Parallel LU Decomposition

Section 2.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 2.3 Parallel LU Decompositior

Designing a parallel algorithm

v

The main question is: how to distribute the data?
What data? The matrix A and the permutation 7.

Data distribution + sequential algorithm —
computation supersteps.

Design the parallel algorithm backwards:
insert communication supersteps where needed,
following the need-to-know principle.

Lecture 2.3 Parallel LU Decomposition

Data distribution for the matrix A

» The bulk of the work in the sequential case is the update
ajj = ajj — ajkdkj

for elements aj; with i,j > k + 1, taking 2(n — k — 1) flops.

» The other operations take only n— k — 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix update.

» Elements ajj, ajx, ax; may not be on the same processor.
» Who does the update?

Lecture 2.3 Parallel LU Decompositior

The owner computes

» Many elements a;; must be updated in stage k, but using only
few elements aj, ayj, all from column k or row k. Moving
those elements around causes less traffic.

» Therefore, the owner of a;; computes the new value a;; using
communicated values of aj, ay;.

Lecture 2.3 Parallel LU Decomposition

Matrix update by operation a;; := aj; — ajcay;

0 1 2 3 4 5 6

S AW N

» The update of row i uses only one value, ajx, from column k.
» If we distribute row i over N processors, then aj, needs to be
Sent to S N - 1 processors- Lecture 2.3 Parallel LU Decompositior

5/23

2D matrix distribution

> A matrix distribution is a mapping
¢ {(,j)):0<i,j<n}—={(s,t):0<s<MAO<t<N}

from the set of matrix index pairs to the set of processor
identifiers.

» The mapping function ¢ has two coordinates,

» Here, we number the processors in 2D fashion, where
p = MN. This is just a numbering, without physical meaning!
» BSP newcomers should think that BSPIib randomly
renumbers the processors at the start.
» A processor row P(s,*) is a group of N processors P(s, t)
with 0 < t < . :
» A processor column P(x, t) is a group of M processors P(s,t) [
with 0 < s < M. Lecture 23 Paralel LU Decompesio

Cartesian matrix distribution

1 | 10 meamsi 1211 10

» A matrix distribution is called Cartesian if

¢(i,7) = (¢o(i), #1()))-

Lecture 2.3 Parallel LU Decompositior

Parallel algorithm for Cartesian distribution: divisions

if go(k) =s A ¢1(k) =t then > Superstep (8)
put akk in P(x,t);

if ¢1(k) =t then > Superstep (9)
forall i: k<i<nA ¢o(i)=s do
ajk 1= 3k,

Lecture 2.3 Parallel LU Decomposition

Parallel algorithm: matrix update

if ¢1(k) =t then > Superstep (10)
foralli: k<i<nA ¢o(i) =s do
put aj in P(s,x);

if ¢o(k) =s then
forall j:k<j<nA ¢1(j)=tdo
put agj in P(x, t);

foralli:k<i<nA ¢o(i)=sdo > Superstep (11)
forall j: k<j<nA ¢1(j) =t do
ajj \= ajj — dikdkj,

Lecture 2.3 Parallel LU Decomposition

Parallel pivot search

if ¢1(k) =t then > Superstep (0)
rs = argmax(|aj| : k <i<n A ¢o(i) =5s);

if ¢1(k) =t then > Superstep (1)
put rs and a, k in P(x,t);

Lecture 2.3 Parallel LU Decompositior

Parallel pivot search

if ¢1(k) =t then

rs = argmax(|aj| : k <i<n A ¢o(i) =

if ¢1(k) =t then
put rs and a, k in P(x,t);

if ¢1(k) =t then
Smax = argmax(|a,, x| : 0 < g < M);

I = Ispax:

if ¢1(k) =t then
put r in P(s,x*);

> Superstep (0)
s);

> Superstep (1)

> Superstep (2)

> Superstep (3)

Lecture 2.3 Parallel LU Decomposition

Two parallelization methods

» The need-to-know principle: exactly those nonlocal data that
are needed in a computation superstep should be fetched in
preceding communication supersteps.

» Matrix update uses first parallelization method: look at |hs
(left-hand side) of assignment; the owner computes.

» Pivot search uses second method: look at rhs of assignment;
compute what can be done locally, which reduces the number
of data to be communicated.

» In pivot search: first a local search, then communication of
the local winner to all processors, finally a redundant search
for the global winner.

» Broadcast of r in superstep (3) is needed later in (4).
Designing backwards, we formulate (4) first and then
insert (3).

Lecture 2.3 Parallel LU Decomposition

Distribution for permutation 7

» We should store 7 together with row k, somewhere in
processor row P(¢g(k), *).

