Parallel LU Decomposition

Section 2.3 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Designing a parallel algorithm

- The main question is: how to distribute the data?
- ▶ What data? The matrix A and the permutation π .
- ▶ Data distribution + sequential algorithm → computation supersteps.
- Design the parallel algorithm backwards: insert communication supersteps where needed, following the need-to-know principle.

Data distribution for the matrix A

► The bulk of the work in the sequential case is the update

$$a_{ij} := a_{ij} - a_{ik}a_{kj}$$

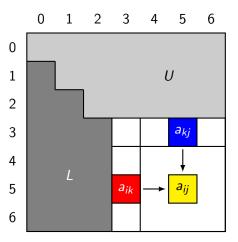
for elements a_{ij} with $i, j \ge k + 1$, taking $2(n - k - 1)^2$ flops.

- ▶ The other operations take only n k 1 flops. Thus, the data distribution is chosen mainly by considering the matrix update.
- ▶ Elements a_{ii} , a_{ik} , a_{ki} may not be on the same processor.
- ▶ Who does the update?

The owner computes

- Many elements a_{ij} must be updated in stage k, but using only few elements a_{ik} , a_{kj} , all from column k or row k. Moving those elements around causes less traffic.
- ▶ Therefore, the owner of a_{ij} computes the new value a_{ij} using communicated values of a_{ik} , a_{ki} .

Matrix update by operation $a_{ii} := a_{ii} - a_{ik}a_{ki}$



- ▶ The update of row *i* uses only one value, a_{ik} , from column *k*.
- If we distribute row i over N processors, then a_{ik} needs to be sent to < N-1 processors.

2D matrix distribution

► A matrix distribution is a mapping

$$\phi: \{(i,j): 0 \le i,j < n\} \to \{(s,t): 0 \le s < M \land 0 \le t < N\}$$

from the set of matrix index pairs to the set of processor identifiers.

▶ The mapping function ϕ has two coordinates,

$$\phi(i,j)=(\phi_0(i,j),\phi_1(i,j)).$$

- ► Here, we number the processors in 2D fashion, where p = MN. This is just a numbering, without physical meaning!
- ▶ BSP newcomers should think that BSPlib randomly renumbers the processors at the start.
- A processor row P(s,*) is a group of N processors P(s,t) with 0 < t < N.
- A processor column P(*,t) is a group of M processors P(s,t) with 0 < s < M.

Cartesian matrix distribution

► A matrix distribution is called Cartesian if

$$\phi(i,j) = (\phi_0(i), \phi_1(j)).$$

Parallel algorithm for Cartesian distribution: divisions

if
$$\phi_0(k) = s \land \phi_1(k) = t$$
 then \Rightarrow Superstep (8) put a_{kk} in $P(*,t)$;

if $\phi_1(k) = t$ then \Rightarrow Superstep (9) for all $i: k < i < n \land \phi_0(i) = s$ do $a_{ik} := \frac{a_{ik}}{a_{kl}}$;

Parallel algorithm: matrix update

if
$$\phi_1(k) = t$$
 then
for all $i : k < i < n \land \phi_0(i) = s$ do
put a_{ik} in $P(s,*)$;

if
$$\phi_0(k) = s$$
 then for all $j: k < j < n \land \phi_1(j) = t$ do put a_{kj} in $P(*, t)$;

for all
$$j: k < j < n \land \phi_1(j) = t$$
 do put a_{kj} in $P(*,t)$;

for all
$$i : k < i < n \land \phi_0(i) = s$$
 do
for all $j : k < j < n \land \phi_1(j) = t$ do
 $a_{ij} := a_{ij} - a_{ik}a_{kj}$;

Superstep (11)

Parallel pivot search

$$\begin{aligned} & \textbf{if} \ \phi_1(k) = t \ \textbf{then} & \rhd \ \text{Superstep (0)} \\ & r_s := \operatorname{argmax}(|a_{ik}| : k \leq i < n \land \phi_0(i) = s); \end{aligned} \\ & \textbf{if} \ \phi_1(k) = t \ \textbf{then} & \rhd \ \text{Superstep (1)} \\ & \text{put} \ r_s \ \text{and} \ a_{r_s,k} \ \text{in} \ P(*,t); \end{aligned}$$

