
Solutions to the final questions of the videos of

Parallel Scientific Computation, second edition

Rob H. Bisseling

August 29, 2022

Below we denote the book by [PSC2].

• Video: BSP model. Each processor adds 100 numbers, costing 100
flop time units (assuming we initialize the sum as 0). Then each proces-
sor sends its own sum to the responsible processor in a 9-relation. This
processor then adds 10 numbers. There are 3 supersteps: computation,
communication, computation. The total cost is thus

110 + 9g + 3l.

• Video: Data distributions. We choose the cyclic distribution, because
it has a better load balance than the block distribution. Since the amount
of work for a vector component xi grows quadratically with i, the block
distribution leads to an overloaded last processor P (p−1). We can analyse
this more precisely: assume that p divides n. By using the formula

k∑
i=0

i2 =
k(k + 1)(2k + 1)

6
,

we see that the total amount of work is about n3

3 and the average amount

per processor n3

3p . In the block distribution, the last processor has about
n3

p work, so that we lose a factor of 3 due to load imbalance. In the cyclic
distribution, the last processor has an amount of work of at most

T =
n3

3p
+ n2 + np.

Thus the maximum amount is close to the average, and the load imbalance
is of order O(n2).

• Video: Simple parallel algorithm. The algorithm for finding the
maximum value is:

1



Input: x : vector of length n, distr(x) = block, n mod p = 0.

Output: α = max {xi : 0 ≤ i < n}

αs := −∞; . Superstep (0)
b := n/p;
for i := sb to (s+ 1)b− 1 do

if xi > αs then
αs := xi;

for t := 0 to p− 1 do . Superstep (1)
put αs in P (t);

α := −∞; . Superstep (2)
for t := 0 to p− 1 do

if αt > α then
α := αt;

The BSP cost of the algorithm is

T =
n

p
+ p+ (p− 1)g + 3l,

where we count comparisons as the basic operation. Instead of initializing
αs to −∞ we could have initialized to the first value of the block, i.e.
αs := xsb.

• Video: Parallel sorting. The imbalance of the output distribution
of the parallel regular sample sort can be reduced by oversampling, for
example by taking 2p local samples per processor instead of p. We still
generate p global samples from them to be used in splitting the local data
for p processors. This reduces the maximum output block size from 2n

p to
3n
2p .

This reduction can be shown by a similar reasoning as the proof that
bs ≤ 2n

p in [PSC2, section 1.8]. Assume that n mod 2p2 = 0, so that after
the local sort every processor has 2p subblocks of length n

2p2 starting with
a local sample.

By construction, every output block contains exactly 2p local samples,
and hence 2p complete or incomplete associated subblocks, contributing
at most 2p · n

2p2 = n
p items. The output block also contains parts of

subblocks without a sample. Every processor P (t) can contribute at most
one such subblock to P (s), because the local sample must be smaller than
the splitting value of P (s) and the part must also have a larger value. The
contribution of those subblocks is at most p · n

2p2 = n
2p . Therefore

bs ≤
n

p
+

n

2p
=

3n

2p
.

2



• Video: Experimental results for parallel sorting. The BSP pa-
rameters of the computer used are p = 512, r = 6 Gflop/s, g = 1000,
l = 4 000 000 and the problem size is n = 109.

Therefore, the computation time (in s, not flops) is n log2 n
rp = 0.0097 s;

the communication time is 2ng
rp = 0.651 s; and the synchronization time is

5l
r = 0.0033 s. The predicted total parallel time is 0.664 s. The predicted

sequential time is n log2 n
r = 4.982 s, so that the predicted speedup is

S512(109) =
Tseq(n)

Tp(n)
=

4.982

0.664
≈ 7.5.

Not impressive. Communication dominates!

