Program bspfft

Section 3.6 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 3.6 Program bspfft

1/20

Sequential unordered FFT: specification

void

Ve

*/

ufft (double complex xx, long n, bool forward,
double complex *w){

This sequential function computes the unordered
discrete Fourier transform of a complex vector x
of length n, where n=2"m, m>= 0.

The output overwrites x.

If forward, then the forward unordered DFT is
computed, and otherwise the backward unordered DFT.

w is a table of complex weights of length n—1,
which must have been suitably initialized before
calling this function.

Lecture 3.6 Program bspfft

2/20

Sequential unordered FFT: body

void ufft (double complex xx, long n, bool forward,
double complex *w){

long start= 0;

for (long k=2; k<=n; k *x=2){
butterfly_stage(x,n,k,forward &w[start]);
start += k/2;

» All butterflies of stage k use the same set of k/2 weights
stored in array w.

Lecture 3.6 Program bspfft

3/20

Butterflies of stage k

void butterfly_stage(double complex xx, long n, long k,
bool forward, double complex xw){

for (long r=0; r<n/k; r4++){
for (long j=0; j<k/2; j++){

double complex weight;
if (forward) {

weight= w[]];
} else {

weight= conj(w[]j]);
}

double complex tau= weight * x[rxk+j+k/2];
x[rxk+j+k/2]= x[rxk+j] — tau;
x[rxk+j] += tau;

Lecture 3.6 Program bspfft

4/20

Permutation to be used for bit reversal o = p,

void permute(double complex *x, long n, long xsigma){

/x This in—place sequential function permutes
a complex vector x of length n>=1
by the permutation sigma,
yli] = x[sigmalj]], 0<=j < n.
The output overwrites the vector x. x/

for (long j=0; j<n; j++){
long sigmaj = sigmalj];
if (j<sigmaj){
/+* swap components j and sigmal[j] x/
double complex tmp= x[j];
x[j]= x[sigmaj];
x[sigmaj]= tmp;

Lecture 3.6 Program bspfft

5/20

Initialization of bit reversal p,, n =2 > 2
We compute p1, p2, pa, ..., pn by using

on(j) = 2p4/2()) for 0 <j < n/2,
" 2050 —n/2)+1 forn/2<j<n.
void bitrev_init(long n, long xrho){
rho[0]= 0; // rho = rho_1
for (long k=2; k<=n; k *=2){
/+* Compute rho = rho_k x/
for (long j=0; j<k/2; j++){

rho[j] *= 2;
rho[j+k/2]= rho[j] + 1;

Lecture 3.6 Program bspfft

6/20

Redistribution

c =2 [P(O)[P(1)|P(0)|P(1)|P(0)[P(1)[P(0)P(1AAIHECNAANHENZ A NIHE I ZPILE))

(cyclic)

» We redistribute the vector x from group-cyclic distribution
with cycle ¢y to cycle ¢, where ¢p|c; (and hence ¢p < 7).

» Optimization: vector components are sent in packets, not
individually.

» BSP model: no difference in cost.

» BSPlib implementation: using packets is more efficient, and
gives optimistic g-values.

Lecture 3.6 Program bspfft

7/20

Regular parallel algorithms

» The communication pattern of a regular parallel algorithm can
be predicted exactly and each processor can determine exactly
where every communicated data element goes.

» For a regular algorithm, it is always possible for the user to
combine data for the same destination in a block, or packet,
and communicate the block using 1 put operation.

» This requires packing at the source processor and unpacking
at the destination processor.

Lecture 3.6 Program bspfft

8/20

Anything you can do, | can do better

Anything you can send
| can send faster.

I can send anything
Faster than you.

» Song from the musical Annie Get Your Gun, Irving Berlin,
1946.

» The BSP system packs data, but for regular algorithms the
user can do better, saving the sending of header information
that identifies the data.

» This is worthwhile if the communication pattern involves
sending many single data words, as happens in the FFT, or
many very small data quantities.

» Not everything you can do, you should do.

Lecture 3.6 Program bspfft

9/20

Packing useful stuff

Y yuiRD EDITION

Lecture 3.6 Program bspfft

10/20

How to pack

» Leave this to someone else. Good packers in theory make bad
packers in practice.

» If you can leave it up to the BSP system, that's OK too.

> Main question: which data travel to the same destination
processor?

