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p-way vertex partitioning

>

v

A p-way vertex partitioning Vo, ..., Vp_1 is a set of p
nonempty subsets of V that satisfy

and

Vs NV =10, foralls#t.
Vs is the local vertex set of processor P(s).
¢(v) is the processor number of vertex v.

The adjacency list Adj, of a vertex v is stored together with
v on processor P(¢p(v)).

Adj, may contain vertices u from another processor.
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Halo vertices

» The halo of a processor is the set of surrounding data that
interact directly with the processor, causing communication.
» The halo set of processor P(s) is the vertex set

Hs: (U Ad_/v) \VS

vEVs

» For a good partitioning, |Hs| < [Vs|.

Lecture 5.4 Parallel Graph Matchi

3/20



Internal and external edges

n=8 m=10, p=2

» P(0) owns four red vertices.

» Its halo set Hg consists of two blue vertices
marked by a red circle.

» The edge set of processor P(s) is

E={(u,v) €€ :veVl}

» The edge set of P(0) consists of:
» 4 internal edges, with both ends in V, shown in red;
> 2 external edges (cut edges), with one end in V; and
one in Ho, shown as pairs of red/blue edges. s ruier s e Bl
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Parallel local domination algorithm for P(s): main loop

M = 0; > matches
Rs = 0; > received messages
Qs == Vs; > queue of vertices

done := false;
while not done do
done; .= (Rs =0 A Qs =0);
put done; in P(x);
ProcessReceivedMessages(Rs, Qs, Ms, Vs, w, . ..);
while Qs # () do
pick a vertex v € Qs;

Sync;
-1
done := \P_; done;;
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Detecting termination of the algorithm

» The algorithm terminates when all processors have an empty
receive buffer Rs and an empty work queue Qs.

P Received messages can give rise to new work, hence both R
and Qs must be empty when declaring the local work done.

» Termination is expressed in a boolean variable done, which is
true if all local booleans dones are true.

» This can be checked without requiring extra synchronization
by broadcasting the local booleans once every superstep.
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Parallel local domination algorithm for P(s): inner loop

while Qs # () do
pick a vertex v € Qs; Qs := Qs \ {v};
FindAlive(v, Adj,, w, alive, suitor, d);
r := FindSplitter(v, Adj,, w, alive, splitter,,, suitor, d);
(u,v) := FindPref(Adj,,w, r, d, — 1);
d, =d,—1;
pref(v) == u;

if u = suitor(v) then > Register a match or propose
Ms = MsU{(u,v)};
d, = 0;
if u € Vs then
d, :=0;
else
put accept(v, u) in P(¢p(u));
else if u ¢ Vs then
put propose(v, u) in P(p(u)); ... Lectrs 54 Parallel Graph ating
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How to propose

Source: The Guardian, June 1, 2010.
Photo by Getty.

» propose(v, u) means: v proposes to u
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How not to propose

[Jsselstein, the Netherlands. Source: ANP, December 13, 2014.

» No one got hurt, she accepted, and they ran off to Paris to
celebrate.

» accept(v, u) means: v accepts u
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Mixed superstep

.p.u.t accept(v, u) in P(¢(u));

.p.u.t propose(v, u) in P(¢(u));

» The strongest point of BSP for graph computations: we can
freely mix computation and communication and initiate
communication from anywhere in the algorithm.

> Still, we achieve a superstep structure by assuming delayed
communication executed at the next synchronization (Sync).

» This helps us in thinking about algorithms, analysing their
time complexity, and proving their correctness.
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One-sided communication gives flexibility

» One-sided communication is the basis for the ability to send
data from anywhere in a program text, without any worries
about corresponding receive operations.

» In contrast, think of the horrors of using two-sided
communication: we would have to match send-statements
hidden somewhere with receive-statements hidden somewhere
else.
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Inner loop (cont'd)

while Qs # () do
pref(v) := u;
if v € Vs then > Replace the previous suitor
x := suitor(u);

suitor(u) :=v;
RejectSuitor(u, x, Qs, Vs, alive, pref)

SplitAdj(Adj,,w, splitter,,, r,d, — 1); > Split adjacency list
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Rejecting a suitor

function REJECTSUITOR(v, x, Qs, Vs, alive, pref)

if x # nil then
if x € Vs then
Qs = Qs U {X};
pref (x) := nil;
else
put reject(v, x) in P(p(x));

alive(v, x) := false;

» reject(v, u) means: v rejects u
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Processing received messages: main loop

function PROCESSRECEIVEDMESSAGES(Rs, Qs, . . .)

while R; # () do
pick a message msg € Rs;
Rs := Rs \ {msg};

if msg = propose(u, v) then
{ Register a match }
if u= pref(v) then
Ms = MsU{(u,v)};
d, .=0;

else if msg = accept(u,v) then

else if msg = reject(u, v) then
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Remember your proposals!

if msg = propose(u,v) then
{ Register a match }
if u= pref(v) then
Ms = MsU{(u,v)};

» If v prefers a remote u and sends a proposal to u, it needs to
remember this. Just as in real life.

» In the parallel algorithm, we need to store both suitor(v) and
pref (v) for each local vertex v, because suitor information is
spread across different processors.
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Reasoning with supersteps

P In case u proposes to v, where v has already proposed to u,
this will be detected by the condition u = pref(v).

» The proposal by v to u must have been sent simultaneously
with the proposal by u to v in the previous superstep.

» [t cannot have been sent earlier, because in that case v would
have answered with an accept message instead of sending a
proposal.

P Here, our reasoning is based on supersteps that

P first process received messages;
P after that, set preferences and send proposals.

» The proposal is then tacitly accepted, without sending an
accept message, because both sides know about the match.
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Processing a proposal: the complete text

if msg = propose(u,v) then
{ Register a match }
if u= pref(v) then
M = MsU{(u,v)};
d, =0;

{ Assign new suitor }
x := suitor(v);
if w(u,v)>w(x,v) then
suitor(v) = u;
RejectSuitor(v, x, Qs, Vs, alive, pref)
else
put reject(v, u) in P(o(u));
alive(u, v) := false;
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Processing an accept message

if msg = accept(u,v) then
Ms = MsU{(u,v)};
d, :=0;
x := suitor(v);
suitor(v) = u;
RejectSuitor(v, x, Qs, Vs, alive, pref)

» If u accepts v, the match (u, v) is registered, the degree d, of
v is set to 0, and the previous suitor x is rejected.

» To ward off others, u is still registered as the suitor of v.
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Processing a reject message

if msg = reject(u, v) then
Qs = Qs U{v}
pref (v) = nil;
alive(u, v) := false;

» If u rejects v, the vertex v is reinserted into the queue, its
preference is reset to nil, and the edge (u, v) is declared dead.

Lecture 5.4 Parallel Graph Matching

19/20



Summary

» We parallelized the local domination algorithm by partitioning
the vertex set V into subsets Vs.

» Each processor P(s) obtains a vertex set Vs, a halo set
Hs={ueV\Vs:(3veVs : (uv)e)},
and an edge set
Es={(u,v) €& :veVs}

P The parallel algorithm is based on mixed supersteps, where
communication can conveniently be initiated from anywhere
within the superstep.

» Each superstep starts with processing received messages, of
type propose, accept, or reject; then, it repeatedly sets
preferences; and finally, it sends out new messages.
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