
Lecture 1.5–1.7 BSP Benchmarking

BSP Benchmarking
Sections 1.5–1.7 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 16

Lecture 1.5–1.7 BSP Benchmarking

Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and statistics”

(wrongly attributed in 1907 by Mark Twain to Benjamin Disraeli,
who probably never said this)

I Benchmarking is the activity of comparing performance.

I Computer benchmarking involves running computer programs
to see how certain computer systems perform. This checks
both the hardware and the system software.

I The benchmark result is obtained by ruthless reduction of a
large quantity of data to one statistical figure, the flop rate.

2 / 16

Lecture 1.5–1.7 BSP Benchmarking

Sequential benchmarking

I Already for sequential computers, benchmarking is difficult,
because different programs can run at very different speeds on
the same machine.

I Reaching only 2% of the peak rate of a computer is quite
common these days, especially for irregular computations. No
one is embarrassed. Hush!

I The lowest computing rates are obtained for scalar operations,
which involve single numbers.

I Higher rates can be obtained for operations on vectors and
matrices.

3 / 16

Lecture 1.5–1.7 BSP Benchmarking

Basic Linear Algebra Subprograms

I Matrix and vector operations have been implemented
efficiently in the Basic Linear Algebra Subprograms (BLAS)
library.

I The highest computing rates can be achieved by algorithms
that use matrix–matrix multiplication, such as the BLAS
level-3 operation DGEMM.

I An intermediate rate is obtained for vector–vector operations,
such as the BLAS level-1 operation DAXPY, defined by
y := αx + y.

I We use the DAXPY for sequential benchmarking.

4 / 16

Lecture 1.5–1.7 BSP Benchmarking

BSP benchmarking

I We must be ruthless, but a single number will not work. Thus
we measure: r for computation, g for communication, and l
for synchronization.

I The aim is to obtain useful values of r , g , l that help us in
predicting performance of algorithms without actually running
an implementation.

I Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking.

I A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary (L1)
cache, a larger secondary (L2) cache farther away, etc.

I Computations in primary cache are much faster than others.
We may have to distinguish rates r1, r2, etc. (but we won’t).

5 / 16

Lecture 1.5–1.7 BSP Benchmarking

Communication pattern for BSP benchmark program

P(0)

P(1) P(2)

P(3)
2

5

30
1

4

I P(0) sends a data word to P(1), then to P(2), P(3), P(1),
P(2), P(3).

I The other processors also send data in this cyclic fashion.

I The pattern is a 6-relation.

6 / 16

Lecture 1.5–1.7 BSP Benchmarking

Full h-relation

I We measure a full h-relation, where every processor sends and
receives exactly h data.

I Our intentions are the worst: we try to measure the slowest
possible communication. We put single data words into other
processors in a cyclic fashion.

I This reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently, which is the basis of BSP.

I ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better. We call the
value of g obtained by our benchmarking program bspbench

pessimistic.

I By sending larger packets of data, instead of single words, we
can measure an optimistic g -value.

7 / 16

Lecture 1.5–1.7 BSP Benchmarking

Time of an h-relation on 32-core compute server Gemini

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 0 500 1000 1500 2000

Ti
m

e
(in

 fl
op

 u
ni

ts
)

h

Measured data
Least-squares fit

I Hardware: compute server Gemini of the Faculty of Science of
Utrecht University, with two Intel Xeon E5-2683 CPUs, each
with 16 cores, running at 2.1 GHz.

I Software: Scientific Linux operating system; MulticoreBSP for
C, v2.0.4, which is a BSP library for shared memory.

I Trying to be kind to other users: p = 24 < pmax = 32.
I r = 2.3 Gflop/s, g = 309, and l = 46 224.

8 / 16

Lecture 1.5–1.7 BSP Benchmarking

Least-squares fit

I Two measurements would suffice for obtaining a straight line,
but we want to use all available data in an interval [h0, h1].

I We minimize the error

ELSQ(g , l) =

h1∑
h=h0

(Tcomm(h)− (hg + l))2,

where Tcomm(h) is the measured time, and hg + l the time
predicted by the model.

I The best choice for g and l is obtained by setting

∂E

∂g
=
∂E

∂l
= 0

and solving the resulting 2× 2 linear system.

