
Lecture 5.5 Correctness

Correctness
Section 5.5 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

1 / 16

Lecture 5.5 Correctness

Correct algorithm

I An algorithm is correct if it does what it is supposed to do, for
every legitimate input.

I We require a specification for every designed algorithm that
says what the algorithm should do, so that we can prove it
correct.

I A correctness proof is best obtained during the process of
designing an algorithm, and not after the process has
completed.

I This is because higher-level, less optimized versions of an
algorithm are usually easier to reason about, and easier to
prove correct.

I Our proofs are informal, where the ultimate aim is to show
that our parallel matching algorithm is correct.

2 / 16

Lecture 5.5 Correctness

Termination of the basic dominant-edge algorithm

M := ∅;
while E 6= ∅ do

pick a dominant edge (u, v) ∈ E ;
M :=M∪ {(u, v)};
E := E \ {(x , y) ∈ E : x = u ∨ x = v};
V := V \ {u, v};

returnM;

I As part of the correctness proof, we should prove that the
algorithm terminates in a finite number of steps.

I We start with finite sets of m = |E| edges and n = |V|
vertices, and we remove at least 1 edge and 2 vertices in every
iteration of the main loop, which can be done because the
current heaviest edge is always a dominant edge.

I The total number of iterations is therefore at most
min(m, bn/2c).

3 / 16

Lecture 5.5 Correctness

Termination of the local domination algorithm with suitors
while Q 6= ∅ do

pick a vertex v ∈ Q;
Q := Q \ {v};
FindAlive(v ,Adjv , ω, alive, suitor , dv);
(u, v) := FindPref(Adjv , ω, 0, dv − 1);
dv := dv − 1;
x := suitor(u);
if x 6= nil then

Q := Q ∪ {x};
alive(u, x) := false;

...

I In every iteration, the algorithm either removes a vertex v
from Q, or it removes a vertex v and puts a former suitor x
back into Q, but then it removes a living edge (u, x).

I Thus, the number of iterations is at most |V|+ |E| = m + n.
In practice, it will be a lot less.

4 / 16

Lecture 5.5 Correctness

Termination of the parallel algorithm: computation

I At the start of the parallel algorithm, when Qs = Vs , for all s,
the total queue size is

p−1∑
s=0

|Qs | =

p−1∑
s=0

|Vs | = n.

I The local queues Qs ⊆ Vs are disjoint, because the local
vertex sets Vs are disjoint.

I At the start of a superstep, a finite number |Rs | of received
messages is processed by processor P(s), each in O(1) time,
possibly filling the local queue Qs .

I This queue is then emptied in at most |Vs |+ |Es | iterations,
similar to the sequential case.

I Therefore, the computation part of every superstep terminates
in finite time.

5 / 16

Lecture 5.5 Correctness

Termination of the parallel algorithm: communication

I All the communications initiated during a superstep are
delayed and carried out together just before the
synchronization.

I Therefore, we can view the mixed superstep as a computation
superstep followed by a communication superstep.

I The algorithm terminates when no communications have been
initiated, so that Rs = ∅, for all s, at the start of the next
superstep.

I Qs = ∅, for all s, at the start of every superstep, except the
first.

6 / 16

Lecture 5.5 Correctness

Termination of the parallel algorithm: supersteps

I The total number of proposals sent during the algorithm is at
most 2m, since a vertex v proposes at most once to a
neighbouring vertex u (along an edge (u, v)), where mutual
proposals can be made.

I Accept or reject messages are only sent in response to a
proposal, but not in case of a mutual proposal.

I Therefore, the total communication volume is at most 2m and
hence the number of supersteps is also at most 2m (but in
practice a lot less).

7 / 16

Lecture 5.5 Correctness

Serialization of a BSP algorithm

P(0) P(1) P(2)

Sync

Sync

Sync

P(0)

P(1)

P(2)

P(0)

P(1)

P(2)

I To check that a BSP algorithm does what it is supposed to
do, we serialize it, i.e., transform it into an equivalent
sequential algorithm. Communications become assignments.

I This algorithm can then be checked for correctness using any
of the already available sequential proof methods.

8 / 16

Lecture 5.5 Correctness

Serialized algorithm: initialization

for s := 0 to p − 1 do
for all v ∈ Vs do

suitor(v) := nil;
pref (v) := nil;
splitter v (∗) := false;

for all e ∈ Es do
alive(e) := true;

Ms := ∅; Rs := ∅; Qs := Vs ;

I The initialization superstep has been transformed into a
sequential loop over all p processors, where the loop iterations
are ordered by increasing processor number s.

