Correctness

Section 5.5 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

Lecture 5.5 Correctne:

1/16

Correct algorithm

» An algorithm is correct if it does what it is supposed to do, for
every legitimate input.

» We require a specification for every designed algorithm that
says what the algorithm should do, so that we can prove it
correct.

» A correctness proof is best obtained during the process of
designing an algorithm, and not after the process has
completed.

» This is because higher-level, less optimized versions of an
algorithm are usually easier to reason about, and easier to
prove correct.

» Our proofs are informal, where the ultimate aim is to show
that our parallel matching algorithm is correct.

Lecture 5.5 Correctness

2/16

Termination of the basic dominant-edge algorithm

M =0

while £ # () do
pick a dominant edge (u,v) € &;
M= MU{(u,v)};
E=E\{(x,y)e€:x=uV x=v};
V=V \{uyv}

return M;

P> As part of the correctness proof, we should prove that the
algorithm terminates in a finite number of steps.

» We start with finite sets of m = || edges and n = |V|
vertices, and we remove at least 1 edge and 2 vertices in every
iteration of the main loop, which can be done because the
current heaviest edge is always a dominant edge.

» The total number of iterations is therefore at most

min(m, | n/2]).

Lecture 5.5 Correctness

3/16

Termination of the local domination algorithm with suitors

while Q # () do
pick a vertex v € Q;
Q:=Q\{v};
FindAlive(v, Adj,,w, alive, suitor, d,);
(u, v) := FindPref(Adj,,w, 0, d, — 1);

d, =d,—1;

x := suitor(u);

if x # nil then
Q= QU {x}

alive(u, x) := false;

P In every iteration, the algorithm either removes a vertex v
from Q, or it removes a vertex v and puts a former suitor x
back into Q, but then it removes a living edge (u, x).

» Thus, the number of iterations is at most V| + |£| = m + n.
In practice, it will be a lot less. Lecue 55 Commetnee

4/16

Termination of the parallel algorithm: computation

> At the start of the parallel algorithm, when Qs = Vs, for all s,
the total queue size is

p—1 p—1
SIQI =3 Vi =n
s=0 s=0

» The local queues Qs C Vs are disjoint, because the local
vertex sets Vs are disjoint.

» At the start of a superstep, a finite number |R;| of received
messages is processed by processor P(s), each in O(1) time,
possibly filling the local queue Qs.

» This queue is then emptied in at most |Vs| + |&s| iterations,
similar to the sequential case.

» Therefore, the computation part of every superstep terminates E7#&
in finite time.

Lecture 5.5 Correctne:

5/16

Termination of the parallel algorithm: communication

» All the communications initiated during a superstep are
delayed and carried out together just before the
synchronization.

» Therefore, we can view the mixed superstep as a computation
superstep followed by a communication superstep.

» The algorithm terminates when no communications have been
initiated, so that R, = 0, for all s, at the start of the next
superstep.

» Qs =0, for all s, at the start of every superstep, except the
first.

Lecture 5.5 Correctness

6/16

Termination of the parallel algorithm: supersteps

» The total number of proposals sent during the algorithm is at
most 2m, since a vertex v proposes at most once to a
neighbouring vertex u (along an edge (u, v)), where mutual
proposals can be made.

> Accept or reject messages are only sent in response to a
proposal, but not in case of a mutual proposal.

» Therefore, the total communication volume is at most 2m and
hence the number of supersteps is also at most 2m (but in
practice a lot less).

Lecture 5.5 Correctness

7/16

Serialization of a BSP algorithm

P(0)
P(1)
P(2)

P(0) P(1) P(2)

REREY

P(0)
P(1)
P(2)

» To check that a BSP algorithm does what it is supposed to
do, we serialize it, i.e., transform it into an equivalent
sequential algorithm. Communications become assignments.

» This algorithm can then be checked for correctness using any
of the already available sequential proof methods.

Lecture 5.5 Corre

8/16

Serialized algorithm: initialization

fors:=0top—1do

for all v € Vs do
suitor(v) := nil;
pref(v) := nil;
splitter () := false;

for all e € & do
alive(e) := true;

Ms = 0; Rs == 0; Qs :=Vs;

» The initialization superstep has been transformed into a
sequential loop over all p processors, where the loop iterations
are ordered by increasing processor number s.

