
Lecture 3.3 Sequential Nonrecursive FFT

Sequential Nonrecursive FFT
Section 3.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Pros and cons of recursive computations

Pros. Recursive computations

I display a natural splitting into subproblems, thus pointing to
possible parallelism;

I provide a concise formulation of the algorithm;

I reduce the amount of bookkeeping;

I are cache-friendly.

Cons. They

I traverse the corresponding computational tree sequentially,
thus making parallelization more difficult.

2 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Matrix decompositions

I If we decompose the matrix Fn into

Fn = Ar−1 · · ·A1A0,

where each factor Ak is an n × n matrix, we can obtain Fnx
by repeatedly multiplying a matrix Ak and a vector:

Fnx = Ar−1 · · ·A1A0x.

I Different decompositions represent different algorithms.

I Can the FFT be formulated as a matrix decomposition?

I Yes! Charles Van Loan (Computational Frameworks for the
FFT, SIAM, 1992) has formulated many variants of the FFT
in terms of matrix decompositions.

3 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Matrix and vector language for the FFT

I Define the n × n diagonal matrix

Ωn = diag(1, ω2n, ω
2
2n, . . . , ω

n−1
2n ),

so that
Ωn/2 = diag(1, ωn, ω

2
n, . . . , ω

n/2−1
n ).

Ωn/2 contains exactly the powers of ωn needed in the FFT.

I The recursive algorithm can now neatly be expressed by

Fnx =

[
In/2 Ωn/2

In/2 −Ωn/2

] [
Fn/2x(0 : 2 : n − 1)
Fn/2x(1 : 2 : n − 1)

]
=

[
In/2 Ωn/2

In/2 −Ωn/2

] [
Fn/2 0

0 Fn/2

] [
x(0 : 2 : n − 1)
x(1 : 2 : n − 1)

]
.

4 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Even-odd sort matrix

The even-odd sort matrix Sn is the n × n permutation matrix
containing rows 0, 2, . . . , n − 2 of In followed by rows
1, 3, . . . , n − 1,

Sn =



1 0 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0

...
...

0 0 0 0 · · · 0 1 0
0 1 0 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0

...
...

0 0 0 0 · · · 0 0 1


.

Thus, Snx =

[
x(0 : 2 : n − 1)
x(1 : 2 : n − 1)

]
.

5 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Kronecker matrix product

I Let A be a q × r matrix and B an m × n matrix. The
Kronecker product (or tensor product, or direct product) of A
and B is the qm × rn matrix

A⊗ B =

 a00B · · · a0,r−1B
...

...
aq−1,0B · · · aq−1,r−1B

 .
I Let A =

[
0 1
2 4

]
and B =

[
1 0 2
0 1 0

]
. Then

A⊗ B =

[
0 B

2B 4B

]
=


0 0 0 1 0 2
0 0 0 0 1 0
2 0 4 4 0 8
0 2 0 0 4 0

 .

6 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Useful properties of the Kronecker product

I Lemma 3.3 (Associativity) Let A,B,C be matrices. Then

(A⊗ B)⊗ C = A⊗ (B ⊗ C ).

I Lemma 3.4 (Mixed products) Let A,B,C ,D be matrices such
that AC and BD are defined. Then

(A⊗ B)(C ⊗ D) = (AC )⊗ (BD).

I Lemma 3.5 (Identities) Let m, n ∈ N. Then

Im ⊗ In = Imn.

7 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Commutativity?

I Lemma (Commutativity) Let A,B be matrices. Then

A⊗ B = B ⊗ A.

I This lemma is not very useful, because it is false.

I Counterexample: Let A =
[

2 4
]

and B =

[
1 0
0 1

]
. Then

A⊗ B =
[

2B 4B
]

=

[
2 0 4 0
0 2 0 4

]
,

B ⊗ A =

[
A 0
0 A

]
=

[
2 4 0 0
0 0 2 4

]
.

Thus,
A⊗ B 6= B ⊗ A.

8 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Commutativity?

I Lemma (Commutativity) Let A,B be matrices. Then

A⊗ B = B ⊗ A.

I This lemma is not very useful, because it is false.

