
Lecture 4.2 Sparse Matrix Data Structures

Sparse Matrices and Their Data Structures
Section 4.2 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 23

Lecture 4.2 Sparse Matrix Data Structures

Basic sparse technique: adding two sparse vectors

I Problem: add a sparse vector y of length n to a sparse vector
x of length n, overwriting x, i.e.,

x := x + y.

I ‘x is a sparse vector’ means that xi = 0 for most i .

I The number of nonzeros of x is cx and that of y is cy .

2 / 23

Lecture 4.2 Sparse Matrix Data Structures

Example: store sparse vectors in compressed form

I Given are vectors x, y of length n = 8 in a compressed vector
data structure:

x [j].a = 2 5 1

x [j].i = 5 3 7

y [j].a = 1 4 1 4

y [j].i = 6 3 5 2

I The number of nonzeros of these vectors is cx = 3 and cy = 4.
I The jth nonzero in the array of x has

I numerical value xi = x [j].a,
I index i = x [j].i .

I How to compute x + y?

3 / 23

Lecture 4.2 Sparse Matrix Data Structures

Addition is easy for dense storage

I A compressed vector data structure for x, y is:
x [j].a = 2 5 1

x [j].i = 5 3 7

y [j].a = 1 4 1 4

y [j].i = 6 3 5 2

I The dense vector data structure for x, y, and z = x + y is:
0 0 0 5 0 2 0 1

0 0 4 4 0 1 1 0

0 0 4 9 0 3 1 1

I A compressed vector data structure for z = x + y is:
z [j].a = 3 9 1 1 4

z [j].i = 5 3 7 6 2

I Conclusion: use an auxiliary dense vector!

4 / 23

Lecture 4.2 Sparse Matrix Data Structures

Location array

I The array yloc registers the location j = yloc[i] where a
nonzero vector component yi is stored in the compressed array.

I It registers a dummy value −1 if yi is not stored.

I yloc is similar to the inverse of a permutation:

yloc[y [j].i] = j .

y [j].a = 1 4 1 4

y [j].i = 6 3 5 2

j = 0 1 2 3

yi = 0 0 4 4 0 1 1 0

yloc[i] = −1 −1 3 1 −1 2 0 −1

i = 0 1 2 3 4 5 6 7

5 / 23

Lecture 4.2 Sparse Matrix Data Structures

Algorithm for sparse vector addition: pass 0

input: x : sparse vector with cx ≥ 0 nonzeros, x = x0,
y : sparse vector with cy ≥ 0 nonzeros,
yloc : dense vector of length n,

yloc[i] = −1, for 0 ≤ i < n.
output: x = x0 + y, yloc[i] = −1, for 0 ≤ i < n.

{ Register location of nonzeros of y}
for j := 0 to cy − 1 do

yloc[y [j].i] := j ;

...

6 / 23

Lecture 4.2 Sparse Matrix Data Structures

Algorithm for sparse vector addition: passes 1, 2

...
{ Add matching nonzeros of x and y }
for j := 0 to cx − 1 do

i := x [j].i ;
if yloc[i] 6= −1 then

x [j].a := x [j].a + y [yloc[i]].a;
yloc[i] := −1;

{ Append remaining nonzeros of y to x }
for j := 0 to cy − 1 do

i := y [j].i ;
if yloc[i] 6= −1 then

x [cx].i := i ;
x [cx].a := y [j].a;
cx := cx + 1;
yloc[i] := −1;

7 / 23

Lecture 4.2 Sparse Matrix Data Structures

Analysis of sparse vector addition

I The total number of operations is O(cx + cy), since there are
cx + 2cy loop iterations, each with a small constant number
of operations.

I The number of flops equals the number of nonzeros in the
intersection of the sparsity patterns of x and y; 0 flops can
happen.

I The initialization of array yloc to −1 costs n operations,
which will dominate the total cost if only one vector addition
has to be performed.

I yloc can be reused in subsequent vector additions, because
each modified element yloc[i] is reset to −1.

I If we add two n× n matrices row by row, we can amortize the
O(n) initialization cost over n vector additions.

