
Lecture 1.4 Starting with BSPlib

Starting with BSPlib
Section 1.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23

Lecture 1.4 Starting with BSPlib

BSPlib program: sequential, parallel, sequential

P(0) P(1) P(2) P(3) P(4)

Init

Sequential

Begin

Comp

Sync

Comm

Sync

Comp

End

Sequential

Exit
2 / 23

Lecture 1.4 Starting with BSPlib

Sequential input, parallel computation, sequential output

I A BSPlib program starts with a sequential part, mainly
intended for input. Motivation:
I The desired number of processors of the parallel part may

depend on the input.
I The input of data describing a problem is often sequential.

I A BSPlib program ends with a sequential part, mainly
intended for output. Motivation:
I Reporting the output of a computation is often sequential.

I Sequential I/O in a parallel program may be inherited from a
sequential program.

I The sequential parts may also be empty.

3 / 23

Lecture 1.4 Starting with BSPlib

Main function of BSPlib program
long P ;
i n t main (i n t argc , char ∗∗ a r g v){

b s p i n i t (b s p i n p r o d , argc , a r g v) ;

/∗ S e qu e n t i a l p a r t ∗/
p r i n t f (”How many p r o c e s s o r s do you want to use ?\n”) ;
f f l u s h (s t d o u t) ;
s c a n f (”%l d ” ,&P) ;
i f (P > b s p n p r o c s ()){

p r i n t f (” Sorry , o n l y %u p r o c e s s o r s a v a i l a b l e .\ n” ,
b s p n p r o c s ()) ;

e x i t (EXIT FAILURE) ;
}

/∗ SPMD pa r t ∗/
b s p i n p r o d () ;

/∗ S e qu e n t i a l p a r t ∗/
e x i t (EXIT SUCCESS) ;

} 4 / 23

Lecture 1.4 Starting with BSPlib

Primitive bsp init

b s p i n i t (spmd , argc , a r g v) ;

I The BSPlib primitive bsp init initializes the program. It
must be the first executable statement in the program.

I spmd is the name of the function that comprises the parallel
part (written in SPMD style: Single Program, Multiple Data).
In our example, the name is bspinprod.

I The primitive bsp init is needed to circumvent restrictions
of certain machines. It is a bit ugly and often misunderstood.

I int argc is the number of command-line arguments and
char **argv is the array of arguments. These arguments can
be used in the sequential input part, but they cannot be
transferred to the parallel part.

5 / 23

Lecture 1.4 Starting with BSPlib

Structure of SPMD part

void b s p i n p r o d (){

b s p b e g i n (P) ;
long p= b s p n p r o c s () ;
long s= b s p p i d () ;
long n ;
i f (s==0){

p r i n t f (” P l e a s e e n t e r n :\ n”) ;
f f l u s h (s t d o u t) ;
s c a n f (”%l d ” ,&n) ;
i f (n<0)

b s p a b o r t (” E r r o r i n i n p u t : n i s n e g a t i v e ”) ;
}
. . .
b sp end () ;

}

6 / 23

Lecture 1.4 Starting with BSPlib

Primitives bsp begin, bsp end

b s p b e g i n (r e q p r o c s) ;
bsp end () ;

I The BSPlib primitive bsp begin starts the parallel part of the
program with the requested reqprocs processors.

I The BSPlib primitive bsp end ends the parallel part of the
program.

I bsp begin and bsp end must be the first and last executable
statements, respectively, in the SPMD function.

I P(0) inherits the values of the variables from the sequential
part and can use these in the parallel part.

I Other processors do not inherit any values and must obtain
needed values by explicit communication.

7 / 23

Lecture 1.4 Starting with BSPlib

Primitives bsp nprocs, bsp pid

b s p n p r o c s () ;
b s p p i d () ;

I The BSPlib primitive bsp nprocs gives the number of
processors. In the parallel part, this is the actual number p of
processors involved in the parallel computation. In the
sequential parts, it is the maximum number available.

I Thus, we can ask how many processors are available and then
decide not to use them all. Sometimes, using fewer processors
gives faster results!

I The BSPlib primitive bsp pid gives the processor identity s,
where 0 ≤ s < p.

I Both primitives can be used anywhere in the parallel program,
so you can always get an answer to burning questions such as:
How many are we? Who am I?

8 / 23

Lecture 1.4 Starting with BSPlib

Primitive bsp abort

b s p a b o r t (e r r o r m e s s a g e) ;

I If one processor detects that something is wrong, it can bring
all processors down in a graceful manner and print an error
message by using bsp abort.

I The message is in the standard format of the C-function
printf.

9 / 23

Lecture 1.4 Starting with BSPlib

Putting data into another processor

bsp pid

pid

nbytes

offset nbytes

bsp put

source

dest

10 / 23

Lecture 1.4 Starting with BSPlib

Primitive bsp put

b s p p u t (p id , s o u r c e , des t , o f f s e t , n b y t e s) ;

I The bsp put operation copies nbytes of data from the local
processor bsp pid into the specified destination processor
pid.

I The pointer source points to the start of the data to be
copied.

I The pointer dest specifies the start of the memory area
where the data will be written.

I The data is written at offset bytes from the start.

I This is the most important one-sided communication
operation.

