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Physical domain

I In many applications, a physical domain exists that can be
distributed naturally by assigning a subdomain to every
processor.

I Communication is only needed for exchanging information
across the subdomain boundaries.

I Often, the domain is structured as a multidimensional
rectangular grid, where grid points interact only with a set of
immediate neighbours.

I In the 2D case, these could be the neighbours to the north,
east, south, and west.

I Example: the heat equation, where the value at a grid point
represents the temperature at the corresponding location.
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2D Laplacian operator for a k × k grid

Compute

∆i ,j = xi−1,j + xi+1,j + xi ,j+1 + xi ,j−1 − 4xi ,j , for 0 ≤ i , j < k,

where xi ,j denotes the temperature at grid point (i , j).

I By convention, xi ,j = 0 outside the grid.

I xi+1,j − xi ,j approximates the derivative of the temperature in
the i-direction.

I (xi+1,j − xi ,j)− (xi ,j − xi−1,j) = xi−1,j + xi+1,j − 2xi ,j
approximates the second derivative.
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Relation grid–vector

0 1 2
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i

j

I A 3× 3 grid, which corresponds to a vector of length 9.
I For each grid point (i , j), the index i + 3j of the

corresponding vector component is shown.
I More in general,

vi+jk ≡ xi ,j , ui+jk ≡ ∆i ,j , for 0 ≤ i , j < k .
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Relation operator–matrix

A =



−4 1 · 1 · · · · ·
1 −4 1 · 1 · · · ·
· 1 −4 · · 1 · · ·
1 · · −4 1 · 1 · ·
· 1 · 1 −4 1 · 1 ·
· · 1 · 1 −4 · · 1
· · · 1 · · −4 1 ·
· · · · 1 · 1 −4 1
· · · · · 1 · 1 −4



u = Av ⇐⇒
∆i ,j = xi−1,j + xi+1,j + xi ,j+1 + xi ,j−1 − 4xi ,j , for 0 ≤ i , j < k .

5 flops!
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Domain view vs. matrix view

I In general, it is best to view the Laplacian as an operator on
the physical domain.

I This domain view has the advantage that it naturally leads to
the use of a regular data structure.

I Occasionally, however, it may be beneficial to view the
Laplacian as a matrix, so that we can apply our knowledge
about sparse matrix–vector multiplication.
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Find a domain distribution

I Here, we adopt the domain view, so that we must assign each
grid point to a processor.

I We assign the values ∆i ,j and xi ,j to the owner of grid point
(i , j), which translates into distr(u) = distr(v).

I We use a row distribution for the matrix and assign row i + jk
to the same processor as vector components ui+jk and vi+jk ,
and hence grid point (i , j).

I The resulting parallel sparse matrix–vector multiplication has
two supersteps: fanout and local matrix–vector multiplication.

I For our 2D grid, we decree the computation time to be:
I for an interior point 5 flops;
I for a border point 4 flops;
I for a corner point 3 flops.
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Distribution into strips and blocks

I Left: distribution into strips with long Norwegian/Chilean
borders,

Tcomm, strips = 2kg (for p > 2).

I Middle: boundary corrections improve the load balance.

I Right: distribution into square blocks with shorter borders,

Tcomm, squares =
4k
√
p
g (for p > 4).
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Surface-to-volume ratio

I The communication-to-computation ratio for square blocks is

Tcomm, squares

Tcomp, squares
=

4k/
√
p

5k2/p
g =

4
√
p

5k
g .

I This ratio is also called the surface-to-volume ratio, because
in 3D:
I the surface of a domain represents the communication with

other processors;
I the volume represents the amount of computation of a

processor.
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What do we do at scientific workshops?

I Participants of HLPP 2001, International Workshop on
High-Level Parallel Programming, Orléans, France, June 2001,
studying Château de Blois during an excursion.

I HLPP is held annually and it attracks many researchers from
the BSP community.
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The high-level, low-resolution object of our study
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Blocks are nice, diamonds . . .

c

r = 3

I Digital diamond, or closed l1-sphere, defined by

Br (c0, c1) = {(i , j) ∈ Z2 : |i − c0|+ |j − c1| ≤ r},

for integer radius r ≥ 0 and centre c = (c0, c1) ∈ Z2.

I Br (c) is the set of points with Manhattan distance ≤ r to the
central point c.
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Points of a diamond

c

r = 3

I The number of points of Br (c) is

1 + 3 + 5 + · · ·+ (2r − 1) + (2r + 1) + (2r − 1) + · · ·+ 1

= 2
r−1∑
k=0

(2k + 1) + (2r + 1) = 4
r−1∑
k=0

k + 4r + 1

= 2(r − 1)r + 4r + 1 = 2r2 + 2r + 1.

