Random Sparse Matrices

Section 4.8 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 4.8 Random Sparse Matric

1/20

Sparse matrix random100

» Random sparse matrix with n = 100, nz = 982, d = 0.0982,
created by using the random number generator Ran from
Numerical Recipes.

@ W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, Third edition, 2007,
Cambridge University Press. Lecture 4.8 Random Sparse Matrices

2/20

Generating a random sparse matrix

> A random sparse matrix A can be generated by determining,
randomly and independently, for each element a;; whether it is
0 or not.
> If the probability of creating a nonzero is d, the matrix has:
> an expected density d(A) = d;
> an expected number of nonzeros nz(A) = dn?.
» Random sparse matrices have a very special property: every
subset of the matrix elements, chosen independently from the
sparsity pattern, has an expected fraction d of nonzeros.

» This property provides a powerful tool for analysing algorithms
involving random sparse matrices.

Lecture 4.8 Random Sparse Matrices

3/20

A structured, nonrandom sparse matrix: cage6

» Urban Dictionary: a ‘random person’ often means an
unknown, unexpected, or unfamiliar person.

» Google can help find a (truly?) random person.

» However, don't use the term ‘random sparse matrix’ for a
sparse matrix with a structure that is unfamiliar or not
immediately visible. Lecture 45 Random Sparse Matrics

4/20

Parallel sparse matrix—vector multiplication

P> Generate a random sparse matrix A by drawing for each index
pair (i, /) a real random number r;; € [0, 1], doing this
independently and uniformly (with each outcome equally
likely), creating a nonzero ajj if rjj < d.

» Distribute A over p processors in a manner independent of the

sparsity pattern by assigning an equal number of elements
(whether 0 or not) to each processor.

> Examples are:

» square block distribution;
» square cyclic distribution;
» cyclic row distribution.

Lecture 4.8 Random Sparse Matrices

5/20

Computational load balance

» The load balance can be estimated by using probability theory.

» The problem is to determine the expected maximum, taken
over all processors, of the local number of nonzeros.

P> We cannot solve this problem exactly, but we can obtain a
useful bound on the probability of the maximum exceeding a
certain value.

» The bound is obtained by applying the Chernoff Theorem,
often used in the analysis of randomized algorithms.

Lecture 4.8 Random Sparse Matric

6/20

Theorem 4.10 (Chernoff)

> let0<d< 1.

> Let Xp, X1,...,Xm_1 be independent Bernoulli trials with
outcome 0 or 1, such that Pr[X, = 1] =d, for 0 < k < m.

> Let X = S7"4 X, and = md.
» Then for every € > 0,

PriX > (1+e)y] < ((1—}-66)1"')#

@ H. Chernoff, Annals of Mathematical Statistics, 23(4) (1952), pp.493-507.

Lecture 4.8 Random Sparse Matrice:

7/20

Probability of X > 24

PriX > (1+€)y] < <(1+e€)1+>u

» The bound for e = 1 tells us that the probability of getting
more than twice the expected number is

[§]

PrIX > 2] < (4

)“ ~ (0.68)™.

Lecture 4.8 Random Sparse Matrices

8/20

Application to a random sparse matrix

» The expected number of nonzeros per processor is

dn?
p=—".
p

> Let Es be the event that processor P(s) has more than
(1 4 €)u nonzeros and let

p—1

E:UES.

s=0

» Let g = Pr[E;], which is the same for all s.

» By looking at the probability that no event Eg occurs in any
processor, we obtain the equality

PriE] =1— (1 — q)°.

Lecture 4.8 Random Sparse Matrice:

9/20

Cost of the local sparse matrix—vector multiplication

» The cost T(y) of superstep (1) satisfies

2
Pr| T > 21+)dn”] =1-(1-q)fF
dn2 p
e P
1—(1-—
= ((1 ¥ 6)1+5>
= F(e).

Lecture 4.8 Random Sparse Matrice:

10/20

Bound on probability of exceeding the normalized cost

d=01
d=001 -----

08 d=0001 -

0.6

04

0.2

Probability of exceeding cost

1 15 2 25 3
Normalized computation cost

» Shown is the Chernoff probability F(e) of exceeding the
normalized cost 1 + € for a random sparse matrix of size
n = 1000 and density d distributed over p = 100 processors.
» The average normalized cost obtained by simulation for 10 000
matrices Is:
» 1.076 for d = 0.1;
» 1.258 for d = 0.01;
» 1.876 for d = 0.001.

Lecture 4.8 Random Sparse Matrice:

11/20

Measured probability of exceeding the normalized cost

1

Measured ——

0.8 Chernoff bound -------

0.6

04

Probability of exceeding cost

02

0

1 11 12 13 14 15 16
Normalized computation cost

» Shown is the measured probability of exceeding the
normalized cost 1 + € for a random sparse matrix with
n = 1000, d = 0.01, p = 100, based on 100000 matrices.

