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Pros and cons of recursive computations

Pros. Recursive computations

P display a natural splitting into subproblems, thus pointing to
possible parallelism;

» provide a concise formulation of the algorithm;
» reduce the amount of bookkeeping;
» are cache-friendly.

Cons. They

P traverse the corresponding computational tree sequentially,
thus making parallelization more difficult.
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Matrix decompositions

> If we decompose the matrix F, into
Fn=Ar—1---AiAo,

where each factor A, is an n X n matrix, we can obtain F,x
by repeatedly multiplying a matrix Ay and a vector:

FnX = Ar—l tee A1AOX.

» Different decompositions represent different algorithms.
» Can the FFT be formulated as a matrix decomposition?

» Yes! Charles Van Loan (Computational Frameworks for the
FFT, SIAM, 1992) has formulated many variants of the FFT
in terms of matrix decompositions.
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Matrix and vector language for the FFT

» Define the n x n diagonal matrix

Q, = diag(l,wzn,wgn, .. ,wgn_l),
so that
Qo = diag(1, wp, w2, ... ,w,r,’/z_l).

§2,/> contains exactly the powers of w, needed in the FFT.

» The recursive algorithm can now neatly be expressed by
Fox = { b2 Q)2 ] [ Fnjox(0:2: n—1) }
/n/2 _Qn/2 F,,/zx(l: 2:n—1)

{2 Qa2 Fny2 0 x(0:2: n—1)
Lz Q2 0 Fop | | x(1:2:n-1) |
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Even-odd sort matrix

The even-odd sort matrix S, is the n X n permutation matrix

containing rows 0,2,...,n — 2 of /, followed by rows
1,3,...,n—1,
(1.0 0 0 0 0 0]
0010 0 00O
s _ 0 000 010
"T10100 0 0O
0 001 0 0O
|00 00 0 0 1]

Ths, Six= | 050 .
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Kronecker matrix product

> Let A be a g x r matrix and B an m x n matrix. The

Kronecker product (or tensor product, or direct product) of A
and B is the gm X rn matrix

apoB -+ ap,-1B
A®B = :
ag-10B -+ ag-1,-1B
01 1 0 2
> — —
Let A {2 4}andB [0 1 0].Then
0 0010 2
0 B 0 00010
A®B_[ZB 48}_ 20440 8
020040
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Useful properties of the Kronecker product

» Lemma 3.3 (Associativity) Let A, B, C be matrices. Then
(AB)@ C=A®(B® ().

» Lemma 3.4 (Mixed products) Let A, B, C, D be matrices such
that AC and BD are defined. Then

(A® B)(C ® D) = (AC) ® (BD).
» Lemma 3.5 (Identities) Let m,n € N. Then

Im @ In = Imp.
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Commutativity?
» Lemma (Commutativity) Let A, B be matrices. Then

AR B=B®A.
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Commutativity?
» Lemma (Commutativity) Let A, B be matrices. Then

AR B=B®A.

» This lemma is not very useful, because it is false.
» Counterexample: LetA:[2 4]and B:[
2 0 4 0
A©B =28 45]_[0 2 0 4}’
A O 2 4 00
B®A—[ ]_{O ‘0 4]

Thus,
A® B +# B® A.
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Use of Kronecker product for FFT

» Matrix notation and Kronecker products are powerful tools in
modern Fourier transform research.

» Here, we use these tools to derive a nonrecursive variant of
the FFT.
» We benefit from a concise notation:

F 0
12®F”/2:[ "o F/z]'
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Butterfly operation

Xj Xjt+n/2

(©Sarai Bisseling, 2002

X} 1= Xj + WhXjn/2i
/ .
X a2 = X = W2
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Butterfly matrix

» The n x n butterfly matrix is

B, = |: ln/2 Qn/2 :| )

b2 =22
» B, involves Q5, which contains powers of wyq = e 2mi/4 = _j.
10 1 O
Bi= 110 1 o
01 0

» The butterfly matrix is sparse since it has only 2n nonzeros
out of n? elements.
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T-shirt formula

Using the new notation gives
Fox = Bn(/g & F,,/z)S,,x.

Since this holds for all vectors x, we get:

Fn — Bn(/2 ) Fn/2)5n
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Size reduction of the Fourier matrix

> We try to reduce the size of the remaining Fourier matrix F, 5.

> Therefore, we manipulate the factor I, ® F, /5, or more in
general,

le ® Fopk = [llici] @ [Bnyic(l @ Fryaky) Snyi]

= (I @ Bnyi) (U] @ [(l2 ® Fiy(26))Snyic])

= (Ik @ Bnyi) (e ® b ® Fpy26))(Ik @ Spyi)
)

= (I ® Bnyic)(l2k @ Fryan)) (I @ Spyic)-

Lecture 3.3 Sequential | Nonrecursi ive FFT

13/24



Burn at both ends

P> We repeatedly reduce the size:
Ik @ Frje = (I @ Bnji)(lok @ Fryar)) Ik @ Snyi) =

(Ik®Bp/ic)(lkk @ Bryaiy)(lak @ Fryeany) 2k © Spy2k)) (k®Snji) = - -

» We start with
F,=h® F,.