I The order does not matter, because the superstep works on
disjoint variables. This implies that a single serialized
computation represents all possible orderings of the
corresponding computation superstep.

9 / 16

Lecture 5.5 Correctness

Transforming messages

I We transform sending a proposal (v , u) to the owner of u into
adding the proposal message to the set Rt , where t = φ(u).

I This set acts as a buffer, storing values to be communicated
until the next synchronization point.

10 / 16

Lecture 5.5 Correctness

Receive and send buffers

I When serializing, we must distinguish between messages that
were received at the start of the current superstep, stored in
the set Rs , and messages that will be sent at the end of the
superstep, with those destined for P(t) stored in a set R ′t .

I Without this distinction, a message initiated in the current
superstep could already be processed in the same superstep.

I At the end of the superstep, the messages from R ′s are copied
into Rs ; at the start of the next superstep, R ′s is emptied.

11 / 16

Lecture 5.5 Correctness

Serialized algorithm: main loop
while ∃s : 0 ≤ s < p ∧ (Rs 6= ∅ ∨ Qs 6= ∅) do

R ′ := ∅;
for s := 0 to p − 1 do

ProcessReceivedMessages(Rs ,R
′,Qs ,Ms ,Vs , ω, . . .);

while Qs 6= ∅ do
...
{ Register a match or propose }
if u = suitor(v) then
Ms :=Ms ∪ {(u, v)}; dv := 0;
if u ∈ Vs then

du := 0;
else

R ′
φ(u) := R ′

φ(u) ∪ {accept(v , u)};
else if u /∈ Vs then

R ′
φ(u) := R ′

φ(u) ∪ {propose(v , u)};

for s := 0 to p − 1 do
Rs := R ′

s ;
12 / 16

Lecture 5.5 Correctness

Proving the serialized algorithm correct

I The serialized algorithm retains the original superstep
structure, but the termination mechanism can be simplified,
because there is no need to communicate to find out whether
all processors are done.

I We prove the serialized algorithm correct by showing that it is
a more detailed version of the basic dominant-edge algorithm.
The main arguments are:
I The serialized algorithm only adds edges to the matching that

are dominant, either when a vertex finds a mutual preference
or when it proposes and gets accepted later. If there exists a
dominant edge, it will be discovered, sooner or later.

I Edges incident to the matched vertices are either explicitly
removed, or they are retained but implicitly assumed dead
because they can never become a match.

13 / 16

Lecture 5.5 Correctness

Nondeterminism

I The statement ‘pick a dominant edge’ means that every
possible dominant edge is acceptable.

I Picking is arbitrary, and could even happen at random, so
there may be no unique outcome and the algorithm may be
nondeterministic.

I The nondeterministic pick-statement creates a wider family of
algorithms, making it easier to prove algorithms equivalent.

I We use this to our advantage in our parallel matching
algorithm where we pick a vertex v from the work queue Qs ,
or pick a message msg from the receive queue Rs .

I For the serialized algorithm, we can view Rs as just another
work queue, and because of this, the serialized algorithm fits
into the overall family of dominant-edge algorithms.

14 / 16

Lecture 5.5 Correctness

Nondeterminism in communication

I When serializing BSP algorithms, nondeterminism arises
because the order in which messages arrive at their
destination during the communication superstep is not fixed.

I This nondeterminism is exactly the feature that enables
communication optimization by the BSP system in the parallel
case.

I Transforming BSP algorithms to a sequential version thus
means allowing permutation of the communications between
the same source and destination processor.

15 / 16

Lecture 5.5 Correctness

Summary

I An algorithm is correct if it can be shown that it does what it
is supposed to do, for every legitimate input.

I Proving correctness includes proving termination.

I Parallel algorithms can be proven correct by serializing them,
and then proving the resulting sequential algorithm correct.

I We have done this for the parallel matching algorithm by
showing equivalence of the serialized version to the basic
dominant-edge algorithm.

I Serialization turns computation supersteps into a loop over
the computation parts of the different processors and it turns
communication supersteps into memory copies.

I Here, it does not matter in which order the computation parts
of a superstep are carried out, or the messages in the
communication supersteps are sent.

16 / 16