• Video: LU decomposition. The steps of the algorithm are:

A =

 2 2 2
2 4 4
2 4 6

 k=0−→

 2 2 2
1 2 2
1 2 4

 k=1−→

 2 2 2
1 2 2
1 1 2

 .
Hence,

L =

 1 0 0
1 1 0
1 1 1

 , U =

 2 2 2
0 2 2
0 0 2

 .
• Video: Parallel LU decomposition. The number of flops in the matrix

update of stage k is 2Rk+1Ck+1. For the 2×2 cyclic distribution of a 8×8
matrix, we have

Rk+1 = Ck+1 =

⌈
n− k − 1

M

⌉
=

⌈
7− k

2

⌉
.

For k = 0, . . . , 7, we get R1 = 4, R2 = 3, R3 = 3, R4 = 2, R5 = 2, R6 = 1,
R7 = 1, R8 = 0, respectively, so the total number of flops is

Tupdate = 2 ·
7∑
k=0

R2
k+1 = 88.

• Video: Two-phase broadcasting. We use one-phase broadcasting if
T1 ≤ T2, i.e.,

(p− 1)ng + l ≤ 2

(
1− 1

p

)
ng + 2l ⇔

(p− 1)ng

(
1− 2

p

)
≤ l ⇔

n ≤ p

(p− 1)(p− 2)
· l
g
.

3



Substituting the values p = 10, g = 100, and l = 10 000 gives n ≤ 1000
72 ≈

13.88, so we use a one-phase broadcast for n ≤ 13 and a two-phase broad-
cast for n ≥ 14.

• Video: High-Performance LU Decomposition. We cut up all three
matrices into b× b blocks. Let Ai be block i of A, so that

A =

 A0

...
An/b−1

 .
Similarly, let Bj be block j of B, so that

B = [B0, . . . , Bn/b−1].

We then compute the blocks Cij of the output matrix

C =

 C00 · · · C0,n/b−1
...

...
Cn/b−1,0 · · · Cn/b−1,n/b−1


by

for i := 0 to n
b − 1 do

for j := 0 to n
b − 1 do

Cij := AiBj ;

In each iteration of the inner loop, we perform 2b3 flops involving 3b2 data,
so we have good data reuse. Since we can keep Ai in cache throughout the
inner loop, this requires only the movement of 2b2 data vs. performing
2b3 flops.

• Video: Discrete Fourier Transform. Let ωn = e−2πi/n. If we first
perform a DFT and then an IDFT, we can express the result zk for 0 ≤
k < n as

zk =
1

n

n−1∑
j=0

yjω
−jk
n

=
1

n

n−1∑
j=0

(
n−1∑
l=0

xlω
jl
n

)
ω−jkn

=
1

n

n−1∑
l=0

xl

n−1∑
j=0

ωjln ω
−jk
n


=

1

n

n−1∑
l=0

xl

n−1∑
j=0

ωj(l−k)n

 .

4



For l = k, the expression between brackets becomes n, so term k con-

tributes 1
n · xk · n = xk. For l 6= k, we write α = ω

(l−k)
n , so that the

expression between brackets becomes

n−1∑
j=0

αj =
1− αn

1− α
= 0.

This is because αn = 1, and 1−α 6= 0. We thus have shown that zk = xk,
so we retrieve the original vector.

If we reverse the order, and perform an IDFT and then a DFT, we also
execute the identity operation. The proof would be similar, but it is easier
to use linear algebra which states that for square matrices if BA = In, we
also have AB = In and to apply this with A = Fn and B = 1

n F̄n, where
the bar denotes conjugation.

• Video: Recursive Fast Fourier Transform. This one is not for the
faint-hearted. For the radix-4 algorithm, we first split the sum of the DFT
into 4 partial sums, based on taking indices modulo 4. For 0 ≤ k < n, we
have

yk =

n−1∑
j=0

xjω
jk
n

=

n/4−1∑
j=0

x4jω
4jk
n +

n/4−1∑
j=0

x4j+1ω
(4j+1)k
n +

n/4−1∑
j=0

x4j+2ω
(4j+2)k
n +

n/4−1∑
j=0

x4j+3ω
(4j+3)k
n

=

n/4−1∑
j=0

x4jω
jk
n/4 + ωkn

n/4−1∑
j=0

x4j+1ω
jk
n/4 + ω2k

n

n/4−1∑
j=0

x4j+2ω
jk
n/4 + ω3k

n

n/4−1∑
j=0

x4j+3ω
jk
n/4.