Lecture 3.6 Program bspfft

11/20

Which data travel together?

» Consider x; and x;: residing on the same processor in the old
distribution with cycle ¢p. They are in the same block of size
% handled by a group of ¢y processors.

» Each block of the old distribution fits entirely in a block of the
new distribution, because ¢plc;.

» Thus, x; and x;» will automatically be in the same new block
of size ”—;1 handled by a group of ¢; processors.

Lecture 3.6 Program bspfft

12/20

When will x; and x; be on the same processor?
» |n the old distribution, write
. . Con . .
J 2127 +J1¢0 + Jo-

Because j» and jo depend only on the processor number,
which is the same for j and j/, we can write

. . Con . .
J/ 2127 +J:{C0 + Jo-

» In the new distribution, x; and x; are on the same processor if

j=J (mod ¢)

e j1C0 E_j{Co (mod C1)
. . 1

— h=j (mod —=)
()]

Lecture 3.6 Program bspfft

13/20

Putting one packet
. . Con . .
J 2127 +J1% + Jo

» The local index of vector component x; on its processor is
i=i
» x; and x;j; are on the same processor in the new distribution
. . C C
e j1 = (mod) < j = j' (mod 2).
Co Co
» Thus, we can pack components with local indices
j, i+ %,j + 2%, ..., into a temporary array and then put all
of these components together into the destination processor
as one packet.

> We define ratio = g—; the stride for packing data.

Lecture 3.6 Program bspfft

14 /20

How not to unpack

» If x; and x; are two adjacent components in a packet, with
local indices at the source satisfying j' = j + &, then the
global indices satisfy

. . 5] .
J =+ —c=J+a.
Co

» Thus, the local indices at the destination in the group-cyclic
distribution with cycle ¢; satisfy

i'=3+1

» We are lucky: if we put the first component x; of the packet
directly into its final location, and the next component of the
packet into the next location, and so on, then all components
of the packet immediately reach their final destination.

» This means we do not have to unpack!

Lecture 3.6 Program bspfft

15/20

Redistribution from ¢y to ¢

void bspredistr(double complex *x, long n, long c0,

long
long
long
long

long
long

long c, long *rho_p){

jO= s%cO0;
j2= s/c0;
ratio= c/c0;
np= n/p;

size= (np >= ratio ? np/ratio : 1);
npackets= np/size;

double complex xtmp= vecallocc(size);

Lecture 3.6 Program bspfft

16 /20

Redistribution from ¢ to ¢ (cont'd)

for (long j=0; j<npackets; j++){
long jglob= j2xcOxnp + j*xc0 + jO;
long destproc= (jglob/(cxnp))xc + jglob%c;
long destindex= (jglob%(c*np))/c;

for (long r=0; r<size; r++)
tmp[r]= x[j+rxratio];

bsp_put(destproc ,tmp,x,
destindexxsizeof (double complex),
sizexsizeof (double complex));

}

bsp_sync ();

Lecture 3.6 Program bspfft

17/20

Main function bspfft

void bspfft(double complex xx, long n, bool forward,
double complex xw,
long xrho_np, long *rho_p){

long p= bsp_nprocs();

long np= n/p;

long c= 1;

bool rev= true;

/+ Perform a
This part
favourite

permute(x,np,

local ordered FFT of length n/p.
can be replaced easily by your
sequential FFT x/

rho_np);

ufft(x,np, forward ,w);

Lecture 3.6 Program bspfft

18/20

Main function bspfft (cont'd)

long k= 2xnp;
long start= np—1; // start of current weights in w

while (c < p){
long c0= c;
c= (npxc <= p ? npxc : p);
bspredistr(x,n,c0,c,rev,rho_p);
rev= false;

while (k <= npxc){
butterfly_stage(x,np,k/c,forward &w[start]);
start += k/(2xc);
k x= 2;

Lecture 3.6 Program bspfft

19/20

Summary

P> We have optimized the communication in the only
communication function of the parallel FFT, the
redistribution.

> We did this by packing data, which is always possible for
regular algorithms with a predictable communication pattern.

» Where possible, we have moved computations to initialization
functions, e.g. for the table of weights in a dry run of the
algorithm, and also for the bit reversal permutation.

» Even higher performance can be attained by replacing the

start of the algorithm by highly optimized sequential code
such as FFTW or Spiral.

Lecture 3.6 Program bspfft

20/20

