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Fine-grain model

I Create a hypergraph from an m × n sparse matrix A where
each nonzero aij 6= 0 becomes a vertex.

I Each row i gives rise to a row net

{j : 0 ≤ j < n ∧ aij 6= 0}.

I Each column j gives rise to a column net

{i : 0 ≤ i < m ∧ aij 6= 0}.

I The hypergraph has nz(A) vertices and m + n nets.

Ü. V. Çatalyürek and C. Aykanat, In: Proceedings Irregular 2001, IEEE,
p.118.
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Fine-grain partitioning

I λi = # processors with a nonzero in row i
= # processors having a vertex in row net i .

I λi − 1 = communication volume caused by row net i .

I µj − 1 = communication volume caused by column net j .

I Partitioning the fine-grain hypergraph minimizes the exact
communication volume of the parallel SpMV.

I Partitioning can be expensive since the number of vertices is
large.
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Desirables

I We would like to keep the nonzeros of each row together.

I We would like to keep the nonzeros of each column together.

I We would like to have our cake and eat it too.
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Medium-grain partitioning

I Solution: split the matrix A by a simple method into

A = Ar ∪ Ac = Ar + Ac,

where Ar ∩ Ac = ∅.
I The nonzeros in a row of Ar stay together and

those in a column of Ac also stay together.

I For a square matrix A, form the 2n × 2n matrix

B =

[
In (Ar)T

Ac In

]
.

D. M. Pelt and R. H. Bisseling, In: Proceedings IPDPS 2014, IEEE, pp.
529–539.
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Simple split of matrix A
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I The split is based on
I ri = # nonzeros of row i
I cj = # nonzeros of column j .

I Nonzero aij is assigned to Ar if ri < cj , because rows with
fewer nonzeros are more likely to stay together.

I Exception: if ri = 1, the row cannot be cut, so aij is assigned
to Ac to help keep its column together.

I If cj < ri , the nonzero is assigned to Ac.

I All ties aij with ri = cj are broken in the same way.
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Form new matrix B
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B

cj →
2 1 2 3 2 2 1 0 0 0

I The diagonal entries in the top left block B connect the
nonzeros originating in the same column of A.

I Unnecessary diagonal entries caused by empty rows in Ar are
removed from B.

7 / 20



Lecture 4.6 Fine-Grain and Medium-Grain

Bipartition matrix B by columns

B

I Perform a 1D column-wise bipartitioning of B.

I The allowed imbalance ε = 0.1, where the diagonal nonzeros
do not count.

I Resulting communication volume V (B0,B1) = 4.
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Fold B back into A

B

A

I For nonempty rows j of B: the number of processors in
column j of A equals the number of processors in row j of B,

µj(A0,A1) = λj(B0,B1), for 0 ≤ j < n.
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Fold B back into A

B

A

I Look at the last column of A, column j = 4: its nonzeros
come from column 4 of B and row 4 of B.

I But by construction, column 4 of B has a single owner,
the owner of b44, which already occurs in row 4 of B.

I So row 4 of B determines the amount of communication
in column 4 of A.
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Communication volume is preserved

I We have proven that

µj(A0,A1) = λj(B0,B1), for 0 ≤ j < n.

I Similarly, we can prove that

λi (A0,A1) = λn+i (B0,B1), for 0 ≤ i < n.

I Therefore, using the notation λ′i = max(λi , 0),

V (A0,A1) =
n−1∑
i=0

λ′i (A0,A1) +
n−1∑
j=0

µ′j(A0,A1)

=
n−1∑
i=0

λ′n+i (B0,B1) +
n−1∑
j=0

λ′j(B0,B1)

=
2n−1∑
i=0

λ′i (B0,B1) = V (B0,B1).
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Regular 1D partitioning is a special case

I If we split a square n × n matrix A into A = Ar ∪ Ac by
choosing Ar = 0 and Ac = A, we obtain the 2n × 2n matrix

B =

[
0 0
A 0

]
.

I Here, the matrix diagonal became completely empty after
removal of unnecessary entries.