(1)

For 0 ≤ k < n
4 , we write this as

yk = y
(0)
k + ωkny

(1)
k + ω2k

n y
(2)
k + ω3k

n y
(3)
k ,

where the sums y
(r)
k are the result of an FFT of length n

4 . For k ≥ n
4 , we

can reuse these sums.

In the case n
4 ≤ k <

n
2 , we substitute k = k′ + n

4 into Eqn (1), giving

yk =

n/4−1∑
j=0

x4jω
j(k′+n/4)
n/4 + ω(k′+n/4)

n

n/4−1∑
j=0

x4j+1ω
j(k′+n/4)
n/4 +

ω2(k′+n/4)
n

n/4−1∑
j=0

x4j+2ω
j(k′+n/4)
n/4 + ω3(k′+n/4)

n

n/4−1∑
j=0

x4j+3ω
j(k′+n/4)
n/4 .

(2)

5



Using ω
n/4
n/4 = 1, ω

n/4
n = −i, ω2n/4

n = −1, and ω
3n/4
n = i, and dropping the

primes, we obtain

yk = y
(0)
k − iω

k
ny

(1)
k − ω

2k
n y

(2)
k + iω3k

n y
(3)
k .

Similarly, in the case n
2 ≤ k <

3n
4 , we substitute k = k′ + n

2 , and obtain

yk = y
(0)
k − ω

k
ny

(1)
k + ω2k

n y
(2)
k − ω

3k
n y

(3)
k .

Finally, in the case 3n
4 ≤ k < n, we substitute k = k′ + 3n

4 , and obtain

yk = y
(0)
k + iωkny

(1)
k − ω

2k
n y

(2)
k − iω

3k
n y

(3)
k .

This leads to the following radix-4 algorithm:

Input: x : vector of length n.
Output: y : vector of length n, y = Fnx.

function FFT(x, n)

if n mod 4 = 0 then
x(0) := x(0 : 4 : n− 1);
x(1) := x(1 : 4 : n− 1);
x(2) := x(2 : 4 : n− 1);
x(3) := x(3 : 4 : n− 1);

y(0) := FFT(x(0), n/4);
y(1) := FFT(x(1), n/4);
y(2) := FFT(x(2), n/4);
y(3) := FFT(x(3), n/4);

for k := 0 to n/4− 1 do

τ0 := y
(0)
k ;

τ1 := ωkny
(1)
k ;

τ2 := ω2k
n y

(2)
k ;

τ3 := ω3k
n y

(3)
k ;

yk := τ0 + τ1 + τ2 + τ3;
yk+n/4 := τ0 − iτ1 − τ2 + iτ3;
yk+n/2 := τ0 − τ1 + τ2 − τ3;
yk+3n/4 := τ0 + iτ1 − τ2 − iτ3;

else
y := DFT(x, n);

Each statement in the inner loop except the first costs 6 flops, since it rep-
resents either a complex multiplication, or 3 complex addditions/subtractions.

6



The total number of flops of an iteration of the inner loop is thus 42, a
number we have met before;) Note that the expression τ0+τ2 occurs twice,
so that we can save 2 flops by computing this as an intermediate result.
The same holds for the expressions τ0 − τ2, τ1 + τ3, τ1 − τ3. Thus, an
iteration of the inner loop costs 34 flops. Therefore, the total number of
flops for a radix-4 FFT is

T (n) = 4T (
n

4
) + 34

n

4
= 4T (

n

4
) +

17n

2
.

Repeatedly using this formula we arrive at

T (n) = (log4 n) · 17n

2
=

17

4
· n log2 n = 4.25n log2 n.

In conclusion, a radix-4 FFT has slightly fewer flops than the 5n log2 n
flops of a radix-2 FFT.