» The order does not matter, because the superstep works on
disjoint variables. This implies that a single serialized
computation represents all possible orderings of the
corresponding computation superstep.

Lecture 5.5 Correctness

9/16

Transforming messages

» We transform sending a proposal (v, u) to the owner of u into
adding the proposal message to the set Ry, where t = ¢(u).

» This set acts as a buffer, storing values to be communicated
until the next synchronization point.

Lecture 5.5 Correctness

10/16

Receive and send buffers

» When serializing, we must distinguish between messages that
were received at the start of the current superstep, stored in
the set Rs, and messages that will be sent at the end of the
superstep, with those destined for P(t) stored in a set Ry.

> Without this distinction, a message initiated in the current
superstep could already be processed in the same superstep.

» At the end of the superstep, the messages from R. are copied
into Rs; at the start of the next superstep, R, is emptied.

Lecture 5.5 Correctness

11/16

Serialized algorithm: main loop
while 3s : 0<s<p A (Rs#DV Qs # 0) do
R = 0;
fors:=0top—1do
ProcessReceivedMessages(Rs, R', Qs, Ms, Vs, w, .. .);

while Q, # () do

{ Register a match or propose }
if u = suitor(v) then
M = M;U{(uy,v)}; d,:=0;
if u €) then
d, :=0;
else
Riyu) = Ry Y {accept(v, u)};

else if u ¢ Vs then
Ry = Ry Y {propose(v, u)};

fors:=0top—1do
Rs := R,

12/16

Proving the serialized algorithm correct

» The serialized algorithm retains the original superstep
structure, but the termination mechanism can be simplified,
because there is no need to communicate to find out whether
all processors are done.

> We prove the serialized algorithm correct by showing that it is
a more detailed version of the basic dominant-edge algorithm.
The main arguments are:
» The serialized algorithm only adds edges to the matching that
are dominant, either when a vertex finds a mutual preference
or when it proposes and gets accepted later. If there exists a
dominant edge, it will be discovered, sooner or later.
» Edges incident to the matched vertices are either explicitly
removed, or they are retained but implicitly assumed dead
because they can never become a match.

Lecture 5.5 Correctness

13/16

Nondeterminism

» The statement ‘pick a dominant edge' means that every
possible dominant edge is acceptable.

» Picking is arbitrary, and could even happen at random, so
there may be no unique outcome and the algorithm may be
nondeterministic.

» The nondeterministic pick-statement creates a wider family of
algorithms, making it easier to prove algorithms equivalent.

> We use this to our advantage in our parallel matching
algorithm where we pick a vertex v from the work queue Qs,
or pick a message msg from the receive queue Rs.

» For the serialized algorithm, we can view Rs as just another
work queue, and because of this, the serialized algorithm fits
into the overall family of dominant-edge algorithms.

Lecture 5.5 Correctness

14/16

Nondeterminism in communication

» When serializing BSP algorithms, nondeterminism arises
because the order in which messages arrive at their
destination during the communication superstep is not fixed.

» This nondeterminism is exactly the feature that enables
communication optimization by the BSP system in the parallel
case.

» Transforming BSP algorithms to a sequential version thus
means allowing permutation of the communications between
the same source and destination processor.

Lecture 5.5 Correctness

15/16

Summary

» An algorithm is correct if it can be shown that it does what it
is supposed to do, for every legitimate input.

» Proving correctness includes proving termination.

» Parallel algorithms can be proven correct by serializing them,
and then proving the resulting sequential algorithm correct.

> We have done this for the parallel matching algorithm by
showing equivalence of the serialized version to the basic
dominant-edge algorithm.

» Serialization turns computation supersteps into a loop over
the computation parts of the different processors and it turns
communication supersteps into memory copies.

» Here, it does not matter in which order the computation parts
of a superstep are carried out, or the messages in the
communication supersteps are sent.

Lecture 5.5 Correctness

16/16

