Solutions Exercise 1.2 from PSC2

(a) Minimum finding: determine the index j of the component with the
minimum value and subtract this value from every component: y; =
x; —xj, for all i.

The basic idea is to find the local minimum first, send it to all processors,
determine the global minimum redundantly, and then subtract it from
all local values.

input:  x vector of length n, distr(x) = block.
output: y vector of length n, distr(y) = block,

j =argmin{z; : 0 <i < n}, y; = x; — x;, for all 4.

b=[n/pl; > Superstep (0)
minvals 1= 00;
for i := sb to min((s + 1)b,n) — 1 do
if z; < minval, then
Js =1
minvals 1= x;;

fort:=0top—1do > Superstep (1)
put js, minvals in P(t);

minval 1= oo; > Superstep (2)
fort=0top—1do
if minval; < minval then
J =06
minval := minvaly;
for i := sb to min((s + 1)b,n) — 1 do
Yi = x; — minval;

The BSP cost of the algorithm is
2[n/pl +p+2(p—1)g+3L,

where we counted 1 flop for a comparison, and no flops for an assign-
ment.

(b) Rotating to the right: assign Y1) mod n = Ti-

The basic idea is to put the data into the correct destination processor
in a single communication superstep. We may assume without loss of
generality that k < n/2, because otherwise we have a rotation of n — k
to the left, which is similar.

We compute the BSP cost as follows. For k < n/p, every processor
P(s) puts its k rightmost data into processor P((s + 1)) mod p), at a
cost of kg+ 1. The remaining n/p — k local data are shifted to the right
in a local memory copy. For k > n/p, the cost is (n/p)g + [.



()

Smoothing: replace each component by a moving average y; = 1/(k+1)
szﬁ/z xj, where k is even. Assume here that x; = 0 for j < 0 or
Jjzn.

Assume for simplicity that k/2 < n/p (a commonly used value these
days is £ = 6). The remaining case is similar, but a bit more elaborate.
The rightmost vector component of a processor P(s) has to obtain at
most k/2 values from P(s+ 1). The leftmost vector component has to
obtain at most k/2 values from P(s — 1). With this information, all
local components y; can be computed.

The BSP cost of the algorithm is
3[n/pl +k+ kg + 2.

Here, we first obtain all locally needed data in kg time. After that, we
need k flops to add the first k values, and then we produce a moving
average by subtracting the left value and adding the right value of the
moving window in 2[n/p] time. Finally, we divide all local data by
kE+1in [n/p] time.

Note that if you perform a cost analysis, this forces you to be precise
about what happens in the algorithm. Still, you do not always have to
give the full details as in (a).

Partial summing: compute y; = 22:0 x;, for all i.

The basic idea is that every processor P(s) computes its local partial
sums, without regard for the others. P(0) will then already have the
correct result, but the others will have to add a correction, which con-
sists of the total sums for all processors P(t) with ¢ < s. This can
be done by processor P(t) sending its rightmost value to all higher-
numbered processors. The received sums are then added locally. In a
final pass through the local data, the correction is added.

The BSP cost of the algorithm is (please check)

2[n/pl+p—1+(p—1)g+ 3l.

In an implementation, it would be useful to write a separate sequential
function to compute partial sums, and use this function in the parallel
program. Reuse of code!



