Sequential Graph Matching
Sections 5.1-5.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 5.1-5.2 Sequential Graph Matchin

1/23

Motivation of graph matching

» Graph matching is the pairing of neighbouring vertices in a
graph.

» It has applications in finding

>
>
>

suitable partners in online dating services;

suitable organ donors in medicine;

similar proteins in Protein-Protein Interaction networks from
bioinformatics;

large pivot elements in matrix computations;

similar vertices to be merged in graph coarsening.

Lecture 5.1-5.2 Sequential Graph Matching

2/23

Matching can win you a Nobel memorial prize

Marriage as an Economic

Problem

Lloyd Shapley and Alvin Roth win the Nobel Prize for showing the best
way to match people with what they really want.

By Matthew Yglesias | Posted Monday, Oct. 15,2012, at 1:51 PMET

65 | EIsocIAL Eilike 963 W Tweet |oom Bk NS

& ,“')

\omics went to Alin E. Roth and Lioyd S. Shapley *for the thaory of stable allocations and the

Alvin Roth (1951) and Lloyd Shapley (1923-2016).
Source: Slate magazine October 15, 2012.

Lecture 5.1-5.2 Sequential Graph Matching

3/23

Graph terminology

| 2

>

A graph G = (V, €) consists of a set V of vertices (nodes) and
a set £ of edges (connections).

An edge is a pair e = (u,v) with u,v € V.

We assume the graph is undirected so that we identify

(u,v) = (v,u).

We also assume that the graph is simple, i.e., it has no
self-edges (u, u) and there exists at most one edge between
the same pair of vertices.

Furthermore, we assume that every edge e = (u, v) has a
weight w(e) = w(u, v) > 0.

The number of vertices of the graph is n = |V

and the number of edges is m = |&|.

Lecture 5.1-5.2 Sequential Graph Matching

4/23

A matching

n=8 m=12
4 matched edges
(thick lines)

» A matching is a subset M C & such that
(n,v),(,v)eM = u=4d.

» Thus, no two edges in the matching are incident to the same
vertex v.

Lecture 5.1-5.2 Sequential Graph Matching

5/23

Not a matching

G

n=8 m=12

» Here, two marked edges (u, v), (¢, v) are incident to the same
vertex v, so this is not a matching.

Lecture 5.1-5.2 Sequential Graph Matching

6/23

Edge-weighted matching

3

12 11
n=8 m=12

2 M| =4
w(M) =42

» The cardinality of a matching M is | M.
» The weight of a matching M is

w(M) = Z w(e).
eeM

» The edge-weighted maximum matching problem: find an M
with maximum possible weight w(M).

Lecture 5.1-5.2 Sequential Graph Matching

7/23

Graph algorithms for social networks

Welcome to Facebook

<[> | [+ [hutp:/ o facebook.com/ ¢ (@ facebook @

facebook

Facebook helps you connect and share with
the people in your life.

N o
L 2

Jo

» Facebook has an Open Graph application, which enables
clicking a button if you like a webpage.

» Comment of Time Magazine: “Graph: It's a nerdy name for
something that's surprisingly simple.”

Lecture 5.1-5.2 Sequential Graph Matching

8/23

Polynomial time is not good enough

>

>

Finding a maximum-weight matching is possible in polynomial
time O(mn + n?log n) (Gabow 1990).

The One-World matching problem has 10 billion vertices
(people) with 1000 edges (friends) per vertex,

i.e., n =101 and m = 1013.

It takes O(1023) = 100000000 Pflops to solve this problem to
optimality.

Fugaku, ranked first for the HPCG benchmark on the
TOP500 list of supercomputers in June 2022, runs at a speed
of 16 Pflop/s solving a sparse linear system.

Fugaku would take 6250000 s or about 72 days to solve the
One-World matching problem. That's a lot!

We need linear-time greedy or approximation algorithms
instead of cubic-time exact algorithms.

Lecture 5.1-5.2 Sequential Graph Matching

9/23

Approximation algorithm

» An approximation algorithm provides a problem solution
within reasonable time that differs at most by a guaranteed
factor from the optimal solution.

> An a-approximation algorithm for edge-weighted matching
gives a matching M with

wM) > a-w(M*),

where M* denotes a maximum matching.

Lecture 5.1-5.2 Sequential Graph Matching

10/23

Dominant edge

10

» An edge (u,v) is dominant if for all edges e incident to u or
v, we have

w(u,v) > w(e).
» Here, the edge with weight 10 is dominant.

» Furthermore, the matching M containing this single edge is
maximal, since it cannot be extended.

Lecture 5.1-5.2 Sequential Graph Matching

11/23

The maximum matching

10

» This matching M with |[M| =2 and w(M) = 11 has
maximum weight.

> Note the difference between a maximal matching and a
maximum matching.