I The number of neighbouring points is 4r + 4. 13 / 26
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Diamonds are forever

I Assume that the diamond has its fair share of the grid points,

2r2 + 2r + 1 =
k2

p
.

I Therefore, 2r2 ≈ k2

p for large r , and hence

r ≈ k√
2p
.

I Just on the basis of 4r + 4 receive operations, we have

Tcomm, diamonds

Tcomp, diamonds
=

4r + 4

5(2r2 + 2r + 1)
g ≈ 2

5r
g ≈ 2

√
2p

5k
g .

I Compare with value
4
√
p

5k g for square blocks: factor
√

2 less.

I This gain is caused by reuse of data: each grid-point value
sent is used twice.
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Alhambra: tile the whole space
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Tile the whole sky with diamonds

0

a

b

r = 3

I Diamond centres at c = λa + µb, λ, µ ∈ Z, where
a = (r , r + 1) and b = (−r − 1, r).

I This works well for an infinite grid. 16 / 26
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Practical method for finite grids

c

r = 3

I Discard one layer of points from the north-eastern and
south-eastern border of the diamond.

I For r = 3, the number of points decreases from 25 to 18.
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12× 12 computational grid: periodic partitioning for p = 8

I Total computation: 672 flops. Avg 84. Max 90.

I Total communication: 104 values. Avg 13. Max 14.

I Total cost is 90 + 14g + 2l = 330 for g = 10, l = 50.
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12× 12 computational grid: block partitioning for p = 8

I Total computation: 672 flops. Avg 84. Max 87.

I Total communication: 96 values. Avg 12. Max 15.

I Total cost is 87 + 15g + 2l = 337 for g = 10, l = 50.
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12× 12 computational grid: Mondriaan partitioning

I Total computation: 672 flops. Avg 84. Max 89. (ε = 6%.)
I Total communication: 83 values. Avg 10.375. Max 14.
I Total cost is 89 + 14g + 2l = 329 for g = 10, l = 50.
I Challenge: find a better solution by hand using ideas from

both solutions shown.
I Lowest known cost (Bas den Heijer 2006): 299.
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32× 32 computational grid: Mondriaan partitioning

I Partitioning for p = 32 with ε = 6%.

I The total BSP cost is 165 + 23g + 2l .

I Note the many diamond-like shapes, automatically discovered
by Mondriaan.
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Three dimensions

I In 3D, if a processor has a cubic block of N = k3

p points,
the number of boundary points is about

6

(
k

p1/3

)2

=
6k2

p2/3
= 6N2/3.

I If a processor has a 10× 10× 10 block, 488 points are on the
boundary. About half!

I In 2D, the number of boundary points is only 4N1/2.

I Thus, communication is more important in 3D.

I A detailed analysis based on the surface-to-volume ratio of a
3D digital diamond shows that we can aim for a reduction by
a factor 61/3 ≈ 1.82 in communication cost.
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My truncated octahedron

Photographer: Ivar Pel

I We can tile 3D space with copies of this object.
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Basic cell for 3D

I Basic cell: grid points in a truncated octahedron.

I For load balancing, take care with the boundaries.

I What You See, Is What You Get (WYSIWYG):
4 hexagons and 3 squares visible at the front are included.
Also 12 edges, 6 vertices.

I Gain factor of 1.68 achieved for p = 2q3.
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Comparing communication costs for 3 distribution methods

Grid p Rect. Diam. Mondriaan

h h h V /p

4 096× 4 096 8 5 120 4 098 5 587 4 106
16 4 096 4 096 4 306 3 100
32 3 072 2 050 3 303 2 468
64 2 048 2 048 2 383 1 797

128 1 536 1 026 1 728 1 313
256× 256× 256 16 49 152 37 250 50 676 38 474

128 16 384 9 410 16 568 12 312

I Communication cost (in g) for a Laplacian operation on a 2D
or 3D grid with 224 grid points..

I Mondriaan version 4.2 was run in row-distribution mode with
ε = 6%.

I In 2D, diamonds are better than blocks by a factor 1.50 for
p = 32, 128. In 3D, by a factor 1.74 for p = 128.
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Summary

I Communication can be reduced tremendously by using
knowledge of the physical domain.

I To achieve a good distribution with a low surface-to-volume
ratio, all dimensions must be cut. In 2D, this gives square
blocks. In 3D, cubes.

I In 2D, an even better method is to use a digital diamond with
some boundaries removed. This basic cell can be used to tile
a rectangular domain. The best performance is obtained for
p = 2q2.

I In 3D, the best method is to use a truncated octahedron with
WYSIWYG tie-breaking at the boundaries. The best
performance is obtained for p = 2q3.
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