Parallel pivot search

if
$$\phi_1(k) = t$$
 then \triangleright Superstep (0) $r_s := \operatorname{argmax}(|a_{ik}| : k \le i < n \land \phi_0(i) = s);$ if $\phi_1(k) = t$ then
put r_s and $a_{r_s,k}$ in $P(*,t);$ \triangleright Superstep (1)if $\phi_1(k) = t$ then
 $s_{\max} := \operatorname{argmax}(|a_{r_q,k}| : 0 \le q < M);$
 $r := r_{s_{\max}};$ \triangleright Superstep (2)if $\phi_1(k) = t$ then
put r in $P(s,*);$ \triangleright Superstep (3)

Two parallelization methods

- ► The need-to-know principle: exactly those nonlocal data that are needed in a computation superstep should be fetched in preceding communication supersteps.
- ► Matrix update uses first parallelization method: look at lhs (left-hand side) of assignment; the owner computes.
- Pivot search uses second method: look at rhs of assignment; compute what can be done locally, which reduces the number of data to be communicated.
- ▶ In pivot search: first a local search, then communication of the local winner to all processors, finally a redundant search for the global winner.
- Broadcast of r in superstep (3) is needed later in (4). Designing backwards, we formulate (4) first and then insert (3).

Distribution for permutation π

- We should store π_k together with row k, somewhere in processor row $P(\phi_0(k), *)$.
- ▶ We could choose a single location such as $P(\phi_0(k), 0)$. This gives a true distribution.
- We choose, however, to replicate π_k in processor row $P(\phi_0(k),*)$. This saves some **if**-statements in our algorithm and removes clutter.

Index swaps

if
$$\phi_0(k) = s$$
 then $put \pi_k$ as $\hat{\pi}_k$ in $P(\phi_0(r), t)$;
if $\phi_0(r) = s$ then $put \pi_r$ as $\hat{\pi}_r$ in $P(\phi_0(k), t)$;
if $\phi_0(k) = s$ then $\pi_k := \hat{\pi}_r$; \Rightarrow Superstep (5)
if $\phi_0(r) = s$ then $\pi_r := \hat{\pi}_k$;

Row swaps

if
$$\phi_0(k) = s$$
 then for all $j: 0 \le j < n \land \phi_1(j) = t$ do put a_{kj} as \hat{a}_{kj} in $P(\phi_0(r), t)$; if $\phi_0(r) = s$ then for all $j: 0 \le j < n \land \phi_1(j) = t$ do put a_{rj} as \hat{a}_{rj} in $P(\phi_0(k), t)$; if $\phi_0(k) = s$ then for all $j: 0 \le j < n \land \phi_1(j) = t$ do $a_{kj} := \hat{a}_{rj}$; if $\phi_0(r) = s$ then

for all $i : 0 < i < n \land \phi_1(i) = t$ **do**

 $a_{ri} := \hat{a}_{ki}$;

⊳ Superstep (6)

⊳ Superstep (7)

Optimizing the matrix distribution

- We have chosen a Cartesian matrix distribution ϕ to limit the communication.
- We now specify ϕ further to achieve a good computational load balance and to minimize the communication.
- ▶ Maximum number of local matrix rows with index $\geq k$:

$$R_k = \max_{0 \le s < M} |\{i : k \le i < n \land \phi_0(i) = s\}|.$$

Maximum number of local matrix columns with index $\geq k$:

$$C_k = \max_{0 \le t \le N} |\{j : k \le j < n \land \phi_1(j) = t\}|.$$

► The computation cost of the largest superstep, the matrix update (11), is then $2R_{k+1}C_{k+1}$.