8 / 23

Lecture 4.2 Sparse Matrix Data Structures

Accidental zero

https://www.filmsite.org/

greatestflops14.html

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

nz = 99147

Spy plot of the original matrix

Matrix memplus with n = 17 758

and 126 150 entries, including

27 003 accidental zeros

I An accidental zero is a matrix element that is numerically zero
but still occurs as a nonzero pair (i , 0.0) in the data structure.

I It may be created by an operation yi := xi + (−xi).
I Testing all operations in a sparse matrix algorithm for zero

results is more expensive than computing with a few extra
entries, so accidental zeros are usually kept.

9 / 23

https://www.filmsite.org/greatestflops14.html
https://www.filmsite.org/greatestflops14.html

Lecture 4.2 Sparse Matrix Data Structures

No abuse of numerics for symbolic purposes!

I Instead of using the symbolic location array, initialized at −1,
we could have used an auxiliary array storing numerical values,
initialized at 0.0.

I We could then add y into the numerical array, update x
accordingly, and reset the array.

I Unfortunately, this would make the resulting sparsity pattern
of x + y dependent on the numerical values of x and y: an
accidental zero in y would not lead to a new entry.

I This dependence may prevent sparsity pattern reuse for
repeated multiplication by a matrix with different numerical
values but the same sparsity pattern.

I Reuse often speeds up subsequent program runs.

10 / 23

Lecture 4.2 Sparse Matrix Data Structures

Sparse matrix data structure: coordinate scheme

I In the coordinate scheme or triple scheme, every nonzero
element aij is represented by a triple (i , j , aij), where
I i is the row index,
I j the column index,
I aij the numerical value.

I The triples are stored in arbitrary order in an array.

I This data structure is easiest to understand and is often used
for input/output, e.g. in the Matrix Market format used by the
SuiteSparse Matrix Collection, https://sparse.tamu.edu.

I It is suitable for input to a parallel computer, since all
information about a nonzero is contained in its triple. The
triples can be sent directly to the responsible processors.

I It is less suitable, however, for row-wise or column-wise matrix
operations, because they would require a lot of searching.

11 / 23

https://sparse.tamu.edu

Lecture 4.2 Sparse Matrix Data Structures

Data structure: Compressed Row Storage

I In the Compressed Row Storage (CRS) data structure, each
matrix row i is stored as a compressed sparse vector consisting
of pairs (j , aij) representing nonzeros.

I This data structure is also known as Compressed Sparse Row
(CSR).

I In the data structure, a[k] denotes the numerical value of the
kth nonzero, and j [k] its column index.

I Rows are stored consecutively, in order of increasing i .

I start[i] is the address of the first nonzero of row i .

I The number of nonzeros of row i is

start[i + 1]− start[i],

where by convention start[n] = nz(A).

12 / 23

Lecture 4.2 Sparse Matrix Data Structures

Example of CRS

A =

0 3 0 0 1
4 1 0 0 0
0 5 9 2 0
6 0 0 5 3
0 0 5 8 9

 , n = 5, nz(A) = 13.

The CRS data structure for A is:

a[k] = 3 1 4 1 5 9 2 6 5 3 5 8 9

j [k] = 1 4 0 1 1 2 3 0 3 4 2 3 4

k = 0 1 2 3 4 5 6 7 8 9 10 11 12

start[i] = 0 2 4 7 10 13

i = 0 1 2 3 4 5

13 / 23

Lecture 4.2 Sparse Matrix Data Structures

Sparse matrix–vector multiplication using CRS

input: A : sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

for i := 0 to n − 1 do
u[i] := 0;
for k := start[i] to start[i + 1]− 1 do

u[i] := u[i] + a[k] · v [j [k]];

14 / 23

Lecture 4.2 Sparse Matrix Data Structures

Incremental Compressed Row Storage

I Incremental Compressed Row Storage (ICRS) is a variant of
CRS proposed by Joris Koster in 2002.

I In ICRS, the location (i , j) of a nonzero aij is encoded as a 1D
index i · n + j .

I Instead of the 1D index itself, the difference with the 1D index
of the previous nonzero is stored, as an increment in the array
inc. This technique is sometimes called delta-indexing.

I The nonzeros within a row are ordered by increasing j , so that
the 1D indices form a monotonically increasing sequence and
the increments are positive.

I This is cache-friendly, because consecutively accessed vector
components vj will be closer together in memory.