• Video: Nonrecursive Fast Fourier Transform. Because S2 = I2, the
leftmost factor of R8 equals I4 ⊗ S2 = I4 ⊗ I2 = I8, so that

R8 = (I4 ⊗ S2)(I2 ⊗ S4)(I1 ⊗ S8) = (I2 ⊗ S4)S8

=



1 · · · · · · ·
· · 1 · · · · ·
· 1 · · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· · · · · 1 · ·
· · · · · · · 1





1 · · · · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· 1 · · · · · ·
· · · 1 · · · ·
· · · · · 1 · ·
· · · · · · · 1



=



1 · · · · · · ·
· · · · 1 · · ·
· · 1 · · · · ·
· · · · · · 1 ·
· 1 · · · · · ·
· · · · · 1 · ·
· · · 1 · · · ·
· · · · · · · 1


.

Then y = R8(0, 1, 2, 3, 4, 5, 6, 7)T = (0, 4, 2, 6, 1, 5, 3, 7)T. If we write the
values xj = j and yj in binary, we obtain the following table

7



xj (xj)2 (yj)2 yj
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Comparing the binary values, we see that (yj)2 is the bit-reverse of (xj)2.

• Video: Parallel Fast Fourier Transform. The redistribution from
block distribution with reverse processor numbering to cyclic distribution
can be done by the following algorithm.

function Redistr(x, n, p, block reverse, cyclic)

s′ := ρp(s);

for j := s′ np to (s′ + 1)np − 1 do

put xj in P (j mod p);

If we also want to specify where to put xj in the destination processor, we
do this by increasing global index, which means that the local index will
be j = j div p.

• Video: Sequential sparse matrix–vector multiplication. For the
matrix

A =


0 0 0 0 0
5 0 0 0 5
4 0 0 0 4
0 3 0 3 0
0 0 2 0 0


with n = 5 and nz = 7, the CRS data structure is:

a[k] = 5 5 4 4 3 3 2
j[k] = 0 4 0 4 1 3 2
k = 0 1 2 3 4 5 6

start [i] = 0 0 2 4 6 7
i = 0 1 2 3 4 5

The number of data words needed for this matrix is 20, and for a general
n× n matrix with nz nonzeros it is 2nz + n+ 1.

8



• Video: Parallel sparse matrix–vector multiplication. An example
of the matrix for n = 12 is

A =



1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1



.

Since the matrix distribution is 1D, the parallel SpMV algorithm reduces
to two supersteps, namely the fanout (0) and the local SpMV (1). The
total synchronization time is therefore 2l.

In the fanout, the processors P (s) with 0 < s < p − 1 have to send two
data words: vsb to P (s− 1) and v(s+1)b−1 to P (s+ 1). P (0) and P (p− 1)
have to send only one data word. The communication cost is therefore 2g.
The total communication volume is V = 2(p− 2) + 2 = 2p− 2.

In the local SpMV, the processors P (s) with 0 < s < p − 1 possess 3b
nonzeros, and the other two processors one nonzero less, so the computa-
tion cost is 2 · 3b = 6n

p . The total BSP cost is

T =
6n

p
+ 2g + 2l.

Note that the communication cost is much less than the value 2(1− 1
p )ng

given in the pessimistic upper bound.

• Video: Cartesian matrix distribution. We can translate the convo-
lutional neural network to an SpMV problem involving the matrix

A =



a00 a01
a10 a11 a12

a21 a22 a23
a32 a33 a34

a43 a44 a45
a54 a55 a56

a65 a66 a67
a76 a77


.

Thus we see that the corresponding matrix is tridiagonal. A simple solu-
tion is then to use the block row distribution, used in the final question

9



of the video on parallel SpMV. This distribution has a near-perfect load
balance, only two supersteps and a minimal communication cost 2g, which
is hard to improve.

If the number of connections per neuron grows, other distributions may
become attractive, such as the square Cartesian matrix distribution based
on a block distribution of the matrix diagonal, which is optimal in the
fully connected case.

