
Lecture 2.3 Parallel LU Decomposition

Parallel LU Decomposition
Section 2.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23

Lecture 2.3 Parallel LU Decomposition

Designing a parallel algorithm

I The main question is: how to distribute the data?

I What data? The matrix A and the permutation π.

I Data distribution + sequential algorithm −→
computation supersteps.

I Design the parallel algorithm backwards:
insert communication supersteps where needed,
following the need-to-know principle.

2 / 23

Lecture 2.3 Parallel LU Decomposition

Data distribution for the matrix A

I The bulk of the work in the sequential case is the update

aij := aij − aikakj

for elements aij with i , j ≥ k + 1, taking 2(n − k − 1)2 flops.

I The other operations take only n− k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

I Elements aij , aik , akj may not be on the same processor.

I Who does the update?

3 / 23

Lecture 2.3 Parallel LU Decomposition

The owner computes

I Many elements aij must be updated in stage k , but using only
few elements aik , akj , all from column k or row k . Moving
those elements around causes less traffic.

I Therefore, the owner of aij computes the new value aij using
communicated values of aik , akj .

4 / 23

Lecture 2.3 Parallel LU Decomposition

Matrix update by operation aij := aij − aikakj

L

U

aik aij

akj

0

0

1

1

2

2

3

3

4

4

5

5

6

6

I The update of row i uses only one value, aik , from column k.
I If we distribute row i over N processors, then aik needs to be

sent to ≤ N − 1 processors.

5 / 23

Lecture 2.3 Parallel LU Decomposition

2D matrix distribution

I A matrix distribution is a mapping

φ : {(i , j) : 0 ≤ i , j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers.

I The mapping function φ has two coordinates,

φ(i , j) = (φ0(i , j), φ1(i , j)).

I Here, we number the processors in 2D fashion, where
p = MN. This is just a numbering, without physical meaning!

I BSP newcomers should think that BSPlib randomly
renumbers the processors at the start.

I A processor row P(s, ∗) is a group of N processors P(s, t)
with 0 ≤ t < N.

I A processor column P(∗, t) is a group of M processors P(s, t)
with 0 ≤ s < M.

6 / 23

Lecture 2.3 Parallel LU Decomposition

Cartesian matrix distribution

t = 0 2 1 2 0 1 0

s = 0

0

1

0

1

0

1

00 00 00

00 00 00

00 00 00

00 00 00

02 02

02 02

02 02

02 02

01 01

01 01

01 01

01 01

10 10 10

10 10 10

10 10 10

12 12

12 12

12 12

11 11

11 11

11 11

I A matrix distribution is called Cartesian if

φ(i , j) = (φ0(i), φ1(j)).

7 / 23

Lecture 2.3 Parallel LU Decomposition

Parallel algorithm for Cartesian distribution: divisions

if φ0(k) = s ∧ φ1(k) = t then . Superstep (8)
put akk in P(∗, t);

if φ1(k) = t then . Superstep (9)
for all i : k < i < n ∧ φ0(i) = s do

aik := aik
akk

;

8 / 23

Lecture 2.3 Parallel LU Decomposition

Parallel algorithm: matrix update

if φ1(k) = t then . Superstep (10)
for all i : k < i < n ∧ φ0(i) = s do

put aik in P(s, ∗);

if φ0(k) = s then
for all j : k < j < n ∧ φ1(j) = t do

put akj in P(∗, t);

for all i : k < i < n ∧ φ0(i) = s do . Superstep (11)
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj ;

9 / 23

Lecture 2.3 Parallel LU Decomposition

Parallel pivot search

if φ1(k) = t then . Superstep (0)
rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

if φ1(k) = t then . Superstep (1)
put rs and ars ,k in P(∗, t);

if φ1(k) = t then . Superstep (2)
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

if φ1(k) = t then . Superstep (3)
put r in P(s, ∗);

10 / 23

Lecture 2.3 Parallel LU Decomposition

Parallel pivot search

if φ1(k) = t then . Superstep (0)
rs := argmax(|aik | : k ≤ i < n ∧ φ0(i) = s);

if φ1(k) = t then . Superstep (1)
put rs and ars ,k in P(∗, t);

if φ1(k) = t then . Superstep (2)
smax := argmax(|arq ,k | : 0 ≤ q < M);
r := rsmax ;

if φ1(k) = t then . Superstep (3)
put r in P(s, ∗);

10 / 23

Lecture 2.3 Parallel LU Decomposition

Two parallelization methods

I The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

I Matrix update uses first parallelization method: look at lhs
(left-hand side) of assignment; the owner computes.

I Pivot search uses second method: look at rhs of assignment;
compute what can be done locally, which reduces the number
of data to be communicated.

I In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant search
for the global winner.

I Broadcast of r in superstep (3) is needed later in (4).
Designing backwards, we formulate (4) first and then
insert (3).

11 / 23

Lecture 2.3 Parallel LU Decomposition

Distribution for permutation π

I We should store πk together with row k, somewhere in
processor row P(φ0(k), ∗).

