ≤ j < n.

I This is also the sampling rate for many streaming audio
applications.

I A high-resolution digital image may contain 4 096× 4 096
pixels (picture elements).

I A CT scan may have 1 024× 1 024× 1 024 voxels (volume
elements).

8 / 23

Lecture 3.1–3.2 Sequential FFT

Approximation of Fourier coefficients

I Trapezoidal rule on interval [tj , tj+1] =
[
jT
n ,

(j+1)T
n

]
:

∫ tj+1

tj

f (t) dt ≈
f (tj) + f (tj+1)

2
· T
n
.

I On the whole interval [0,T]:

ck =
1

T

∫ T

0
f (t)e−2πikt/Tdt

≈ 1

T
· T
n

 f (0)

2
+

n−1∑
j=1

f (tj)e
−2πiktj/T +

f (T)

2

=

1

n

n−1∑
j=0

f (tj)e
−2πijk/n (since f (0) = f (T) = f (t0)).

9 / 23

Lecture 3.1–3.2 Sequential FFT

Discrete Fourier transform

I The discrete Fourier transform (DFT) of a vector
x = (x0, . . . , xn−1)T is the vector y = (y0, . . . , yn−1)T with

yk =
n−1∑
j=0

xje
−2πijk/n =

n−1∑
j=0

xjωn
jk , for 0 ≤ k < n.

Here, ωn = e−2πi/n.

I Compare:

ck ≈
1

n

n−1∑
j=0

f (tj)e
−2πijk/n

Thus c ≈ DFT (x), where xj = f (tj)/n.

10 / 23

Lecture 3.1–3.2 Sequential FFT

Inverse DFT

I Easy to prove: the inverse DFT (IDFT) of a vector
x = (x0, . . . , xn−1)T is the vector y = (y0, . . . , yn−1)T with

yk =
1

n

n−1∑
j=0

xje
+2πijk/n, for 0 ≤ k < n.

I Same as DFT formula, except for the scaling 1
n and the sign

of the exponent.

11 / 23

Lecture 3.1–3.2 Sequential FFT

Roots of unity

ω0 = 1

ω1

ω2

ω3

ω4

ω5

ω6 = i

ω7

I Here, ω = ω8 = e−2πi/8 = e−πi/4 = 1
2

√
2− 1

2

√
2i .

I ωn
n = e−2πin/n = e−2πi = 1.

I ωn
n/2 = e−2πi(n/2)/n = e−πi = −1.

I ωn
2 = e−4πi/n = e−2πi/(n/2) = ωn/2.

12 / 23

Lecture 3.1–3.2 Sequential FFT

Matrix–vector multiplication

I Define the n × n Fourier matrix Fn by

(Fn)jk = ωn
j ·k , for 0 ≤ j , k < n.

I Hence Fnx = DFT (x):

(Fnx)j =
n−1∑
k=0

(Fn)jkxk

=
n−1∑
k=0

xkωn
jk

= (DFT (x))j .

13 / 23

Lecture 3.1–3.2 Sequential FFT

Fourier matrix F4

I Because ω4 = e−2πi/4 = e−πi/2 = −i :

F4 =

ω4

0 ω4
0 ω4

0 ω4
0

ω4
0 ω4

1 ω4
2 ω4

3

ω4
0 ω4

2 ω4
4 ω4

6

ω4
0 ω4

3 ω4
6 ω4

9

 =

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

14 / 23

Lecture 3.1–3.2 Sequential FFT

Cost of a straightforward DFT

I Complex addition

(a + bi) + (c + di) = (a + c) + (b + d)i

requires 2 real additions.

I Complex multiplication

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

requires 1 real addition, 1 real subtraction, 4 real
multiplications, hence a total of 6 flops.

I To compute yk =
∑n−1

j=0 xjωn
jk , we need n complex

multiplications and n − 1 complex additions, so
6n + 2(n − 1) = 8n − 2 flops.

I To compute the n components of y, we need 8n2 − 2n flops.

15 / 23

Lecture 3.1–3.2 Sequential FFT

Splitting into even and odd components

yk =
n−1∑
j=0

xjω
jk
n =

n/2−1∑
j=0

x2jω
2jk
n +

n/2−1∑
j=0

x2j+1ω
(2j+1)k
n .

Using ω2
n = ωn/2 gives

yk =

n/2−1∑
j=0

x2jω
jk
n/2 + ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n.

