Sparse Matrices and Their Data Structures

Section 4.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling
Utrecht University

Basic sparse technique: adding two sparse vectors

- Problem: add a sparse vector \mathbf{y} of length n to a sparse vector \mathbf{x} of length n, overwriting \mathbf{x}, i.e.,

$$
\mathbf{x}:=\mathbf{x}+\mathbf{y} .
$$

- ' \mathbf{x} is a sparse vector' means that $x_{i}=0$ for most i.
- The number of nonzeros of \mathbf{x} is c_{x} and that of \mathbf{y} is c_{y}.

Example: store sparse vectors in compressed form

- Given are vectors \mathbf{x}, \mathbf{y} of length $n=8$ in a compressed vector data structure:

$x[j] \cdot a=$	2	5	1
	$x[j] \cdot i=$	5	3
	7		
$y[j] \cdot a=$	1	4	1
4			
$y[j] \cdot i=$	6	3	5

- The number of nonzeros of these vectors is $c_{x}=3$ and $c_{y}=4$.
- The j th nonzero in the array of x has
- numerical value $x_{i}=x[j] . a$,
- index $i=x[j] . i$.
- How to compute $\mathbf{x}+\mathbf{y}$?

Addition is easy for dense storage

- A compressed vector data structure for \mathbf{x}, \mathbf{y} is:

$x[j] \cdot a=$	2	5	1
$x[j] \cdot i=$	5	3	7
$y[j] \cdot a=$	1	4	1

- The dense vector data structure for \mathbf{x}, \mathbf{y}, and $\mathbf{z}=\mathbf{x}+\mathbf{y}$ is:

0	0	0	5	0	2	0	1
0	0	4	4	0	1	1	0
0	0	4	9	0	3	1	1

- A compressed vector data structure for $\mathbf{z}=\mathbf{x}+\mathbf{y}$ is:

$z[j] \cdot a=$	3	9	1	1	4
$z[j] \cdot i=$	5	3	7	6	2

- Conclusion: use an auxiliary dense vector!

Location array

- The array yloc registers the location $j=y / o c[i]$ where a nonzero vector component y_{i} is stored in the compressed array.
- It registers a dummy value -1 if y_{i} is not stored.
- yloc is similar to the inverse of a permutation:

$$
y \operatorname{loc}[y[j] . i]=j
$$

$y[j] \cdot a=$	1	4	1	4
$y[j] \cdot i=$	6	3	5	2
$j=$	0	1	2	3

$y_{i}=$	0	0	4	4	0	1	1	0
yloc $[i]=$	-1	-1	3	1	-1	2	0	-1
$i=$	0	1	2	3	4	5	6	7

Algorithm for sparse vector addition: pass 0

input: $\quad \mathbf{x}$: sparse vector with $c_{x} \geq 0$ nonzeros, $\mathbf{x}=\mathbf{x}_{0}$,
\mathbf{y} : sparse vector with $c_{y} \geq 0$ nonzeros,
$y l o c:$ dense vector of length n, $y / o c[i]=-1$, for $0 \leq i<n$.
output: $\mathbf{x}=\mathbf{x}_{0}+\mathbf{y}$, yloc $[i]=-1$, for $0 \leq i<n$.
\{ Register location of nonzeros of \mathbf{y} \}

$$
\begin{gathered}
\text { for } j:=0 \text { to } c_{y}-1 \text { do } \\
\quad \text { yloc }[y[j] . i]:=j ;
\end{gathered}
$$

Algorithm for sparse vector addition: passes 1, 2

\{ Add matching nonzeros of \mathbf{x} and \mathbf{y} \} for $j:=0$ to $c_{x}-1$ do

$$
i:=x[j] . i ;
$$

if y loc $[i] \neq-1$ then

$$
\begin{aligned}
& x[j] \cdot a:=x[j] \cdot a+y[y \operatorname{loc}[i]] . a ; \\
& \text { yloc }[i]:=-1
\end{aligned}
$$

\{ Append remaining nonzeros of \mathbf{y} to \mathbf{x} \}

$$
\begin{gathered}
\text { for } j:=0 \text { to } c_{y}-1 \text { do } \\
i:=y[j] \cdot i ; \\
\text { if } y \text { yoc }[i] \neq-1 \text { then } \\
\\
x\left[c_{x}\right] \cdot i:=i ; \\
\\
x\left[c_{x}\right] \cdot a:=y[j] \cdot a ; \\
\\
c_{x}:=c_{x}+1 ; \\
\\
\text { yloc }[i]:=-1 ;
\end{gathered}
$$

Analysis of sparse vector addition

- The total number of operations is $\mathcal{O}\left(c_{x}+c_{y}\right)$, since there are $c_{x}+2 c_{y}$ loop iterations, each with a small constant number of operations.
- The number of flops equals the number of nonzeros in the intersection of the sparsity patterns of \mathbf{x} and \mathbf{y}; 0 flops can happen.
- The initialization of array yloc to -1 costs n operations, which will dominate the total cost if only one vector addition has to be performed.
- yloc can be reused in subsequent vector additions, because each modified element $y l o c[i]$ is reset to -1 .
- If we add two $n \times n$ matrices row by row, we can amortize the $\mathcal{O}(n)$ initialization cost over n vector additions.