11 / 23

Lecture 1.4 Starting with BSPlib

Inner product function
double b s p i p (long n , double ∗x , double ∗y){

long p= b s p n p r o c s () ;
long s= b s p p i d () ;

double ∗ I n p r o d= v e c a l l o c d (p) ;
b s p p u s h r e g (Inprod , p∗ s i z eo f (double)) ;
b s p s y n c () ;

double i n p r o d= 0 . 0 ;
f o r (long i =0; i<n l o c (p , s , n) ; i ++)

i n p r o d += x [i]∗ y [i] ;

f o r (long t =0; t<p ; t++)
b s p p u t (t ,& i n p r o d , Inprod , s ∗ s i z eo f (double) ,

s i z eo f (double)) ;
b s p s y n c () ;
. . .

}
12 / 23

Lecture 1.4 Starting with BSPlib

Local and global indices for cyclic distribution

Global 12 0 4 7 −1 2 15 11 3 −2

0 1 2 3 4 5 6 7 8 9

Local 12 −1 3
0 1 2

0 2 −2
0 1 2

4 15
0 1

7 11
0 1

Global index: i
Local index on P(s): i

Relation: i = i · p + s

Use local indices in programs:

f o r (long i =0; i<n l o c (p , s , n) ; i ++)
i n p r o d += x [i]∗ y [i] ;

13 / 23

Lecture 1.4 Starting with BSPlib

Parallel algorithms and parallel programs

Parallel algorithms:

I are meant for humans;

I give just enough detail to be understood;

I use global variables in unambiguous mathematical notation.

Parallel programs:

I are meant for compilers;

I give all the gory details;

I use local variables valid for a processor P(s).

Advice: develop a parallel algorithm first, then implement it as a
parallel program!

14 / 23

Lecture 1.4 Starting with BSPlib

Primitive bsp get

b s p g e t (p id , s o u r c e , o f f s e t , dest , n b y t e s) ;

I The bsp get operation copies nbytes of data from the
specified remote source processor pid into the local processor
bsp pid.

I The pointer source points to the start of the data in the
remote processor to be copied.

I The pointer dest specifies the start of the local memory area
where the data will be written.

I The data is read starting at offset bytes from source.

I Remember for both puts and gets: the source parameter
comes first and the offset is in the remote processor.

15 / 23

Lecture 1.4 Starting with BSPlib

Getting n from P(0)

void b s p i n p r o d (){

long n ;
. . .
i f (s==0){

p r i n t f (” P l e a s e e n t e r n :\ n”) ;
s c a n f (”%l d ” ,&n) ;

}
b s p p u s h r e g (&n , s i z eo f (long)) ;
b s p s y n c () ;

b s p g e t (0 ,&n ,0 ,& n , s i z eo f (long)) ;
b s p s y n c () ;
. . .

}

16 / 23

Lecture 1.4 Starting with BSPlib

Primitive bsp sync

b s p s y n c () ;

I The bsp sync operation terminates the current superstep. It
causes all communications initiated by puts and gets to be
actually carried out.

I It synchronizes all the processors.

I After the bsp sync, the communicated data can be used.

17 / 23

Lecture 1.4 Starting with BSPlib

Safety first: no interference

I The regular bsp put and bsp get operations are doubly
buffered, at the source and the destination, to provide safety.

I A data word that is put is first copied into a local send buffer.
The space occupied by the original data word can be reused
immediately.

I All received data are first stored in a receive buffer.

I All communication is delayed until the moment all
computations of the current superstep are finished. The value
obtained by a get is the value at that moment.

I If you like living on the edge: the high-performance primitive
bsp hpput is unbuffered and more efficient than bsp put,
and it uses less memory, but it is considered dangerous.

18 / 23

Lecture 1.4 Starting with BSPlib

Registration: your x is my x

b s p p u s h r e g (v a r i a b l e , n b y t e s) ;

I A variable called x may have the same name on different
processors, but this does not guarantee that it has the same
actual address in memory, for instance when memory is
allocated dynamically.

I To link the addresses, the names must be registered first.

I All processors participate in the registration procedure by
pushing their variable and its memory size onto a stack.
Unwilling processors can register NULL.

I The SPMD style suggests registering the same variable name
on all processors, but this is not strictly necessary.

I Registration takes effect only in the next superstep.

19 / 23

Lecture 1.4 Starting with BSPlib

Registration is expensive

I To register, all processors have to talk to each other, which
takes some time.

I Try to register sparingly.

I Register once, put many times.

20 / 23

Lecture 1.4 Starting with BSPlib

Deregistration

b s p p o p r e g (v a r i a b l e) ;

I Deregistration is done by all processors together popping the
variable from the stack.

21 / 23

Lecture 1.4 Starting with BSPlib

BSP timer measures elapsed time

. . .
b s p s y n c () ;
double t ime0= b s p t i m e () ;

double a l p h a= b s p i p (n , x , x) ;

b s p s y n c () ;
double t ime1= b s p t i m e () ;

i f (s==0){
p r i n t f (” Thi s took o n l y %.6 l f s e c o n d s .\ n” ,

t ime1−t ime0) ;
. . .

22 / 23

Lecture 1.4 Starting with BSPlib

Summary

I SMALL IS BEAUTIFUL
I BSPlib is a small library of 22 primitives for writing parallel

programs in bulk synchronous parallel style.

I We have learned 12 primitives (not counting bsp hpput), and are
now ready to start programming in parallel.

I The put and get primitives provide Remote Direct Memory Access
(RDMA, also called DRMA).

I Registration allows direct access to dynamically allocated memory.

I The complete program bspinprod should now be clear. Try to
compile it using bspcc and run it using bsprun.

23 / 23