I A 1D column-wise partitioning of B then reduces to a 1D
column-wise partitioning of A.

I For the choice Ar = A and Ac = 0, the matrix B becomes

B =

[
0 AT

0 0

]
.

I A 1D column-wise partitioning of B then reduces to a 1D
row-wise partitioning of A.
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Chicken-or-egg problem: which one was first?

I To partition the matrix A, we first need to form a matrix B.

I To form a matrix B, we need a partitioning of A.

I That’s why we start with a simple partitioning of A.
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Iterative refinement by repeated partitioning

A = Ar + Ac

.
.

.
.

.

.

B

cj →
2 0 0 3 2 2 1 2 0 1

I Iterative refinement uses the output of a partitioning as input
to a next partitioning: Ar = A0 and Ac = A1.

I The next partitioning consists of 1 level of Kernighan–Lin
refinement, which is fast and can only improve the result.
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Test set of sparse square matrices

Name n nz c Origin
mip1 66 463 10 352 819 155.8 mixed integer programming
in-2004 1 382 908 16 917 053 12.2 web links India 2004
asia osm 11 950 757 25 423 206 2.1 road network Asia
cage14 1 505 785 27 130 349 18.0 DNA electrophoresis
rgg n 2 21 s0 2 097 152 28 975 990 13.8 random geometric graph

I Matrices from the SuiteSparse Matrix (formerly University of
Florida) Collection by Tim Davis.
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Communication volume and partitioning time

Name p Volume Time (in s)

LB FG MG LB FG MG
mip1 2 9 099 3 929 2 109 94 291 98

64 120 636 90 133 56 864 350 1 059 230
in-2004 2 1 158 637 558 81 376 89

64 18 247 16 345 14 425 401 1 774 397
asia osm 2 91 120 130 61 48 48

64 2 291 2 667 2 538 271 206 258
cage14 2 195 912 172 091 154 962 153 232 109

64 1 436 410 1 161 269 980 957 664 1 035 516
rgg n 2 21 s0 2 3 364 3 322 2 976 47 111 64

64 46 192 44 049 41 249 234 613 345
Norm. geomean 1.00 0.83 0.70 1.00 2.10 0.95

I LB = Localbest (original Mondriaan)

I FG = Fine-grain

I MG = Medium-grain with iterative refinement
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Geometric mean

I Definition for a set of values x0, . . . , xk−1 > 0:

GM(x0, . . . , xk−1) = (x0 · x1 · · · · xk−1)
1
k .

I GM can handle widely differing scales.

I It gives each matrix/p pair equal influence.

I Useful property:

GM(
x0
y0
, . . . ,

xk−1
yk−1

) =
GM(x0, . . . , xk−1)

GM(y0, . . . , yk−1)
.

I It does not matter whether we normalize the values first or
only after computing the mean.

I This is useful when comparing results from different methods,
normalizing against one method.
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Performance profile of the communication volume
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Higher is better!

I How to read this: the Localbest method solves 70% of the 10
problem instances within 1.5 times the lowest volume achieved
by any of the three methods.

I The medium-grain method solves all problem instances within
1.5 times the lowest volume.
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Advantages of performance profiles

I Problem instances for which one method fails but others
succeed can still be included in a performance profile (in
contrast to geometric-mean comparisons).

I A performance profile can be used to summarize results for a
large number of problem instances.

I Example: all the 2833 matrices from the SuiteSparse Matrix
collection partitioned for p = 2, 4, 8, . . . , 1024.

I A performance profile captures much more information than a
single number such as the geometric mean.
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Summary

I The fine-grain method can in principle find the best
partitioning of a given sparse matrix.

I The medium-grain method, however, usually achieves this in
practice.

I The medium-grain method tries to keep both rows and
columns together, based on a simple nonzero-count criterion.

I This is in contrast to the original Mondriaan method
(Localbest), which imposes both objectives separately and
then takes the best result.

I The geometric mean and performance profiles are useful in
comparing different methods and summarizing their results.
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