9 / 16

Lecture 1.5–1.7 BSP Benchmarking

Time of an h-relation for p = 32 on Cartesius

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100 120

Ti
m

e
(in

 fl
op

 u
ni

ts
)

h

Measured data
Least-squares fit

I Hardware: Dutch national supercomputer Cartesius at
SURFsara in Amsterdam. One Broadwell node with 32 cores,
running at 2.6 GHz.

I Software: MulticoreBSP for C, v2.0.4.

I r = 5.711 Gflop/s, g = 455, and l = 132 618.

10 / 16

Lecture 1.5–1.7 BSP Benchmarking

Benchmarked BSP parameters p, g , l on Cartesius

p g l Tcomm(0)

1 197 – 294
2 199 18 408 6 759
3 215 24 438 8 932
4 225 38 275 14 291
5 247 30 783 17 970
6 262 38 670 20 322
7 242 56 010 24 781
8 274 49 655 27 609

12 300 82 374 40 879
16 330 93 365 52 653
20 403 103 090 70 562
24 409 107 769 88 262
28 451 124 240 106 754
32 455 132 618 111 267

I The time of a 0-relation Tcomm(0) ≤ l .

11 / 16

Lecture 1.5–1.7 BSP Benchmarking

Time of an h-relation for p = 1 on Cartesius

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250

Ti
m

e
(in

 fl
op

 u
ni

ts
)

h

Measured data
Least-squares fit

Plotting helps understand strange behaviour:

I Negative l : both g , l are small and of the same order.

I Sending more data takes less time for h ≈ 170: switching too
late to a different data packing mechanism.

12 / 16

Lecture 1.5–1.7 BSP Benchmarking

bspbench: initializing the communication pattern

#def ine MAXH 2048 // maximum h i n h−r e l a t i o n

long d e s t p r o c [MAXH] , d e s t i n d e x [MAXH] ;
double s r c [MAXH] ;

f o r (long i =0; i<h ; i ++){
s r c [i]= (double) i ;
i f (p==1){

d e s t p r o c [i]= 0 ;
d e s t i n d e x [i]= i ;

} e l s e {
// d e s t i n a t i o n proc i s one o f the p−1 o t h e r s
d e s t p r o c [i]= (s+1 + i %(p−1)) %p ;
// d e s t i n a t i o n i ndex i s i n my own pa r t o f d e s t
d e s t i n d e x [i]= s + (i /(p−1))∗p ;

}
}

13 / 16

Lecture 1.5–1.7 BSP Benchmarking

bspbench: measuring the communication time
#def ine NITERS 1000 // number o f i t e r a t i o n s

b s p s y n c () ;
double t ime0= b s p t i m e () ;

f o r (long i t e r =0; i t e r <NITERS ; i t e r ++){
f o r (long i =0; i<h ; i ++)

b s p p u t (d e s t p r o c [i] ,& s r c [i] , des t ,
d e s t i n d e x [i]∗ s i z eo f (double) ,
s i z eo f (double)) ;

b s p s y n c () ;
}

double t ime1= b s p t i m e () ;
double t ime= time1−t ime0 ;

I Increase NITERS to obtain more accurate measurements and
smoother plots.

I But if NITERS is too large, you will wait forever.
14 / 16

Lecture 1.5–1.7 BSP Benchmarking

Advice from the trenches

I Always plot the benchmark results. This gives insight into
your machine and reveals the accuracy of your measurement.

I Be suspicious of artefacts. Negative g values may occur if g is
small and l is huge. Then, the least-squares fit gives an
inaccurate g and you have to enlarge the measurement
interval [h0, h1].

I Run the benchmark at least three times. If the best two runs
agree, you can be reasonably confident.

I Parallel computers are like the weather: they change all the
time. Always run a benchmark program before running an
application program, just to see what machine you have today.

I Possible changes: new compiler, faster communication
switches, Challenge Projects that gobble up network resources.

15 / 16

Lecture 1.5–1.7 BSP Benchmarking

Summary

I Benchmarking is difficult.

I Machines have quirks, surprises are plenty, and measurements
are often inaccurate.

I With all these caveats, it is still useful to have the r , g , l
values for many different machines.

I BSP benchmarking can be done for
I BSPlib/C by using bspbench.c from BSPedupack v2.0;
I MPI-1/C by using mpibench.c from MPIedupack v1.0;
I Bulk/C++ by using benchmark.cpp written by Jan-Willem

Buurlage.

16 / 16