I Counterexample: Let A =
[

2 4
]

and B =

[
1 0
0 1

]
. Then

A⊗ B =
[

2B 4B
]

=

[
2 0 4 0
0 2 0 4

]
,

B ⊗ A =

[
A 0
0 A

]
=

[
2 4 0 0
0 0 2 4

]
.

Thus,
A⊗ B 6= B ⊗ A.

8 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Use of Kronecker product for FFT

I Matrix notation and Kronecker products are powerful tools in
modern Fourier transform research.

I Here, we use these tools to derive a nonrecursive variant of
the FFT.

I We benefit from a concise notation:

I2 ⊗ Fn/2 =

[
Fn/2 0

0 Fn/2

]
.

9 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Butterfly operation

xj xj+n/2

x ′j x ′j+n/2

+ −

·ωj
n

c©Sarai Bisseling, 2002

x ′j := xj + ωj
nxj+n/2;

x ′j+n/2 := xj − ωj
nxj+n/2;

10 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Butterfly matrix

I The n × n butterfly matrix is

Bn =

[
In/2 Ωn/2

In/2 −Ωn/2

]
.

I B4 involves Ω2, which contains powers of ω4 = e−2πi/4 = −i :

B4 =


1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i

 .
I The butterfly matrix is sparse since it has only 2n nonzeros

out of n2 elements.

11 / 24



Lecture 3.3 Sequential Nonrecursive FFT

T-shirt formula

Using the new notation gives

Fnx = Bn(I2 ⊗ Fn/2)Snx.

Since this holds for all vectors x, we get:

Fn = Bn(I2 ⊗ Fn/2)Sn

12 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Size reduction of the Fourier matrix

I We try to reduce the size of the remaining Fourier matrix Fn/2.

I Therefore, we manipulate the factor I2 ⊗ Fn/2, or more in
general,

Ik ⊗ Fn/k = [Ik Ik Ik ]⊗
[
Bn/k(I2 ⊗ Fn/(2k))Sn/k

]
= (Ik ⊗ Bn/k)([Ik Ik ]⊗

[
(I2 ⊗ Fn/(2k))Sn/k

]
)

= (Ik ⊗ Bn/k)(Ik ⊗ I2 ⊗ Fn/(2k))(Ik ⊗ Sn/k)

= (Ik ⊗ Bn/k)(I2k ⊗ Fn/(2k))(Ik ⊗ Sn/k).

13 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Burn at both ends

I We repeatedly reduce the size:

Ik ⊗ Fn/k = (Ik ⊗ Bn/k)(I2k ⊗ Fn/(2k))(Ik ⊗ Sn/k) =

(Ik⊗Bn/k)(I2k ⊗ Bn/(2k))(I4k ⊗ Fn/(4k))(I2k ⊗ Sn/(2k))(Ik⊗Sn/k) = · · ·

I We start with
Fn = I1 ⊗ Fn.

I We end when the middle factor equals

In ⊗ Fn/n = In ⊗ F1 = In ⊗ I1 = In.

14 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Cooley–Tukey theorem (1965)

The Cooley–Tukey decomposition of Fn is

Fn = (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/2 ⊗ B2)Rn,

where Rn is the bit-reversal permutation matrix,

Rn = (In/2 ⊗ S2) · · · (I4 ⊗ Sn/4)(I2 ⊗ Sn/2)(I1 ⊗ Sn).

15 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Unordered FFT based on Cooley–Tukey theorem

input: x : vector of length n = 2m, m ≥ 1, x = x0.
output: x = (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/2 ⊗ B2)x0.

function UFFT(x, n)

k := 2;
while k ≤ n do
{ x := (In/k ⊗ Bk)x }
for r := 0 to n

k − 1 do
{ x(rk : rk + k − 1) := Bkx(rk : rk + k − 1) }
for j := 0 to k

2 − 1 do

{ Compute xrk+j ± ωj
kxrk+j+k/2}

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k ;

16 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Binary digits

I We can write an index j , 0 ≤ j < n, as

j =
m−1∑
k=0

bk2k ,

where bk ∈ {0, 1} is the kth bit and n = 2m.

I b0 is the least significant bit; bm−1 the most significant bit.

I We use the notation

(bm−1 · · · b1b0)2 =
m−1∑
k=0

bk2k .

I Example: (10100101)2 = 27 + 25 + 22 + 20 = 165.