• Video: Mondriaan sparse matrix distribution. The distribution
before the refinement is

This distribution has the advantage of a perfect load balance, since both
processors have 11 nonzeros. However, the communication volume is V =
3, since rows 1, 2, 7 are split.

The distribution after the refinement is

The load balance is worse, since the blue processor has 13 nonzeros and
the red one only 9. Still, this is allowed since the allowed maximum is
(1+ ε)nz(A)/2 = 1.2 ·22/2 = 13.2. The communication volume is smaller,
V = 2, since only rows 2 and 7 are split. Thus the refinement is beneficial.

10



• Video: Comparing sparse matrix distributions. First, we count the
number of nonzeros in the rows and columns of the matrix. The counts
are shown to the left and above the following matrix.

rr

r r

c c c c

c

c c

A

cj →

ri
↓

1 3 3 2 2

2

4

1

2

2

Then we assign the singleton row 2 to the column matrix (the nonzero is
shown in black and marked by a ‘c’). We also assign the singleton column
0 to the row matrix (the nonzero is shown in grey and marked by an
‘r’). After that, we assign nonzeros a01, a31, a32 to the row matrix since
these aij satisfy ri < cj . The remaining nonzeros are then assigned to the
column matrix. These include the tied nonzeros from row 4.

We then form the matrix B and distribute its columns cyclically, starting
with the red processor P (0):

B

The left upper block of B contains two diagonal nonzeros, caused by
columns 1 and 2 of A that are split between grey and black. The lower
right block of B is empty because no rows are split between grey and
black. Note that the communication volume for B is 3, because rows 1, 6,
9 are cut.

Finally, we fold B back into A, giving

A

11



Note that the communication volume for A is 3, because rows 1, 4, and
column 1 are cut. Thus, the communication volumes for A and B are
indeed the same.

• Video: Random sparse matrices. Assume for simplicity that nmod p =
0 and p is a square. Processor P (s) has parts of the matrix columns
j = sb, . . . , (s+ 1)b− 1, where b = n√

p .

Let sb ≤ j < (s + 1)b. The probability that P (s) does not need vector

component vj is (1−d)
n√
p , because it has n√

p matrix elements from column

j, and this is the probability that they are all zero. The expected number
of vector components vj that P (s) has to obtain through communication
is then

hrecv =

(
n
√
p
− n

p

)
(1− d)

n√
p ,

because it may need n√
p vector components of which n

p are already locally

available. Furthermore, P (s) has to send its n
p vector components to√

p − 1 other processors in its processor column, each with a probability

(1 − d)
n√
p . This gives the same result, hsend = hrecv. Therefore, the cost

of the fanout is

T(0) =

(
n
√
p
− n

p

)
(1− d)

n√
p g + l.

• Video: Laplacian matrices. The best solution so far was found by Bas
den Heijer in 2006; very likely it is optimal, but this has not yet been
proven. His solution is:

12



All processors except black and yellow perform 89 flops (counting 5 for
interior points, 4 for boundary points that are not corner points, and 3 for
corner points). The yellow processor performs 88 flops, and the landlocked
black processor which has 10 interior points performs 50 flops. Note that
the pink processor has a non-contiguous area, with an isolated single grid
point in the north-eastern corner of the grid. Taking the maximum of the
number of flops, we find that the computation cost is 89.

All processors have 11 neighbours, except dark blue, which has 10. This
means that hrecv = 11, and the total communication volume is V = 87.
All processors send 11 data words, except the pink processor, which sends
10. This means that hsend = 11 and it confirms that V = 87. As a result,
h = 11 and the communication cost is 11g.

The corresponding SpMV has only two supersteps, the fanout and the
local SpMV, since we first get the data from neighbouring points and then
use them. Hence, the synchronization cost is 2l. In summary, the total
BSP cost is

T = 89 + 11g + 2l = 89 + 110 + 100 = 299.