» For comparison, also the corresponding (pessimistic) Chernoff
bound is given.

» A maximum local nonzero count 124 (i.e., cost = 1.24)
occurs most often, with a frequency of 9.3%.

» The probability that one of the processors has
more than 124 nonzeros is 57.1%. Lacture 4.5 Random Spare Mt

12/20

Communication cost for a random sparse matrix

» The communication volume for a dense matrix is an upper
bound on the volume for a sparse matrix distributed by the
same fixed, pattern-independent scheme.

» The communication obligations for a random sparse matrix
with a high density will almost be the same as for a dense
matrix.

» Therefore, we can try to find a good fixed distribution scheme
for random sparse matrices by applying methods from the
dense case.

Lecture 4.8 Random Sparse Matrices

13/20

Square Cartesian distribution for a dense matrix

(o ENENEN < ENENER

> n=28, p=4.
» Square 2 x 2 Cartesian distribution based on a cyclic
distribution of the matrix diagonal.

Lecture 4.8 Random Sparse Matrice:

14 /20

Superstep (0): fanout

>
| 2

Vector component v; is needed only in P(x, ¢1(j)).
P(s,¢1(j)) does not need v; if all —7 elements in the local
part of matrix column j are zero; this has probability
(1—d)"/vP.

The probability that P(s, ¢1(j)) needs v; is 1 — (1 — d)"/VP.
Since \/p — 1 off-diagonal processors each have to receive v;
with this probability, the expected number of receives for
component v; is (,/p — 1)(1 — (1 — d)"/VP).

Hence, the expected communication volume for the fanout is

n(vB - 1)(1 - (1 - d)"”/VP).

Ignoring communication imbalance, we divide by p, giving

Ty = (% - ,1)) (1— (1 d)"/vP)ng.

Lecture 4.8 Random Sparse Matrices

15/20

Total communication cost

» Cost of the fanin is the same as for the fanout.

» For n = 1000 and p = 100, the matrix with highest density
d = 0.1 has an expected communication cost of 179.995¢g,
close to the cost of 180g for a dense matrix.

» The corresponding expected normalized communication cost is

To) + Te2)

2Ty 00%.

> We need a parallel computer with g < 11 to run our algorithm
with more than 50% efficiency.

» For n = 1000 and p = 100, the matrix with lowest density

d = 0.001 has an expected normalized communication cost of
0.86g.

Lecture 4.8 Random Sparse Matrice:

16 /20

Tailor the distribution to the matrix

» Global permuted view of the sparse matrix random100 with
n =100 and nz = 982, distributed for p =2 and ¢ = 0.03 by
Mondriaan v4.2 with the medium-grain method.

» The matrix is shown in Separated Block Diagonal (SBD) form
with the 48 cut rows and 41 cut columns in the middle.

» The BSP cost is 982 + 45g + 4/.

Lecture 4.8 Random Sparse Matric

17/20

Separated Block Diagonal (SBD) form

» The SBD form is useful for visualizing the communication
requirements of a parallel SpMV.

» It can also be used to speed up a sequential SpMV, by
keeping vector components v; longer in cache.

» The SpMV can start and end in cache, with a gradual
transition in between. Lecture 46 Random Spare Matrices

18/20

Communication volume for Cartesian vs. Mondriaan

p €(in%) ¢€ (in%) V (Cartesian) V (Mondriaan)

2 0.8 0.005 993 862
4 2.1 0.015 1987 1765
8 4.0 0.048 3750 2696
16 7.1 4.318 5514 3611
32 11.8 10.874 7764 4461

» Random sparse matrix of size n = 1000 and density d = 0.01
distributed over p processors by:
» pattern-independent Cartesian distribution, with an expected
imbalance ¢;
» pattern-dependent distribution produced by the Mondriaan
package with the allowed imbalance set to ¢;
the value actually achieved by Mondriaan is €.

» Result for p = 32: using Mondriaan reduces the
communication by 43%. (But it is still a lot!)

Lecture 4.8 Random Sparse Matrice:

19/20

Summary

» Distributing a random sparse matrix independently of its
sparsity pattern spreads the computation well.

» We can quantify this by using the Chernoff bound

e€ H
PriX>04+eul < | 77— -
X >+l < (g5 e
» For the communication, we can use a pattern-independent
square Cartesian distribution which distributes the matrix
diagonal and the vectors cyclically over the processors.

» The distribution can be improved by tailoring it to the sparsity
pattern, e.g. by using the Mondriaan partitioner.

» Parallel multiplication of a random sparse matrix and a vector
remains a difficult problem, because there is relatively much
communication.

Lecture 4.8 Random Sparse Matrices

20/20