I We could choose a single location such as P(φ0(k), 0). This
gives a true distribution.

I We choose, however, to replicate πk in processor row
P(φ0(k), ∗). This saves some if-statements in our algorithm
and removes clutter.

12 / 23

Lecture 2.3 Parallel LU Decomposition

Index swaps

if φ0(k) = s then . Superstep (4)
put πk as π̂k in P(φ0(r), t);

if φ0(r) = s then
put πr as π̂r in P(φ0(k), t);

if φ0(k) = s then πk := π̂r ; . Superstep (5)

if φ0(r) = s then πr := π̂k ;

13 / 23

Lecture 2.3 Parallel LU Decomposition

Row swaps

if φ0(k) = s then . Superstep (6)
for all j : 0 ≤ j < n ∧ φ1(j) = t do

put akj as âkj in P(φ0(r), t);

if φ0(r) = s then
for all j : 0 ≤ j < n ∧ φ1(j) = t do

put arj as ârj in P(φ0(k), t);

if φ0(k) = s then . Superstep (7)
for all j : 0 ≤ j < n ∧ φ1(j) = t do

akj := ârj ;

if φ0(r) = s then
for all j : 0 ≤ j < n ∧ φ1(j) = t do

arj := âkj ;

14 / 23

Lecture 2.3 Parallel LU Decomposition

Optimizing the matrix distribution

I We have chosen a Cartesian matrix distribution φ to limit the
communication.

I We now specify φ further to achieve a good computational
load balance and to minimize the communication.

I Maximum number of local matrix rows with index ≥ k :

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k :

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

I The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.

15 / 23

Lecture 2.3 Parallel LU Decomposition

Example

t = 0 2 1 2 0 1 0

s = 0

0

1

0

1

0

1

00 00 00

00 00 00

00 00 00

00 00 00

02 02

02 02

02 02

02 02

01 01

01 01

01 01

01 01

10 10 10

10 10 10

10 10 10

12 12

12 12

12 12

11 11

11 11

11 11

R0 = 4,C0 = 3

16 / 23

Lecture 2.3 Parallel LU Decomposition

Lower bound on Rk

Rk ≥
⌈
n − k

M

⌉
.

Proof: Assume this is false, so that Rk < dn−kM e. Because Rk is

integer, we even have Rk <
n−k
M . Hence all M processor rows

together hold fewer than M · n−kM = n − k matrix rows. But they
hold all matrix rows k ≤ i < n, which are n − k rows.
Contradiction. �

17 / 23

Lecture 2.3 Parallel LU Decomposition

2D cyclic distribution attains the lower bound

t = 0 01 12 2 0

s = 0

0

0

1

1

1

0 00 00 00

00 00 00

00 00 00

00 00 00

01 01

01 01

01 01

01 01

02 02

02 02

02 02

02 02

10 10 10

10 10 10

10 10 10

11 11

11 11

11 11

12 12

12 12

12 12

φ0(i) = i mod M, φ1(j) = j mod N.

Rk =

⌈
n − k

M

⌉
, Ck =

⌈
n − k

N

⌉
.

18 / 23

Lecture 2.3 Parallel LU Decomposition

Cost of main computation superstep (the matrix update)

T(11),cyclic = 2

⌈
n − k − 1

M

⌉ ⌈
n − k − 1

N

⌉
≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(
n − k − 1

M
+ 1

)(
n − k − 1

N
+ 1

)
=

2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

I The upper bound is minimal for a square distribution,
M = N =

√
p.

I The second-order term 4(n−k−1)√
p is the additional computation

cost caused by load imbalance.

19 / 23

Lecture 2.3 Parallel LU Decomposition

Bad load balance for the square block distribution

For k = 4, 5, 6, 7, only the yellow processor works.
20 / 23

Lecture 2.3 Parallel LU Decomposition

Better load balance for the square cyclic distribution

For k = 4, 5, 6, all processors work.
21 / 23

Lecture 2.3 Parallel LU Decomposition

Cost of main communication superstep (the broadcast)
I The cost of the broadcast of row k and column k in (10) for a

Cartesian distribution is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉
(N − 1) +

⌈
n − k − 1

N

⌉
(M − 1)

)
g

= T(10),cyclic,

so the M × N cyclic distribution is the best.
I The broadcast cost for the 2D cyclic distribution has an upper

bound

T(10),cyclic <

((
n − k − 1

M
+ 1

)
N +

(
n − k − 1

N
+ 1

)
M

)
g

=

(
(n − k − 1)

(
N

M
+

M

N

)
+ M + N

)
g .

I This upper bound is minimal for M = N =
√
p. The resulting

communication cost is about 2(n − k − 1)g .

22 / 23

Lecture 2.3 Parallel LU Decomposition

Summary

I We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing it to be 2D cyclic.

I We did this based on a careful analysis of the main
computation and communication supersteps.

I We then showed that a square
√
p ×√p distribution is best.

I Cliffhanger: we now have a correct algorithm and a good
distribution, but the overall BSP cost might be improved.
Wait and see . . .

23 / 23

