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Inner product of two vectors

The inner product of two vectors x = (xg, ..., x,_1)" and
Y= (¥0s--,yn—1)" is defined by

n—1
T
a=XxXYy= E XiYi-
i=0

Here, ‘T" denotes transposition. All vectors are column vectors.

Lecture 1.3 Parallel Inner Product Computation

2/15



Data distributions for a vector

Cyclic |P(0)|P(1) P(O)MP(O) P(1)

Block |P(0)|P(0)[P(0)|P(1)|P(1)[P(1) 4 CINLCRLCINLE)

p = # processors = 4
n = vector length = 10
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Block distribution

Block |P(0)|P(0)[P(0)|P(1)|P(1)[P(1) 4 CINLCRLCINLE)

» The block distribution is defined by
xi — P(i div b), for 0 < i < n.

» Here, the div operator stands for dividing and rounding

down:
idiv b= |i/b].

> The block size is b = [ 2] (rounded up).

Lecture 1.3 Parallel Inner Product Computation

4/15



Load balance

> For n=9 and p = 4, we have a block size b= [3] =3, so
the block distribution assigns 3, 3, 3, 0 vector components to
the processors, respectively.

» The load balance of an algorithm is determined by the
processor with the maximum amount of work, here 3.

» For good load balance, this should be close
to the average amount of work, here 2.25.

» A variant of the block distribution would
assign 3, 2, 2, 2 components. Just as good!

Lecture 1.3 Parallel Inner Product Computatio

5/15



Cyclic distribution

Cyclic  [P(0)|P(1) P(O)MP(O) P(1)

» The cyclic distribution is defined by

xi — P(i mod p), for 0 < i< n.

» This distribution is based on the modulo-operator.
» For p =4, x7 is assigned to processor P(7 mod 4) = P(3).
> Starting to count at 0 simplifies the formula.

Some kids have been raised
to start counting at 0.
Now they work in C.
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Parallel inner product computation

Design decisions:
P> Assign x; and y; to the same processor, for all i. This makes
computing x; - y; a local operation. Thus distr(x) = distr(y).

» Choose a distribution with an even spread of vector
components. Both block and cyclic distributions are fine. We
choose cyclic, following the way card players deal their cards.

» The data distribution naturally leads to a work distribution
and a parallel algorithm.
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Example for n =10 and p =4
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Parallel inner product algorithm for P(s)

input: X,y : vector of length n,
distr(x) = distr(y) = ¢,
é(i) =i mod p, for 0 < i < n.

output: o = xTy, repl(a) = P(%).
as = 0; > Superstep (0)

for i:=ston—1step p do
Qs 1= s + Xiyi;
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Parallel inner product algorithm for P(s)

input: X,y : vector of length n,
distr(x) = distr(y) = ¢,
é(i) =i mod p, for 0 < i < n.

output: o = xTy, repl(a) = P(%).
as = 0; > Superstep (0)
for i:=ston—1step p do

Qs = Qs + XjYi;

fort . =0top—1do > Superstep (1)
put as in P(t);
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Parallel inner product algorithm for P(s)

input: X,y : vector of length n,
distr(x) = distr(y) = ¢,
é(i) =i mod p, for 0 < i < n.

output: o = xTy, repl(a) = P(%).

as = 0; > Superstep (0)
for i:=ston—1step p do
Os = Qs + XiYi;

fort . =0top—1do > Superstep (1)
put as in P(t);

a:=0; > Superstep (2)
fort:=0top—1do %
a = o+ oy
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Single Program, Multiple Data (SPMD)

>

| 2

Only one program text needs to be written. All processors run
the same program, but on their own data.

The program text is parametrized in the processor number s,
0 <'s < p, also called processor identity. The actual
execution of the program depends on s.

Processor P(s) computes a local partial inner product

Qs = Z XiYi-

0<i<n
i mod p=s

The corresponding computation superstep (0) has 1 addition
and 1 multiplication per local vector component and costs

Jo]o
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Redundant computation

>

>

The partial inner products must be added. This could have
been done by P(0), i.e., processor 0.

Sending the as to P(0) is a (p — 1)-relation. Sending them to
P(x), i.e., to all the processors, costs the same. The cost is
(p—1)g+1

Computing o on P(0) costs the same as computing it on all
the processors redundantly, i.e., in a replicated fashion. The
cost is p+ 1.

Therefore, we send oy to all the processors and compute «
redundantly.

This approach saves the superstep of sending o back from
P(0) to all other processors, which would cost (p — 1)g + /.

The reduction from the local a;s to a single number « available
on all processors is sometimes called an Allreduce operation.

Lecture 1.3 Parallel Inner Product Computatio

11/15



Result

needed on all processors

Often, the result is needed on all processors. An example is
iterative linear system solvers. The algorithm does just this.

Sending the local result to all processors is best if each
processor contributes one value.

If there are more values per processor, then a different
approach might be better.
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Total BSP cost of inner product algorithm

Tinprod =2 ’Vg—‘ +P+(P— 1)g+3l
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One-sided communication

| 4

>

We expressed communication by using the ‘put’ operation,
which involves an active sender and a passive receiver.

We assume all puts are accepted. Thus, we can define each
data transfer by giving only the action of one side.

No clutter in programs: shorter and simpler texts.

No danger of the dreaded deadlock. What happens if both
processors want to receive first?

Deadlock can easily occur in message passing, with an active
sender and an active receiver that must shake hands, or kiss.
This may cause lots of problems.

Another one-sided communication is the ‘get’.

One-sided communications are more efficient.
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Summary

» We design algorithms in Single Program, Multiple Data style.
Each processor runs its own copy of the same program, on its
own data.

» The block and cyclic distributions are commonly used in
parallel computing. Both are suitable for an inner product
computation.

» The BSP style encourages balancing the communication
among the processors. Sending all data to one processor is
discouraged. Better: all to all.

» One-sided communications such as puts and gets are easy to
use and efficient.
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