Accidental zero

https://www.filmsite.org/ greatestflops14.html

Matrix memplus with $n=17758$ and 126150 entries, including 27003 accidental zeros

- An accidental zero is a matrix element that is numerically zero but still occurs as a nonzero pair $(i, 0.0)$ in the data structure.
- It may be created by an operation $y_{i}:=x_{i}+\left(-x_{i}\right)$.
- Testing all operations in a sparse matrix algorithm for zero results is more expensive than computing with a few extra entries, so accidental zeros are usually kept.

No abuse of numerics for symbolic purposes!

- Instead of using the symbolic location array, initialized at -1 , we could have used an auxiliary array storing numerical values, initialized at 0.0.
- We could then add \mathbf{y} into the numerical array, update \mathbf{x} accordingly, and reset the array.
- Unfortunately, this would make the resulting sparsity pattern of $\mathbf{x}+\mathbf{y}$ dependent on the numerical values of \mathbf{x} and \mathbf{y} : an accidental zero in \mathbf{y} would not lead to a new entry.
- This dependence may prevent sparsity pattern reuse for repeated multiplication by a matrix with different numerical values but the same sparsity pattern.
- Reuse often speeds up subsequent program runs.

Sparse matrix data structure: coordinate scheme

- In the coordinate scheme or triple scheme, every nonzero element $a_{i j}$ is represented by a triple $\left(i, j, a_{i j}\right)$, where
$-i$ is the row index,
- j the column index,
- $a_{i j}$ the numerical value.
- The triples are stored in arbitrary order in an array.
- This data structure is easiest to understand and is often used for input/output, e.g. in the Matrix Market format used by the SuiteSparse Matrix Collection, https://sparse.tamu.edu.
- It is suitable for input to a parallel computer, since all information about a nonzero is contained in its triple. The triples can be sent directly to the responsible processors.
- It is less suitable, however, for row-wise or column-wise matrix operations, because they would require a lot of searching.

Data structure: Compressed Row Storage

- In the Compressed Row Storage (CRS) data structure, each matrix row i is stored as a compressed sparse vector consisting of pairs $\left(j, a_{i j}\right)$ representing nonzeros.
- This data structure is also known as Compressed Sparse Row (CSR).
- In the data structure, $a[k]$ denotes the numerical value of the k th nonzero, and $j[k]$ its column index.
- Rows are stored consecutively, in order of increasing i.
- start[$[$] is the address of the first nonzero of row i.
- The number of nonzeros of row i is

$$
\operatorname{start}[i+1]-\operatorname{start}[i],
$$

where by convention $\operatorname{start}[n]=n z(A)$.

Example of CRS

$$
A=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 & 0 \\
0 & 5 & 9 & 2 & 0 \\
6 & 0 & 0 & 5 & 3 \\
0 & 0 & 5 & 8 & 9
\end{array}\right], n=5, n z(A)=13
$$

The CRS data structure for A is:

$a[k]=$	3	1	4	1	5	9	2	6	5	3	5	8	9
$j[k]=$	1	4	0	1	1	2	3	0	3	4	2	3	4
$k=$	0	1	2	3	4	5	6	7	8	9	10	11	12

start $[i]=$	0	2	4	7	10	13
$i=$	0	1	2	3	4	5

Sparse matrix-vector multiplication using CRS

input: $\quad A$: sparse $n \times n$ matrix, \mathbf{v} : dense vector of length n.
output: \mathbf{u} : dense vector of length $n, \mathbf{u}=A \mathbf{v}$.

$$
\begin{aligned}
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& \quad u[i]:=0 ; \\
& \quad \text { for } k:=\operatorname{start}[i] \text { to } \operatorname{start}[i+1]-1 \text { do } \\
& \quad u[i]:=u[i]+a[k] \cdot v[j[k]] ;
\end{aligned}
$$

Incremental Compressed Row Storage

- Incremental Compressed Row Storage (ICRS) is a variant of CRS proposed by Joris Koster in 2002.
- In ICRS, the location (i, j) of a nonzero $a_{i j}$ is encoded as a 1D index $i \cdot n+j$.
- Instead of the 1D index itself, the difference with the 1D index of the previous nonzero is stored, as an increment in the array inc. This technique is sometimes called delta-indexing.
- The nonzeros within a row are ordered by increasing j, so that the 1D indices form a monotonically increasing sequence and the increments are positive.
- This is cache-friendly, because consecutively accessed vector components v_{j} will be closer together in memory.
- An extra dummy element $(n, 0)$ is added at the end.