Example

t = 0		2	1	2	0	1	0
s = 0	00	02	01	02	00	01	00
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10
0	00	02	01	02	00	01	00
1	10	12	11	12	10	11	10

$$R_0 = 4, C_0 = 3$$

Lower bound on R_k

$$R_k \geq \left\lceil \frac{n-k}{M} \right\rceil$$
.

Proof: Assume this is false, so that $R_k < \lceil \frac{n-k}{M} \rceil$. Because R_k is integer, we even have $R_k < \frac{n-k}{M}$. Hence all M processor rows together hold fewer than $M \cdot \frac{n-k}{M} = n-k$ matrix rows. But they hold all matrix rows $k \leq i < n$, which are n-k rows. Contradiction.

2D cyclic distribution attains the lower bound

$$\phi_0(i) = i \mod M$$
, $\phi_1(j) = j \mod N$.

$$R_k = \left\lceil \frac{n-k}{M} \right\rceil, \quad C_k = \left\lceil \frac{n-k}{N} \right\rceil.$$

Cost of main computation superstep (the matrix update)

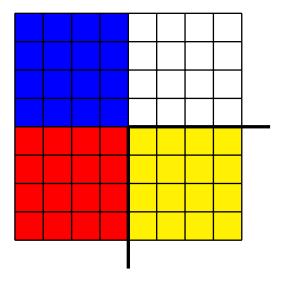
$$T_{(11), \text{cyclic}} = 2 \left\lceil \frac{n-k-1}{M} \right\rceil \ \left\lceil \frac{n-k-1}{N} \right\rceil \geq \frac{2(n-k-1)^2}{p}.$$

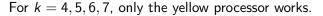
$$T_{(11),\text{cyclic}} < 2\left(\frac{n-k-1}{M}+1\right)\left(\frac{n-k-1}{N}+1\right)$$

$$= \frac{2(n-k-1)^2}{p} + \frac{2(n-k-1)}{p}(M+N) + 2.$$

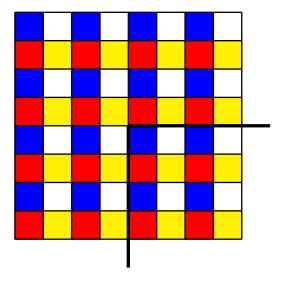
- The upper bound is minimal for a square distribution, $M = N = \sqrt{p}$.
- ► The second-order term $\frac{4(n-k-1)}{\sqrt{p}}$ is the additional computation cost caused by load imbalance.

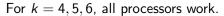
Bad load balance for the square block distribution





Better load balance for the square cyclic distribution





Cost of main communication superstep (the broadcast)

► The cost of the broadcast of row *k* and column *k* in (10) for a Cartesian distribution is

$$T_{(10)} = (R_{k+1}(N-1) + C_{k+1}(M-1))g$$

$$\geq \left(\left\lceil \frac{n-k-1}{M} \right\rceil (N-1) + \left\lceil \frac{n-k-1}{N} \right\rceil (M-1) \right) g$$

$$= T_{(10), \text{cyclic}},$$

so the $M \times N$ cyclic distribution is the best.

➤ The broadcast cost for the 2D cyclic distribution has an upper bound

$$T_{(10), ext{cyclic}} < \left(\left(\frac{n-k-1}{M} + 1 \right) N + \left(\frac{n-k-1}{N} + 1 \right) M \right) g$$

$$= \left((n-k-1) \left(\frac{N}{M} + \frac{M}{N} \right) + M + N \right) g.$$

This upper bound is minimal for $M=N=\sqrt{p}$. The resulting communication cost is about 2(n-k-1)g.

Summary

- ▶ We determined the matrix distribution, first by restricting it to be Cartesian, then by choosing it to be 2D cyclic.
- We did this based on a careful analysis of the main computation and communication supersteps.
- ▶ We then showed that a square $\sqrt{p} \times \sqrt{p}$ distribution is best.
- ► Cliffhanger: we now have a correct algorithm and a good distribution, but the overall BSP cost might be improved. Wait and see . . .