Parallel Graph Matching

Section 5.4 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 5.4 Parallel Graph Matchiny

1/20

p-way vertex partitioning

>

v

A p-way vertex partitioning Vo, ..., Vp_1 is a set of p
nonempty subsets of V that satisfy

and

Vs NV =10, foralls#t.
Vs is the local vertex set of processor P(s).
¢(v) is the processor number of vertex v.

The adjacency list Adj, of a vertex v is stored together with
v on processor P(¢p(v)).

Adj, may contain vertices u from another processor.

Lecture 5.4 Parallel Graph Matching

2/20

Halo vertices

» The halo of a processor is the set of surrounding data that
interact directly with the processor, causing communication.
» The halo set of processor P(s) is the vertex set

Hs: (U Ad_/v) \VS

vEVs

» For a good partitioning, |Hs| < [Vs|.

Lecture 5.4 Parallel Graph Matchi

3/20

Internal and external edges

n=8 m=10, p=2

» P(0) owns four red vertices.

» Its halo set Hg consists of two blue vertices
marked by a red circle.

» The edge set of processor P(s) is

E={(u,v) €€ :veVl}

» The edge set of P(0) consists of:
» 4 internal edges, with both ends in V, shown in red;
> 2 external edges (cut edges), with one end in V; and
one in Ho, shown as pairs of red/blue edges. s ruier s e Bl

4/20

Parallel local domination algorithm for P(s): main loop

M = 0; > matches
Rs = 0; > received messages
Qs == Vs; > queue of vertices

done := false;
while not done do
done; .= (Rs =0 A Qs =0);
put done; in P(x);
ProcessReceivedMessages(Rs, Qs, Ms, Vs, w, . ..);
while Qs # () do
pick a vertex v € Qs;

Sync;
-1
done := \P_; done;;

Lecture 5.4 Parallel Graph Matching

5/20

Detecting termination of the algorithm

» The algorithm terminates when all processors have an empty
receive buffer Rs and an empty work queue Qs.

P Received messages can give rise to new work, hence both R
and Qs must be empty when declaring the local work done.

» Termination is expressed in a boolean variable done, which is
true if all local booleans dones are true.

» This can be checked without requiring extra synchronization
by broadcasting the local booleans once every superstep.

Lecture 5.4 Parallel Graph Matching

6/20

Parallel local domination algorithm for P(s): inner loop

while Qs # () do
pick a vertex v € Qs; Qs := Qs \ {v};
FindAlive(v, Adj,, w, alive, suitor, d);
r := FindSplitter(v, Adj,, w, alive, splitter,,, suitor, d);
(u,v) := FindPref(Adj,,w, r, d, — 1);
d, =d,—1;
pref(v) == u;

if u = suitor(v) then > Register a match or propose
Ms = MsU{(u,v)};
d, = 0;
if u € Vs then
d, :=0;
else
put accept(v, u) in P(¢p(u));
else if u ¢ Vs then
put propose(v, u) in P(p(u)); ... Lectrs 54 Parallel Graph ating

7/20

How to propose

Source: The Guardian, June 1, 2010.
Photo by Getty.

» propose(v, u) means: v proposes to u

Lecture 5.4 Parallel Graph Matching

8/20

How not to propose

[Jsselstein, the Netherlands. Source: ANP, December 13, 2014.

» No one got hurt, she accepted, and they ran off to Paris to
celebrate.

» accept(v, u) means: v accepts u

Lecture 5.4 Parallel Graph Matching

9/20

Mixed superstep

.p.u.t accept(v, u) in P(¢(u));

.p.u.t propose(v, u) in P(¢(u));

» The strongest point of BSP for graph computations: we can
freely mix computation and communication and initiate
communication from anywhere in the algorithm.

> Still, we achieve a superstep structure by assuming delayed
communication executed at the next synchronization (Sync).

» This helps us in thinking about algorithms, analysing their
time complexity, and proving their correctness.

Lecture 5.4 Parallel Graph Matching

10/20

One-sided communication gives flexibility

» One-sided communication is the basis for the ability to send
data from anywhere in a program text, without any worries
about corresponding receive operations.

» In contrast, think of the horrors of using two-sided
communication: we would have to match send-statements
hidden somewhere with receive-statements hidden somewhere
else.