Example of ICRS

$$
A=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 & 0 \\
0 & 5 & 9 & 2 & 0 \\
6 & 0 & 0 & 5 & 3 \\
0 & 0 & 5 & 8 & 9
\end{array}\right], n=5, n z(A)=13
$$

The ICRS data structure for A is:

$a[k]=$	3	1	4	1	5	9	2	\ldots	0
$j[k]=$	1	4	0	1	1	2	3	\ldots	0
$i[k] \cdot n+j[k]=$	1	4	5	6	11	12	13	\ldots	25
$i n c[k]=$	1	3	1	1	5	1	1	\ldots	1
$k=$	0	1	2	3	4	5	6	\ldots	13

Sparse matrix-vector multiplication using ICRS

input: $\quad A$: sparse $n \times n$ matrix,
v : dense vector of length n.
output: \mathbf{u} : dense vector of length $n, \mathbf{u}=A \mathbf{v}$.

$$
\begin{aligned}
& j:=\operatorname{inc}[0] ; \\
& k:=0 ; \\
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& u[i]:=0 ; \\
& \quad \text { while } j<n \text { do } \\
& \quad u[i]:=u[i]+a[k] \cdot v[j] ; \\
& \quad k:=k+1 ; \\
& \quad j:=j+i n c[k] ; \\
& \quad j:=j-n ;
\end{aligned}
$$

- ICRS is slightly faster than CRS because the increments translate well into C pointer arithmetic.
- No indirect addressing like $v[j[k]]$ is needed.

A few other data structures

- Compressed column storage (CCS), similar to CRS.
- Gustavson's data structure: both CRS and CCS, but storing numerical values only once. Offers row-wise and column-wise access to the sparse matrix.
- The two-dimensional doubly linked list: each nonzero is represented by $i, j, a_{i j}$, and links to a next and a previous nonzero in the same row and column.

Two-dimensional doubly linked list

- Advantage: it offers maximum flexibility: row-wise and column-wise access are easy and elements can be inserted and deleted in $\mathcal{O}(1)$ operations.
- Useful for parallel sparse LU decomposition with pivoting, where rows or columns have to move frequently from one set of processors to another.
- Disadvantages:
- $7 n z+2 n$ memory space needed, compared to only $2 n z+n$ for CRS;
- following the links causes arbitrary jumps in the computer memory, often incurring cache misses.

Matrix-free storage

- Matrix-free storage: sometimes it may be too costly to store the matrix explicitly. Instead, each matrix element is recomputed when needed.
- This may enable the solution of otherwise unsolvable huge problems.
- Example: the weblink matrix of the whole World Wide Web is not explicitly stored. Instead the behaviour of a random surfer is simulated.
- Example: the sparse system matrix of a Computed Tomography (CT) scan is recomputed one row at a time.

Flexible CT scanner at CWI Amsterdam

Left: X-ray source. Middle: object to be scanned. Right: detector.

Solving a sparse rectangular linear system from CT

4 projections (angles)
5×5 detector pixels
$5 \times 5 \times 5$ object voxels
$m \times n$ sparse matrix
$m=100, n=125$
$n z=1394$
$b_{i}=\sum_{j=0}^{n-1} a_{i j} x_{j}, \quad 0 \leq i<m$.

- $a_{i j}$ is the weight of ray i in voxel j,
- x_{j} is the density of voxel j,
- b_{i} is the detector measurement for ray i.
- Not every ray hits every voxel: the system is sparse.
- Usually $m<n$, so system is underdetermined.

Summary

- Sparse matrix algorithms are more complicated than their dense equivalents, as we saw for sparse vector addition.
- Still, using sparsity can save large amounts of CPU time and memory space.
- We learned an efficient way of adding two sparse vectors by using a dense initialized auxiliary array. You will be surprised to see how often you can use this trick.
- Compressed row storage (CRS) and its variants are useful data structures for sparse matrices.
- CRS stores the nonzeros of each row together, but does not sort the nonzeros within a row. ICRS sorts by increasing index.
- Sorting is a mixed blessing: it may help, but it also takes time.

