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Ties

I Ties are edges with equal weight. For ease of explanation, we
assumed so far that these do not occur.

I Ties are only a problem if they share a vertex, since then that
vertex has no unique preference.

I In practice, equal weights do occur. In the worst case, all
weights could be equal, which amounts to cardinality
matching.

I Our algorithm should work for such cases as well.
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Preference cycle of length 3
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I 3 preferences have been set, along 3 dominant edges.

I Still, no matches are made.
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Possible solution: break ties by a secondary weight

I Define the secondary weight of an edge (u, v) by

ω2(u, v) = u + v , for 0 ≤ u, v < n,

where we identify vertices with their index.

I We only need to compare edges that share a vertex v , which
simplifies to:

ω2(u, v) > ω2(u′, v) ⇐⇒ u + v > u′ + v

⇐⇒ u > u′.

I Thus, preferring the highest-indexed partner breaks all ties
and prevents cycles.

I This solution works for both the sequential and the parallel
algorithm.
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Is it a feature of a bug?

I Encountering equal preferences: is it undesired behaviour for
an algorithm or an opportunity?

I In the sequential case, we can exploit equal weights, finding
matches earlier than by making weights unique.

I When setting a preference for vertex v :
I if u = suitor(v) is among the tied preferences with the highest

weight, we match v to u;
I if u is not among them, or there is no suitor yet, we break ties

arbitrarily.

I We cannot do this in the parallel case.
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Preference cycle on 3 processors
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I In one superstep: x proposes to y , y proposes to z , and z
proposes to x .

I In the next superstep, all three will have a suitor:
suitor(y) = x , suitor(z) = y , and suitor(x) = z .

I No matches are made, and no more preferences will be set by
x , y , and z .
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Enhancing locality

I Define another weight of an edge (u, v) by

ω1(u, v) =

{
1 if φ(u) = φ(v)
0 otherwise.

I Using ω1 as a secondary criterion leads to setting more local
preferences, thereby reducing the communication of proposals
and rejects, which are caused by nonlocal preferences.

I This saves communication time and prevents delays because
local preferences can be checked immediately, e.g. to see
whether they are mutual.
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Same quality

I We use ω, ω1, ω2 (weight, locality, index) as primary,
secondary, and tertiary criterion, respectively.

I Enhancing locality by using ω1 as a secondary criterion gives
the same quality as using ω2, because all ties have equal
weight and are therefore, in principle, equally good.

I This quality would not be guaranteed if we would use ω1 as a
primary criterion: the boy or girl next door would then be
preferred even if there were a better match in another village.

I Enhancing locality introduces a new form of nondeterminism:
the matching produced may be different for different p.

I Still, the matching guarantees at least half the optimal weight.
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Load imbalance
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I In a superstep, work queues may differ a lot in size, even when
the partitioning is well-balanced.
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Load-balancing mechanism

I We need not wait for the work queue to be empty to call for a
synchronization!

I Synchronizations refill the work queues.

I Every processor P(s) can keep track of its amount of work Ws

carried out so far in the current superstep by inserting
operation counters into the algorithm, or by using range sizes.

I We should call for a synchronization when

Ws ≥Wmax ∨ Qs = ∅,

where Wmax is the maximum amount of work to be done until
the next synchronization.
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Inserting synchronizations
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I Inserting synchronizations keeps all processors busy doing
useful work until near the end of the algorithm.
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Robust load balancing

I We can use the work counter Wmax to determine when to
look at the system clock of P(s) to obtain the time ts elapsed
since the start of the superstep.

I We call for synchronization if

ts ≥ tmax ∨ Qs = ∅,

where tmax is a carefully chosen maximum superstep time.

I Using the work counter prevents us from looking at the clock
all the time, which itself consumes precious computation time.
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How often should we synchronize?

I We should not synchronize too often, to reduce the total
synchronization cost.

I We will never spend more than 20% of the total time
synchronizing if we choose

Wmax ≥ 4l .

I To minimize synchronization overhead, we can communicate
the remaining queue sizes at the end of a superstep, and take
for the next superstep

Wmax ≥ min
s
|Qs |,

where Wmax must then be expressed as a maximum number
of preferences to be set.
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Communication cost

I The communication cost is hard to analyse exactly, because it
depends not only on the static partitioning, but also on the
dynamic information flow of the algorithm.

I The partitioning determines which edges are cut and hence
can give rise to a proposal and an answer, or a mutual
proposal. The flow of the algorithm decides which messages
are actually sent.

I The edge cut of the vertex partitioning is defined as

ECφ = |{(u, v) ∈ E : φ(u) 6= φ(v)}|.

I An upper bound on the total communication volume of the
algorithm is 2ECφ.
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Think like a vertex

I For a good partitioning, the edge cut ECφ will be small, so
that most preferences will be local and the number of
proposals sent will be limited.

I For a bad partitioning, all preferences may turn out to be
nonlocal, and communication will most likely be dominant.

I Systems like Google’s Pregel and Apache Giraph, with the
motto ‘think like a vertex’, impose p = n, identifying every
vertex with a virtual processor,.

I They accept the fact that all edges between vertices cause
communication.

I If it thinks like a vertex, it talks like a vertex!
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Summary

I Ties in the matching can best be broken by preferring local
vertices.

I Any remaining ties can be broken by choosing the vertex with
the highest vertex number.

I The load balance can be improved by synchronizing more
often, which refills the work queues and keeps all processors
busy doing useful work.

I The optimal synchronization frequency is a trade-off between
the cost of the synchronization itself and the imbalance
caused by waiting for a synchronization.

I The edge cut of a vertex partitioning φ equals

ECφ = |{(u, v) ∈ E : φ(u) 6= φ(v)}|.

I An upper bound on the total communication volume of the
parallel matching algorithm is 2ECφ.
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