Lecture 5.4 Parallel Graph Matching

11/20

Inner loop (cont'd)

while Qs # () do
pref(v) := u;
if v € Vs then > Replace the previous suitor
x := suitor(u);

suitor(u) :=v;
RejectSuitor(u, x, Qs, Vs, alive, pref)

SplitAdj(Adj,,w, splitter,,, r,d, — 1); > Split adjacency list

Lecture 5.4 Parallel Graph Matching

12/20

Rejecting a suitor

function REJECTSUITOR(v, x, Qs, Vs, alive, pref)

if x # nil then
if x € Vs then
Qs = Qs U {X};
pref (x) := nil;
else
put reject(v, x) in P(p(x));

alive(v, x) := false;

» reject(v, u) means: v rejects u

Lecture 5.4 Parallel Graph Matching

13/20

Processing received messages: main loop

function PROCESSRECEIVEDMESSAGES(Rs, Qs, . . .)

while R; # () do
pick a message msg € Rs;
Rs := Rs \ {msg};

if msg = propose(u, v) then
{ Register a match }
if u= pref(v) then
Ms = MsU{(u,v)};
d, .=0;

else if msg = accept(u,v) then

else if msg = reject(u, v) then

Lecture 5.4 Parallel Graph Matching

14 /20

Remember your proposals!

if msg = propose(u,v) then
{ Register a match }
if u= pref(v) then
Ms = MsU{(u,v)};

» If v prefers a remote u and sends a proposal to u, it needs to
remember this. Just as in real life.

» In the parallel algorithm, we need to store both suitor(v) and
pref (v) for each local vertex v, because suitor information is
spread across different processors.

Lecture 5.4 Parallel Graph Matching

15/20

Reasoning with supersteps

P In case u proposes to v, where v has already proposed to u,
this will be detected by the condition u = pref(v).

» The proposal by v to u must have been sent simultaneously
with the proposal by u to v in the previous superstep.

» [t cannot have been sent earlier, because in that case v would
have answered with an accept message instead of sending a
proposal.

P Here, our reasoning is based on supersteps that

P first process received messages;
P after that, set preferences and send proposals.

» The proposal is then tacitly accepted, without sending an
accept message, because both sides know about the match.

Lecture 5.4 Parallel Graph Matching

16 /20

Processing a proposal: the complete text

if msg = propose(u,v) then
{ Register a match }
if u= pref(v) then
M = MsU{(u,v)};
d, =0;

{ Assign new suitor }
x := suitor(v);
if w(u,v)>w(x,v) then
suitor(v) = u;
RejectSuitor(v, x, Qs, Vs, alive, pref)
else
put reject(v, u) in P(o(u));
alive(u, v) := false;

Lecture 5.4 Parallel Graph Matching

17/20

Processing an accept message

if msg = accept(u,v) then
Ms = MsU{(u,v)};
d, :=0;
x := suitor(v);
suitor(v) = u;
RejectSuitor(v, x, Qs, Vs, alive, pref)

» If u accepts v, the match (u, v) is registered, the degree d, of
v is set to 0, and the previous suitor x is rejected.

» To ward off others, u is still registered as the suitor of v.

Lecture 5.4 Parallel Graph Matching

18/20

Processing a reject message

if msg = reject(u, v) then
Qs = Qs U{v}
pref (v) = nil;
alive(u, v) := false;

» If u rejects v, the vertex v is reinserted into the queue, its
preference is reset to nil, and the edge (u, v) is declared dead.

Lecture 5.4 Parallel Graph Matching

19/20

Summary

» We parallelized the local domination algorithm by partitioning
the vertex set V into subsets Vs.

» Each processor P(s) obtains a vertex set Vs, a halo set
Hs={ueV\Vs:(3veVs : (uv)e)},
and an edge set
Es={(u,v) €& :veVs}

P The parallel algorithm is based on mixed supersteps, where
communication can conveniently be initiated from anywhere
within the superstep.

» Each superstep starts with processing received messages, of
type propose, accept, or reject; then, it repeatedly sets
preferences; and finally, it sends out new messages.

Lecture 5.4 Parallel Graph Matching

20/20

