
Lecture 5.9 Program bspmatch

Program bspmatch

Section 5.9 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 18

Lecture 5.9 Program bspmatch

Parallel local domination algorithm

I The function bspmatch is an implementation of Algorithm 5.7
for parallel weighted graph matching.

I It can handle every possible vertex distribution φ, where the
edges connected to a vertex are stored together with that
vertex in an adjacency list.

I The distribution of the edges thus corresponds to a 1D row
distribution of the adjacency matrix A of the graph.

2 / 18

Lecture 5.9 Program bspmatch

Driver program bspmatch test

I The driver program bspmatch test from BSPedupack reads
a sparse matrix in Matrix Market format, distributed in a 1D
row distribution, without diagonal entries and with the
symmetric partner aji included for every nonzero aij .

I The distribution is represented by a list of nonzeros assigned
to P(0), followed by those assigned to P(1), and so on.

I The nonzeros are sent to the processors as prescribed by φ,
where they become the edges in the adjacency lists of the
vertices.

I The input procedure of bspmatch has much in common with
that of the sparse matrix–vector multiplication function
bspmv; the common functions are included in the file
bspsparse input.c.

3 / 18

Lecture 5.9 Program bspmatch

Data structure: edge numbers and weights

I bspmatch test builds the data structures needed by
bspmatch, which are a list of
I internal edges, numbered e = 0, . . . , nedges− 1;
I external edges, numbered e = nedges, . . . ,

nedges + nhalo− 1.

I For each edge e = (u, v), we can look up its weight

weight[e] = ω(e),

which is a double, and its secondary weight

weight1[e] = ω1(e) · 2n + ω2(e).

I Here, ω1(e) = 1 if e is internal and ω1(e) = 0 if e is external,
and ω2(e) = u + v .

I Since ω2(e) < 2n, this breaks ties by first giving preference to
internal edges.

4 / 18

Lecture 5.9 Program bspmatch

Comparing edges

b o o l h e a v i e r (long e0 , long e1 ,
double ∗weight , long ∗we ig ht 1){

/∗ This f u n c t i o n checks whether edge e0 i s h e a v i e r
than edge e1 ∗/

i f (e0 == DUMMY)
return f a l s e ;

i f (e1 == DUMMY | | w e i g h t [e0] > w e i g h t [e1] | |
(w e i g h t [e0] == w e i g h t [e1] &&

we ig ht 1 [e0] > we ig ht 1 [e1]))
return t r u e ;

return f a l s e ;
}

5 / 18

Lecture 5.9 Program bspmatch

Data structure: vertex numbers

I We number the vertices locally, v = 0, . . . , nvertices− 1,
where we include only those with a nonempty adjacency list.

I If an edge e is internal, we store the local vertex numbers
v0[e] and v1[e] of its two endpoints, where v0[e] < v1[e].

I If e is external, we store its local vertex number v0[e], but
v1[e] then stores the corresponding local edge number e′ on
the remote processor P(t) that shares the edge with P(s).

I The numbering with internal edges first makes it easy to see
whether an edge is internal or external, which can be done
simply by checking whether e < nedges.

6 / 18

Lecture 5.9 Program bspmatch

Communicating along an external edge

I If we send a message to a remote processor along an external
edge e, we communicate in the language of the receiver, who
can look up all information about the corresponding edge e′,
such as its weight and its local vertex.

I For each external edge e, we store the remote owner P(t) as
destproc[e− nedges] = t.

7 / 18

Lecture 5.9 Program bspmatch

Rejecting a suitor
#def ine REJECT 2

void r e j e c t s u i t o r (long v , long e , long q l o , long ∗nq , long ∗Q,
long n v e r t i c e s , long nedges ,
long ∗v0 , long ∗v1 , long ∗ d e s t p r o c ,
b o o l ∗A l i v e , long ∗P r e f){

/∗ This f u n c t i o n r e j e c t s s u i t o r e o f v e r t e x v ∗/

i f (e < nedges){
/∗ Determine o th e r end po i n t o f edge e ∗/
long x = (v0 [e]==v ? v1 [e] : v0 [e]) ;
push (x , n v e r t i c e s , q l o , nq , Q, P r e f) ;

} e l s e {
long tag= REJECT ;
b s p s e n d (d e s t p r o c [e−nedges] , &tag ,

&(v1 [e]) , s i z eo f (long)) ;
}
A l i v e [e]= f a l s e ;

} 8 / 18

Lecture 5.9 Program bspmatch

Finding the remote owners

I In the program bspmatch test, each processor P(s) first
writes its processor number s into a cyclically distributed
temporary array, at all global indices corresponding to a local
vertex.

I This announces that P(s) is the owner of all its local vertices.

I Then, P(s) reads the owners of its halo vertices from the
temporary array.

I This procedure is similar to the notice board procedure used
for parallel sparse matrix–vector multiplication in bspmv init.

9 / 18

Lecture 5.9 Program bspmatch

Establishing the correspondence between e and e′

I To talk in the language of the receiver, we need to establish
the correspondence between e and e′.

I To achieve this, the local edge numbers e of the halo edges are
first sent to the remote processors, together with their global
indices (i , j), corresponding to aij in the adjacency matrix.

I The triples (e, i , j) are then sorted lexicographically by the
receiver, with primary key j and secondary key i .

I The local triples (e′, i , j) on the remote processor were already
sorted lexicographically with primary key i and secondary key j
when creating the CRS data structure.

I The coupled nonzeros aji and aij are now stored in the same
order, so that their corresponding edge numbers e and e′ can
be coupled on the remote processor by setting

v1[e′] = e.

10 / 18

Lecture 5.9 Program bspmatch

Declaring edges dead

An edge (u, v) in the adjacency list of v can be declared dead:

I if u has a better suitor;

I if the degree du = 0, meaning that u has been matched or its
adjacency list has been depleted; the exception is if u is the
suitor of v , which may have caused du to become 0.

