BSP Benchmarking

Sections 1.5-1.7 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 1.5-1.7 BSP Benchmarkin,

1/16

Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and statistics”

(wrongly attributed in 1907 by Mark Twain to Benjamin Disraeli,
who probably never said this)

» Benchmarking is the activity of comparing performance.

» Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

» The benchmark result is obtained by ruthless reduction of a
large quantity of data to one statistical figure, the flop rate.

Lecture 1.5-1.7 BSP Benchmarking

2/16

Sequential benchmarking

» Already for sequential computers, benchmarking is difficult,
because different programs can run at very different speeds on
the same machine.

» Reaching only 2% of the peak rate of a computer is quite
common these days, especially for irregular computations. No
one is embarrassed. Hush!

» The lowest computing rates are obtained for scalar operations,
which involve single numbers.

» Higher rates can be obtained for operations on vectors and
matrices.

Lecture 1.5-1.7 BSP Benchmarking

3/16

Basic Linear Algebra Subprograms

> Matrix and vector operations have been implemented
efficiently in the Basic Linear Algebra Subprograms (BLAS)
library.

» The highest computing rates can be achieved by algorithms
that use matrix—-matrix multiplication, such as the BLAS
level-3 operation DGEMM.

» An intermediate rate is obtained for vector—vector operations,
such as the BLAS level-1 operation DAXPY, defined by
y =ax+y.

> We use the DAXPY for sequential benchmarking.

Lecture 1.5-1.7 BSP Benchmarking

4/16

BSP benchmarking

>

We must be ruthless, but a single number will not work. Thus
we measure: r for computation, g for communication, and /
for synchronization.

The aim is to obtain useful values of r, g, / that help us in
predicting performance of algorithms without actually running
an implementation.

Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking.

A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary (L1)
cache, a larger secondary (L2) cache farther away, etc.

Computations in primary cache are much faster than others.
We may have to distinguish rates r1, r, etc. (but we won't).

Lecture 1.5-1.7 BSP Benchmarking

5/16

Communication pattern for BSP benchmark program

» P(0) sends a data word to P(1), then to P(2), P(3), P(1),
P(2), P(3).
» The other processors also send data in this cyclic fashion.

» The pattern is a 6-relation.

Lecture 1.5-1.7 BSP Benchmarking

6/16

Full h-relation

» We measure a full h-relation, where every processor sends and

>

receives exactly h data.

Our intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently, which is the basis of BSP.

‘Underpromise and overdeliver' is the motto: actual
communication performance can only be better. We call the
value of g obtained by our benchmarking program bspbench
pessimistic.

By sending larger packets of data, instead of single words, we
can measure an optimistic g-value.

Lecture 1.5-1.7 BSP Benchmarking

7/16

Time of an h-relation on 32-core compute server Gemini

1.2x10° ‘
Measured data
1x108 | T Least-squares fit -----]
800000
600000 +

400000

Time (in flop units)

200000

0

0 500 1000 1500 2000
h

» Hardware: compute server Gemini of the Faculty of Science of
Utrecht University, with two Intel Xeon E5-2683 CPUs, each
with 16 cores, running at 2.1 GHz.

» Software: Scientific Linux operating system; MulticoreBSP for
C, v2.0.4, which is a BSP library for shared memory.

P> Trying to be kind to other users: p =24 < ppnax = 32.

» r =23 Gflop/s, g =309, and | = 46224, Lectre 1517 BSP Benchmarking

8/16

Least-squares fit

» Two measurements would suffice for obtaining a straight line,
but we want to use all available data in an interval [hg, h1].

» We minimize the error

hy

Ersq(g) = D (Teomm(h) — (hg +1))?,
h=hg

where Teomm(h) is the measured time, and hg + | the time
predicted by the model.
» The best choice for g and / is obtained by setting
0E _0E _,
og 0l

and solving the resulting 2 x 2 linear system.

Lecture 1.5-1.7 BSP Benchmarking

9/16

Time of an h-relation for p = 32 on Cartesius

Measured data -+

250000 ¢ Least-squares fit ----- |
n T
£ 200000 | i
5 #WWW*WYT»—/"”/J
S 150000 | T
= - =
= [Lmares
o 100000 F
E
F 50000 |

0

0 20 40 60 80 100 120

» Hardware: Dutch national supercomputer Cartesius at
SURFsara in Amsterdam. One Broadwell node with 32 cores,
running at 2.6 GHz.

» Software: MulticoreBSP for C, v2.0.4.

» r =5.711 Gflop/s, g = 455, and | = 132618.

Lecture 1.5-1.7 BSP Benchmarking

10/16

Benchmarked BSP parameters p, g,/ on Cartesius

P& / Teomm(0)
1 197 - 294
2 199 18408 6759
3 215 24438 8932
4 225 38275 14291
5 247 30783 17970
6 262 38670 20322
7 242 56010 24781
8 274 49655 27609
12 300 82374 40879
16 330 93365 52653
20 403 103090 70562
24 409 107769 88262
28 451 124240 106754
32 455 132618 111267

» The time of a 0-relation Teomm(0) < /.

Lecture 1.5-1.7 BSP Benchmarking

11/16

Time of an h-relation for p = 1 on Cartesius

60000
50000
40000
30000

20000

Time (in flop units)

10000

Measured data +

Least-squares fit ----

50

100

150 200

Plotting helps understand strange behaviour:

250

» Negative /: both g,/ are small and of the same order.

» Sending more data takes less time for h = 170: switching too
late to a different data packing mechanism.

Lecture 1.5-1.7 BSP Benchmarking

12/16

bspbench: initializing the communication pattern

#define MAXH 2048 // maximum h in h—relation

long destproc[MAXH], destindex [MAXH];
double src [MAXH];

for (long i=0; i<h; i++){

src[i]= (double)i;

if (p==1){
destproc[i]= 0;
destindex[i]= i;

} else {
// destination proc is one of the p—1 others
destproc[i]= (s+1 + i%(p—1)) %p;
// destination index is in my own part of dest
destindex[i]= s + (i/(p—1))*p;

Lecture 1.5-1.7 BSP Benchmarking

13/16

bspbench: measuring the communication time
#define NITERS 1000 // number of iterations

bsp_sync ();
double timeO= bsp_time ();

for (long iter=0; iter<NITERS; iter++){
for (long i=0; i<h; i++4)
bsp_put(destproc|[i],&src[i],dest,
destindex[i]+sizeof (double),
sizeof (double));
bsp_sync ();
}

double timel= bsp_time ();
double time= timel—time0;

» Increase NITERS to obtain more accurate measurements and
smoother plots.

» But if NITERS is too large, you will wait forever. i...s.es s B

14/16

Advice from the trenches

» Always plot the benchmark results. This gives insight into
your machine and reveals the accuracy of your measurement.

» Be suspicious of artefacts. Negative g values may occur if g is
small and / is huge. Then, the least-squares fit gives an
inaccurate g and you have to enlarge the measurement
interval [ho, h1].

» Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

» Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have today.

» Possible changes: new compiler, faster communication
switches, Challenge Projects that gobble up network resources. p7H

Lecture 1.5-1.7 BSP Benchmarking

15/16

Summary

» Benchmarking is difficult.

» Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

» With all these caveats, it is still useful to have the r, g, /
values for many different machines.

» BSP benchmarking can be done for
» BSPIib/C by using bspbench.c from BSPedupack v2.0;
» MPI-1/C by using mpibench.c from MPledupack v1.0;
» Bulk/C++ by using benchmark. cpp written by Jan-Willem
Buurlage.

Lecture 1.5-1.7 BSP Benchmarking

16/16