I An extra dummy element (n, 0) is added at the end.

15 / 23

Lecture 4.2 Sparse Matrix Data Structures

Example of ICRS

A =

0 3 0 0 1
4 1 0 0 0
0 5 9 2 0
6 0 0 5 3
0 0 5 8 9

 , n = 5, nz(A) = 13.

The ICRS data structure for A is:

a[k] = 3 1 4 1 5 9 2 . . . 0

j [k] = 1 4 0 1 1 2 3 . . . 0

i [k] · n + j [k] = 1 4 5 6 11 12 13 . . . 25

inc[k] = 1 3 1 1 5 1 1 . . . 1

k = 0 1 2 3 4 5 6 . . . 13

16 / 23

Lecture 4.2 Sparse Matrix Data Structures

Sparse matrix–vector multiplication using ICRS
input: A : sparse n × n matrix,

v : dense vector of length n.
output: u : dense vector of length n, u = Av.

j := inc[0];
k := 0;
for i := 0 to n − 1 do

u[i] := 0;
while j < n do

u[i] := u[i] + a[k] · v [j];
k := k + 1;
j := j + inc[k];

j := j − n;

I ICRS is slightly faster than CRS because the increments
translate well into C pointer arithmetic.

I No indirect addressing like v [j [k]] is needed.

17 / 23

Lecture 4.2 Sparse Matrix Data Structures

A few other data structures

I Compressed column storage (CCS), similar to CRS.

I Gustavson’s data structure: both CRS and CCS, but storing
numerical values only once. Offers row-wise and column-wise
access to the sparse matrix.

I The two-dimensional doubly linked list: each nonzero is
represented by i , j , aij , and links to a next and a previous
nonzero in the same row and column.

18 / 23

Lecture 4.2 Sparse Matrix Data Structures

Two-dimensional doubly linked list

I Advantage: it offers maximum flexibility: row-wise and
column-wise access are easy and elements can be inserted and
deleted in O(1) operations.

I Useful for parallel sparse LU decomposition with pivoting,
where rows or columns have to move frequently from one set
of processors to another.

I Disadvantages:
I 7nz + 2n memory space needed, compared to only 2nz + n for

CRS;
I following the links causes arbitrary jumps in the computer

memory, often incurring cache misses.

19 / 23

Lecture 4.2 Sparse Matrix Data Structures

Matrix-free storage

I Matrix-free storage: sometimes it may be too costly to store
the matrix explicitly. Instead, each matrix element is
recomputed when needed.

I This may enable the solution of otherwise unsolvable huge
problems.

I Example: the weblink matrix of the whole World Wide Web is
not explicitly stored. Instead the behaviour of a random surfer
is simulated.

I Example: the sparse system matrix of a Computed
Tomography (CT) scan is recomputed one row at a time.

20 / 23

Lecture 4.2 Sparse Matrix Data Structures

Flexible CT scanner at CWI Amsterdam

Left: X-ray source. Middle: object to be scanned. Right: detector.

21 / 23

Lecture 4.2 Sparse Matrix Data Structures

Solving a sparse rectangular linear system from CT

4 projections (angles)
5× 5 detector pixels
5× 5× 5 object voxels

m × n sparse matrix
m = 100, n = 125
nz = 1394

bi =
n−1∑
j=0

aijxj , 0 ≤ i < m.

I aij is the weight of ray i in voxel j ,

I xj is the density of voxel j ,

I bi is the detector measurement for ray i .

I Not every ray hits every voxel: the system is sparse.

I Usually m < n, so system is underdetermined.
22 / 23

Lecture 4.2 Sparse Matrix Data Structures

Summary

I Sparse matrix algorithms are more complicated than their
dense equivalents, as we saw for sparse vector addition.

I Still, using sparsity can save large amounts of CPU time and
memory space.

I We learned an efficient way of adding two sparse vectors by
using a dense initialized auxiliary array. You will be surprised
to see how often you can use this trick.

I Compressed row storage (CRS) and its variants are useful
data structures for sparse matrices.

I CRS stores the nonzeros of each row together, but does not
sort the nonzeros within a row. ICRS sorts by increasing index.

I Sorting is a mixed blessing: it may help, but it also takes time.

23 / 23