11 / 18

Lecture 5.9 Program bspmatch

Finding the highest living edge
void f i n d a l i v e (long v , long ∗Adj , long nedges ,

double ∗weight , long ∗weight1 , long ∗v0 , long ∗v1 ,
b o o l ∗A l i v e , long ∗ S u i t o r , long l o , long ∗d){

/∗ F inds h i g h e s t l i v i n g edge i n Adj [lo , l o+d [v]−1] ∗/

f o r (long i= l o+d [v]−1; i>=l o ; i −−){
long e = Adj [i] ;
i f (e < nedges){ // e=(u , v) i s i n t e r n a l

long u = (v0 [e]==v ? v1 [e] : v0 [e]) ;
i f ((d [u]==0 && S u i t o r [v] != e) | |

h e a v i e r (S u i t o r [u] , e , weight , w e i gh t1))
A l i v e [e] = f a l s e ;

}
i f (A l i v e [e])

return ;
e l s e

d [v]−−;
}

} 12 / 18

Lecture 5.9 Program bspmatch

Pushing a vertex onto the queue

void push (long v , long n v e r t i c e s , long q l o ,
long ∗nq , long ∗Q, long ∗P r e f){

/∗ This f u n c t i o n pushes v e r t e x v onto the queue ∗/

long q h i= q l o + (∗ nq) ; // f i r s t f r e e p o s i t i o n
i f (q h i >= n v e r t i c e s)

q h i −= n v e r t i c e s ;
Q[q h i]= v ;
(∗ nq)++; // nq = number o f v e r t i c e s i n the queue
P r e f [v]= DUMMY;

}

I The queue is stored as a circular list in positions q lo to
q lo+nq − 1 of array Q, wrapping around at nvertices (the
number of local vertices).

I A new vertex v is pushed onto the queue at the tail.

13 / 18

Lecture 5.9 Program bspmatch

Popping a vertex from the queue

long pop (long n v e r t i c e s , long ∗ q l o ,
long ∗nq , long ∗Q){

/∗ This f u n c t i o n pops a v e r t e x v from the queue ∗/

long i= ∗ q l o ;
(∗ q l o)++;
i f (∗ q l o >= n v e r t i c e s)

∗ q l o −= n v e r t i c e s ;
(∗ nq)−−;

return Q[i] ;
}

I A vertex v is popped at the head of the queue, q lo is
incremented, again wrapping around at nvertices, and nq is
decremented.

14 / 18

Lecture 5.9 Program bspmatch

bspmatch: detecting termination
b o o l a l l d o n e= f a l s e ;
whi le (! a l l d o n e){

f o r (long t =0; t<p ; t++)
Done [t]= f a l s e ;

b s p q s i z e (&nmessages ,& n b y t e s) ;
i f (nmessages==0 && nq==0){

long done= t r u e ; // P [s] i s done
f o r (long t =0; t<p ; t++)

b s p p u t (t ,& done , Done , s ∗ s i z eo f (long) ,
s i z eo f (long)) ;

} . . .
b s p s y n c () ;
a l l d o n e= t r u e ;
f o r (long t =0; t<p ; t++)

i f (Done [t] == f a l s e){
a l l d o n e= f a l s e ;
break ;

}
} 15 / 18

Lecture 5.9 Program bspmatch

bspmatch: counting operations

whi le (nq > 0 && n o p s s t e p < maxops){
long v= pop (n v e r t i c e s , &q l o , &nq , Q) ;

/∗ Find h i g h e s t l i v i n g edge ∗/
i f (d e g r e e [v] > 0){

long d e g r e e o l d= d e g r e e [v] ;
f i n d a l i v e (v , Adj , nedges , weight , weight1 , v0 , v1 ,

A l i v e , S u i t o r , S t a r t [v] , d e g r e e) ;
n o p s s t e p += d e g r e e o l d−d e g r e e [v]+1;

}
. . .

}

I find alive contains a loop which runs downwards from the
old degree to the new (possibly smaller) degree, taking
degree old-degree[v]+1 operations.

I The operation count is added to the number of operations
nops step of the current superstep.

16 / 18

Lecture 5.9 Program bspmatch

bspmatch: registering a match or proposing
#def ine ACCEPT 1
#def ine REJECT 2
P r e f [v]= e ;
i f (e==S u i t o r [v]) {

match [∗ nmatch]= e ;
(∗ nmatch)++; // number o f matches r e g i s t e r e d so f a r
i f (e < nedges){ // i n t e r n a l edge

d e g r e e [v0 [e]]= 0 ;
d e g r e e [v1 [e]]= 0 ;

} e l s e {
d e g r e e [v]= 0 ;
long tag= ACCEPT ;
b s p s e n d (d e s t p r o c [e−nedges] , &tag ,

&(v1 [e]) , s i z eo f (long)) ;
}

} e l s e i f (e >= nedges){
long tag= PROPOSE;
b s p s e n d (d e s t p r o c [e−nedges] , &tag ,

&(v1 [e]) , s i z eo f (long)) ;
}

I

17 / 18

Lecture 5.9 Program bspmatch

Summary

I We have presented the function bspmatch from BSPedupack,
which is an implementation of the parallel local domination
algorithm for weighted graph matching.

I If we send a message to a remote processor along an external
edge e of our graph, we prefer to communicate in the
language of the receiver.

I For this purpose, we established the correspondence between
a locally stored edge e and its remote partner e′ by sending a
triple (e, i , j) to the owner of e′.

I We use bsp send to send proposals, accepts and rejects,
because this BSP primitive is most convenient for an irregular
algorithm such as graph matching.

18 / 18