» We could choose a single location such as P(¢o(k),0). This
gives a true distribution.

> We choose, however, to replicate 7y in processor row
P(¢0(k),*). This saves some if-statements in our algorithm
and removes clutter.

Lecture 2.3 Parallel LU Decomposition

Index swaps

if ¢o(k) = s then > Superstep (4)
put mx as 7k in P(¢o(r), t);

if ¢o(r) = s then
put 7, as @, in P(po(k), t);

if po(k) = s then 7y := #,; > Superstep (5)
if ¢o(r) = s then m, := #y;

Lecture 2.3 Parallel LU Decomposition

Row swaps

if ¢o(k) = s then > Superstep (6)
forall j:0<j<nA ¢1(j)=tdo
put aj as ay; in P(po(r), t);
if ¢o(r) =s then
forall j:0<j<nA ¢:1(j)=t do
put a,; as 4, in P(¢o(k), t);

if ¢o(k) = s then > Superstep (7)
forallj:0<j<nA ¢1(j) =t do
agj = §rj;

if ¢o(r) = s then
forallj:0<j<nA ¢1(j) =t do
arj = é\kj?

Lecture 2.3 Parallel LU Decomposition

Optimizing the matrix distribution

> We have chosen a Cartesian matrix distribution ¢ to limit the
communication.

> We now specify ¢ further to achieve a good computational
load balance and to minimize the communication.

» Maximum number of local matrix rows with index > k:

— k<) = sY.
Ry 02’1523<XM H{i:k<i<nA ¢o(i) = s}

Maximum number of local matrix columns with index > k:

C = k<) =t}
o2, Uk <j<nnA ¢i(j) =t}

» The computation cost of the largest superstep, the matrix
update (11), is then 2R, 1 Cy11-

Lecture 2.3 Parallel LU Decomposition

Example

1 | 10 mpassi 1211 10

Ro=4,C =3

Lecture 2.3 Parallel LU Decompositior

Lower bound on Ry

n—k
Ry > .
Proof: Assume this is false, so that R, < [2-X]. Because Ry is
integer, we even have R, < ”A_/,k. Hence all M processor rows

together hold fewer than M - ”Ajlk = n — k matrix rows. But they

hold all matrix rows k < i/ < n, which are n — k rows.
Contradiction. O

Lecture 2.3 Parallel LU Decomposition

2D cyclic distribution attains the lower bound

t=0 1 2 O

1

2

0

s=0|00|01/[02 00

1 | 10 it 12

0 |00|01/|02| 00

1 | 10 it 12

0 |00|01/|02|00

1 | 10 ik 12

0 |00|01|02 00

do(i) =i mod M, ¢1(j) =, mod N.

n—k
Rk—’V v Wj Ck =

{n—k

N

2
—‘ Lecture 2.3 Parallel LU Decompositio

Cost of main computation superstep (the matrix update)

T(ll),cyclic =2 ’7 M

n—k-—1 n—k-—1
T(ll),cyclic <2 (M+1> <N+1>

:2(n—k—1)2+2(n—k—1)(M+N)+2
p p '

» The upper bound is minimal for a square distribution,
M=N=./p.

» The second-order term A(n—k—1)

is the additional computation —
cost caused by load imbalance. '

Lecture 2.3 Parallel LU Decomposition

Bad load balance for the square block distribution

For k =4,5,6,7, only the yellow processor works. ez ey pecompostio

Better load balance for the square cyclic distribution

FOr k = 4, 5, 6v a” processors Work. Lecture 2.3 Parallel LU Decompositio

Cost of main communication superstep (the broadcast)
» The cost of the broadcast of row k and column k in (10) for a

Cartesian distribution is

Tao) = (Rer1(N = 1) + Gey1(M - 1))g

(=i« [o)

= T(lO),CycliC)
so the M x N cyclic distribution is the best.

» The broadcast cost for the 2D cyclic distribution has an upper
bound

n—k—-1 n—k-—1
T(lO),cyclic < <<M+1> N + <N+1> M)g

(o0 (2)) e

» This upper bound is minimal for M = N = ,/p. The resulting
communication cost is about 2(n — k — 1)g. ez pasie 10 decompostin

Summary

» We determined the matrix distribution, first by restricting it to
be Cartesian, then by choosing it to be 2D cyclic.

> We did this based on a careful analysis of the main
computation and communication supersteps.
» We then showed that a square \/p x ,/p distribution is best.

» Cliffhanger: we now have a correct algorithm and a good
distribution, but the overall BSP cost might be improved.
Wait and see ...

Lecture 2.3 Parallel LU Decomposition