17 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Bit-reversal permutation

Let n = 2m, with m ≥ 1. The bit-reversal permutation
ρn : {0, . . . , n − 1} → {0, . . . , n − 1} is defined by

ρn((bm−1 · · · b0)2) = (b0 · · · bm−1)2.

For n = 8:

j (b2b1b0)2 (b0b1b2)2 ρ8(j)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

18 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Recursive computation of bit-reversal permutation

I The bit-reversal permutation ρn is related to a bit-reversal
permutation of half its length by the property

ρn(j) =

{
2ρn/2(j) for 0 ≤ j < n/2,
2ρn/2(j − n/2) + 1 for n/2 ≤ j < n.

I Proof for j < n/2: write j = (0bm−2 · · · b0)2 = (bm−2 · · · b0)2.
Then

ρn/2(j) = (b0 · · · bm−2)2,

so that

2ρn/2(j) = (b0 · · · bm−20)2 = (b0 · · · bm−2bm−1)2 = ρn(j).

I Proof for n/2 ≤ j < n: similar.

19 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Cost of computing the bit-reversal permutation

I Define T (n) as the time in ops (operations) needed for
computing ρn(0 : n − 1).

I Then
T (n) = T

(n
2

)
+ 2

n

2
,

because the computation of ρn uses the n/2 computed values
of ρn/2 and it performs a multiplication by 2 and an increment
by 1 for each of these values.

I Repeated application leads to a linear cost:

T (n) = T
(n

2

)
+ n = T

(n
4

)
+

n

2
+ n = · · ·

= T (1) + 2 + 4 + · · ·+ n = 2n − 2.

I The ops are cheap, as they can be done efficiently using bit
operations.

20 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Connection between bit-reversal permutation and matrix

I Rn is called the bit-reversal matrix. It is defined by

Rn = (In/2 ⊗ S2) · · · (I4 ⊗ Sn/4)(I2 ⊗ Sn/2)(I1 ⊗ Sn).

I Multiplying a vector by Rn starts by splitting the vector into a
subvector of components x(bm−1···b0)2 with b0 = 0 and a
subvector with b0 = 1.

I The most significant bit of the new position of a component
is b0.

I Each subvector is then split according to bit b1, and so on.

I The final position of the vector component with index
j = (bm−1 · · · b0)2 is ρn(j) = (b0 · · · bm−1)2.

I Therefore (Rnx)ρn(j) = xj .

21 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Theorem 3.11: Rn = Pρn

I Lemma 2.5 gives the connection between a permutation σ
and a permutation matrix Pσ:

(Pσx)j = xσ−1(j).

I We have just seen that (Rnx)ρn(j) = xj . Since ρn is its own
inverse, we can also write this as

(Rnx)j = xρn(j).

I Comparing the two equations above, we see that
σ = ρ−1n = ρn, and hence we have shown informally that

Rn = Pρn .

I A more formal proof based on induction is given in the book.

22 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Bit-reversal algorithm
input: x : vector of length n = 2m, m ≥ 1, x = x0.
output: x : vector of length n, such that x = Rnx0.

function Bitrev(x, n)

ρ1(0) := 0; k := 2;
while k ≤ n do
{ Compute ρk(0 : k − 1) }
for j := 0 to k/2− 1 do

ρk(j) := 2ρk/2(j);
ρk(j + k/2) := 2ρk/2(j) + 1;

k := 2k ;

{ Swap components of x based on ρn}
for j := 0 to n − 1 do

if j < ρn(j) then
swap (xj , xρn(j));

23 / 24



Lecture 3.3 Sequential Nonrecursive FFT

Summary

I We have derived a nonrecursive fast Fourier transform (FFT)
by using matrix notation and the Kronecker matrix product.

I The result is the Cooley-Tukey Decimation In Time (DIT)
formula

Fn = (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/2 ⊗ B2)Rn.

I Rn is the permutation matrix that corresponds to the
bit-reversal permutation ρn.

I Each of the log2 n matrix factors Ik ⊗ Bn/k has 2n nonzero
elements, and each corresponding matrix–vector multiplication
requires 5n flops.

I The total number of flops is 5n log2 n, the same as for the
recursive FFT. The bit reversal costs an additional n ops.

I The nonrecursive variant is a good basis for parallelization.

24 / 24