> We end when the middle factor equals

In®Fn/n:/n®F1:In®llzln.
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Cooley—Tukey theorem (1965)

The Cooley—Tukey decomposition of F, is
Fn= (/1 ® Bn)(l2 ® Bn/2)(l4 ® Bn/4) T (/n/2 ® B2)Rna
where R, is the bit-reversal permutation matrix,

R, = (/,,/2 ® 52) cee (/4 & 5,,/4)(/2 X 5,,/2)(/1 X S,,).
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Unordered FFT based on Cooley—Tukey theorem

input:  x: vector of length n =27, m> 1, x = xo.
output: x = (h @ By)(h ® Bny2)(la ® Byya) -+ (Inj2 @ B2)xo.

function UFFT(x, n)

k :=2;
while k < n do
{x:= (k@ Bk)x }
for r:=0to 7 —1do
{ x(rk: rk +k—1):= Byx(rk: rk + k —1) }
forj::0to§—1do
{ Compute xrij + Wi Xrk-tj+k/2}
T = WXk k2
Xrk4j+k/2 = Xrk+j — Ts
Xrk—+j = Xrk+j + T;
k = 2k;
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Binary digits

> We can write an index j, 0 < j < n, as

where by € {0,1} is the kth bit and n = 2".
P by is the least significant bit; b,;,,—1 the most significant bit.

» We use the notation
(bm—1---bibo)a =) b2k

» Example: (10100101), = 27 + 25 4 22 4 20 = 165.
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Bit-reversal permutation

Let n = 2™, with m > 1. The bit-reversal permutation
pn:{0,...,n—1} = {0,...,n— 1} is defined by

pr((bm—1---bo)2) = (bo - - bm_1)2.

For n = 8:
J (b2bibo)y  (bobib2)2  ps())
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Recursive computation of bit-reversal permutation

» The bit-reversal permutation p, is related to a bit-reversal
permutation of half its length by the property

() = 2pn/20)) for 0 <j < n/2,
Pn 2pns2(j —n/2) +1 for n/2 < j < n.

» Proof for j < n/2: write j = (0bm—2 -+ bg)2 = (bm—2- " bo)2.
Then
pns20U) = (bo -+ bm—2)2,

so that
2pn/2(J) = (bo - - bm—20)2 = (bo - - - bm—2bm-1)2 = pa(Jj)-

» Proof for n/2 < j < n: similar.
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Cost of computing the bit-reversal permutation

» Define T(n) as the time in ops (operations) needed for
computing p,(0: n—1).
» Then

-7 +2

because the computation of p, uses the n/2 computed values
of pn/2 and it performs a multiplication by 2 and an increment
by 1 for each of these values.

» Repeated application leads to a linear cost:

T(n):T<g>+n:T(£)+g+n:---

=T(1)+2+4+---+n=2n-2.

» The ops are cheap, as they can be done efficiently using bit
operations.

Lecture 3.3 Sequential | Nonrecursi ive FFT

20/24



Connection between bit-reversal permutation and matrix

> R, is called the bit-reversal matrix. It is defined by
Rn = (In/2 ® 52) T (I4 ® 5n/4)(/2 ® 5n/2)(ll ® 5”)

> Multiplying a vector by R, starts by splitting the vector into a
subvector of components x(p, _,...5,), With bp =0 and a
subvector with by = 1.

» The most significant bit of the new position of a component
is bo.
» Each subvector is then split according to bit b1, and so on.
» The final position of the vector component with index
J = (bm-1-"bo)2 is pn(j) = (bo- - bm-1)2.
» Therefore (Ryx),,(j) = ;-
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Theorem 3.11: R, = P,,

> Lemma 2.5 gives the connection between a permutation o
and a permutation matrix P,:

(PUX)J' = Xa—l(j).

> We have just seen that (R,x),,j) = X;- Since p, is its own
inverse, we can also write this as

(R,,x)j = X,On(j)'

» Comparing the two equations above, we see that
o = p,;1 = p,, and hence we have shown informally that

Ry =P,

» A more formal proof based on induction is given in the book.
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Bit-reversal algorithm

input:  x: vector of length n =27, m > 1, x = xo.
output: x : vector of length n, such that x = R,xo.

function BITREV(x, n)

p1(0) :==0; k:=2;
while kK < n do
{ Compute px(0: k—1) }
for j:=0to k/2—1do
pxU) = 2pk20);
Pk + k/2) = 2pk2(j) + 1;
k = 2k;

{ Swap components of x based on p,}
for j:=0ton—1do
if j < pn(j) then
swap (Xj, X, (j));
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Summary

>

>

We have derived a nonrecursive fast Fourier transform (FFT)
by using matrix notation and the Kronecker matrix product.

The result is the Cooley-Tukey Decimation In Time (DIT)
formula

Frn=(h ® Bn)(k ® Bnj2)(la @ Bna) -+ (Inj2 @ B2) Ry

R, is the permutation matrix that corresponds to the
bit-reversal permutation p,.

Each of the log, n matrix factors Iy ® B, /i has 2n nonzero
elements, and each corresponding matrix—vector multiplication
requires 5n flops.

The total number of flops is bnlog, n, the same as for the
recursive FFT. The bit reversal costs an additional n ops.

The nonrecursive variant is a good basis for parallelization.
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