Lecture 5.1-5.2 Sequential Graph Matching

12/23

Basic dominant-edge algorithm (Preis 1999)

input: G = (V,E&): graph with vertex set V and edge set £.
output: M: matching, M C €.

M = 0;

while £ # () do
pick a dominant edge (u,v) € &;
M= MU {(u,v)};
E=E\{(x,y)e€:x=uV x=v}
V=V \{u v}

return M;

@ R. Preis, in Proceedings STACS 1999, Lecture Notes in Computer
Science, Vol. 1563, pp. 259-269. Springer.

Lecture 5.1-5.2 Sequential Graph Matching

13/23

Lemma 5.1: the basic dominant-edge algorithm yields a
maximal matching

Proof:

» Let M be the matching produced by the basic dominant-edge
algorithm and £ the original edge set.

> An edge e € £ to be added to M in an extension is not in
M. Hence it must have been removed by an edge (u,v) € M
sometime during the algorithm.

» Then e must be incident to v or v and hence cannot be in the
same matching as (u, v).

» Thus, the matching M cannot be extended. O

Lecture 5.1-5.2 Sequential Graph Matching

14/23

Lemma 5.2: the algorithm yields a %—approximation

Proof:
» Let M be the matching produced by the basic dominant-edge
algorithm.
» Let M* ={ej,...,€;_;} be a maximum matching.

» For each edge e € M*:
> if ef € M, we define e; = e;
> if ef ¢ M, we define e; = the edge that removed e
during the algorithm.

» This creates a list ey, ..., ex_1 of edges from M, with

w(e) > w(ef), for0<i<k.

Lecture 5.1-5.2 Sequential Graph Matching

15/23

Proof (cont'd)

> Note that e; = ¢; for i # j is possible, since e/ and e/ may
have been removed by the same edge in M.

» However, at most 2 edges from M™* may have been removed
by the same edge and these must be at opposite ends of the
removing edge.

» Therefore, an edge from M occurs at most twice in the list of
the ¢;, so that

Lecture 5.1-5.2 Sequential Graph Matching

k—1
Zw &) < 2w(M).
i=0

16/23

Proof (cont'd)

» Combining our inequalities gives

x
-
x>
|
fu

(M) = Y w(el) < 3 wler) < 20(M),

Lecture 5.1-5.2 Sequential Graph Matching

17/23

Local domination algorithm: initialization

D :=(; > dominant vertices
M =0 > matched edges
forall v eV do

pref (v) := nil; > preference of v

{ Find initial dominant edges }
for all v € V do
Adj, :={ueV:(u,v)€&}; > adjacent vertices of v
if Adj, # () then
pref (v) := argmax{w(u,v) : v € Adj,};
if pref(pref(v)) = v then
D := DU {v,pref(v)};
M = MU {(v, pref(v))};

@ F. Manne and R. H. Bisseling, in Proceedings PPAM 2007, Lecture Notes &
in Computer Science, Vol. 4967, pp. 708-717. Springer.

cture 5.1-5.2 Sequential Graph Matching

18/23

Mutual preferences

» A mutual preference corresponds to a dominant edge.

» For simplicity, we assume that there are no equal preferences
(ties).

Lecture 5.1-5.2 Sequential Graph Matching

19/23

Nonmutual preferences

17 2

Lecture 5.1-5.2 Sequential Graph Matchin

20/23

Local domination algorithm: main loop

{ Process matched vertices }
while D # () do
pick a vertex v € D,
D:=D\{v};
for all x € Adj, : (x,pref(x)) ¢ M do
Adj,, = Adj, \ {v}:
if Adj, # () then
pref (x) := argmax{w(x,y) : y € Adj};
if pref (pref(x)) = x then
D := D U{x, pref(x)};
M = M U{(x, pref (x)) };
else
pref(x) := nil;

Lecture 5.1-5.2 Sequential Graph Matching

21/23

Properties of the local domination algorithm

P> As long as we can add an edge to the matching, there exists a
dominant edge, the heaviest remaining edge.

» The algorithm keeps going until the set of dominant vertices
D becomes empty. Then the matching M is maximal.

» For now, we assume without loss of generality that the
weights are unique. This guarantees that there are no ties.

» Dominance is a local property: the algorithm is easy to
parallelize.

Lecture 5.1-5.2 Sequential Graph Matching

22/23

Summary

» A graph G = (V,) consists of a set V of vertices and a set £
of edges.

» A matching in an undirected graph G is a subset M C £ such
that no two edges in the subset share a vertex.

> An a-approximation algorithm for edge-weighted matching
gives a matching M with

w(M) > a-w(M),

where M* denotes a maximum matching.

» The local domination algorithm is a parallelizable

%—approximation algorithm for edge-weighted matching.

Lecture 5.1-5.2 Sequential Graph Matching

23/23