I Each sum is a DFT of length n/2, for 0 ≤ k < n/2.

I Thus, we can compute the first half of the DFT by a DFT on
the even components of x and a DFT on the odd
components, and then combining the results.

I Cost is 2 ·
[
8(n/2)2 − 2(n/2)

]
+ 8(n/2) = 4n2 + 2n flops.

16 / 23

Lecture 3.1–3.2 Sequential FFT

Computing the second half of the DFT

Let n/2 ≤ k < n. Substituting k = k ′ + n/2 into

yk =

n/2−1∑
j=0

x2jω
jk
n/2 + ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2

gives 0 ≤ k ′ < n/2 and

yk ′+n/2 =

n/2−1∑
j=0

x2jω
j(k ′+n/2)
n/2 + ω

k ′+n/2
n

n/2−1∑
j=0

x2j+1ω
j(k ′+n/2)
n/2

=

n/2−1∑
j=0

x2jω
jk ′

n/2 − ωk ′
n

n/2−1∑
j=0

x2j+1ω
jk ′

n/2,

because ω
n/2
n/2 = 1 and ω

n/2
n = −1. Now drop the primes.

17 / 23

Lecture 3.1–3.2 Sequential FFT

Cost reduction of one split

yk+n/2 =

n/2−1∑
j=0

x2jω
jk
n/2 − ωk

n

n/2−1∑
j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n/2.

I This is the same formula as for the first half, except for the
subtraction.

I Thus, we can compute the second half of the DFT almost
without extra work, performing just n/2 complex subtractions,
i.e., n flops.

I The total cost for the whole DFT with one split is 4n2 + 3n
flops, thus saving about half the flops from the original
8n2 − 2n.

18 / 23

Lecture 3.1–3.2 Sequential FFT

Recursive computation of DFT

0 1 2 3 4 5 6 7

0 2 4 6 1 3 5 7

0 4 2 6 1 5 3 7

0 4 2 6 1 5 3 7

I The problem is split recursively until its size is 1.

19 / 23

Lecture 3.1–3.2 Sequential FFT

Recursive fast Fourier transform (FFT) algorithm

input: x : vector of length n.
output: y : vector of length n, y = Fnx.

function FFT(x, n)

if n mod 2 = 0 then
xe := x(0 : 2 : n − 1); . pick the even components
xo := x(1 : 2 : n − 1); . pick the odd components
ye := FFT(xe, n/2);
yo := FFT(xo, n/2);
for k := 0 to n/2− 1 do

τ := ωk
ny

o
k ;

yk := y ek + τ ;
yk+n/2 := y ek − τ ;

else
y := DFT(x, n);

20 / 23

Lecture 3.1–3.2 Sequential FFT

Cost of fast Fourier transform

I The loop over k in the FFT algorithm has a complex
multiplication, addition, subtraction, together
6 + 2 + 2 = 10 flops.

I n/2 iterations of the loop, hence a total of n/2 · 10 = 5n flops.

I For an FFT(n), we perform an FFT(n/2) twice and 5n flops :

T (n) = 2T (
n

2
) + 5n

= 2
(

2T (
n

4
) + 5

n

2

)
+ 5n = 4T (

n

4
) + 2 · 5n

= · · · = nT (1) + (log2 n) · 5n = 5n log2 n.

I Much faster than 8n2 time for direct computation of DFT.

I For n = 227 = 134 217 728 (50 min 43 s audio, an average
CD), an FFT can be done in 18 s on a 1 Gflop/s PC, but it
would take over 4.6 years using the straightforward DFT.

21 / 23

Lecture 3.1–3.2 Sequential FFT

History

I The fast Fourier transform (FFT) idea was discovered by
Gauss (1805) and rediscovered by Danielson and Lanczos
(1942).

I It is commonly attributed to IBM researchers Cooley and
Tukey (1965), who rediscovered it in the digital era and made
the source code publicly available.

22 / 23

Lecture 3.1–3.2 Sequential FFT

Summary

I The FFT is the computational workhorse in many applications,
from weather forecasting to signal and image processing.
Without the FFT, modern medicine would be impossible.

I The cost of an FFT of length n is 5n log2 n flops.

I We have derived a recursive FFT algorithm, i.e., an algorithm
that calls itself with a smaller problem size.

23 / 23