• Video: Parallel algorithm for the hybrid-BSP model. The total
number of processors is p1p2 = 1000, so every processor has to sum 1000
numbers. This happens in superstep (0), and it costs (in flops)

T(0) =
n

p
+ l1 = 1000 + 100 = 1100.

In superstep (1), every processor P (s, t) sends its partial sum to P (s, 0),
which costs

T(1) = (p1 − 1)g1 + l1 = 90 + 100 = 190.

In superstep (2), every processor P (s, 0) sums its p1 partial sums, which
costs

T(2) = p1 + l1 = 10 + 100 = 110.

In superstep (3), every processor P (s, 0) sends its partial sum to P (0, 0),
which is an expensive superstep that costs

T(3) = (p2 − 1)g2 + l2 = 9900 + 1000 = 10900.

In superstep (4), processor P (0, 0) sums its p2 partial sums, which can
most favourably be seen as a local superstep, and costs

T2 = p2 + l1 = 100 + 100 = 200.

Adding these up, the total cost in flops is then

T = 12500.

Thus, we achieve a speedup of 106/12 500 = 80 using 1000 processors.
Very modest indeed, and mainly due to the expensive superstep (3).

13



• Video: Sequential graph matching. The algorithm performs the fol-
lowing stages:

2 4 6 8

4 6 8 10

6 8 10 12

8 10 12 14

10 12 16

1 3 5 7 9

3 5 7 9 11

5 7 9 11 13

7 9 11

2 4 6 8

4 6 8 10

6 8 10 12

8 10 14

12 16

1 3 5 7 9

3 5 7 9 11

5 7 9

7

2 4 6 8

4 6 8 10

6 8 12

10 14

12 16

1 3 5 7 9

3 5 7

5

7

2 4 6 8

4 6 10

8 12

10 14

12 16

1 3 5

3

7

2 4 8

6 10

8 12

10 14

12 16

1

3

7

4 8

6 10

8 12

10 14

12 16

3

7

The pictures show that the computation evolves as a wavefront moving
from the upper right corner of the graph to the lower left corner. The
total weight of the matching produced is 110. The number of dominant
edges discovered in the 6 stages is: 1, 2, 2, 3, 2, 2. This sequence is a
measure of the amount of parallelism available for this graph. It means
that up to 3 processors can usefully be employed.

14



• Video: Suitors and sorting in graph matching. The preferences of
the vertices are shown by red arrows in the following picture. Note that
one preference is mutual, namely in the upper right corner, with weight 16.

2 4 6 8

4 6 8 10

6 8 10 12

8 10 12 14

10 12 14 16

1 3 5 7 9

3 5 7 9 11

5 7 9 11 13

7 9 11 13 15

Removing preferences that are not the best yields the suitors, shown by
red arrows in the following picture. The edges corresponding to rejected
preferences can be removed from the problem.

2 4 6 8

4 6 8 10

6 8 10 12

8 10 12 14

10 12 14 16

1 3 5 7 9

3 5 7 9 11

5 7 9 11 13

7 9 11 13 15

If we visit the vertices in a certain order when setting preferences, and we
check for immediate rejection, we can reset the preference immediately,
thus speeding up the whole process. The following picture shows the re-
sult of one such round in the order from top to bottom (and left to right
within each row).

2 4 8

4 6 10

6 8 12

8 10 14

10 12 16

1 3 5 7 9

3 5 7 9 11

5 7 9 11 13

7 9 11 13 15

15



Note that all the vertices on the right, except the top vertex, will get
rejected immediately upon their first attempt in the upwards direction,
so that they have to settle for a lower weight to their left; this leads to
more mutual preferences. Other actions are also carried out: matches are
processed and preferences are reset for vertices that lost their preference.

• Video: Parallel graph matching. The complete algorithm for process-
ing a received proposal is:

if msg = propose(u, v) then
{ Register a match }
if u = pref (v) then
Ms :=Ms ∪ {(u, v)};
dv := 0;

{ Assign new suitor }
x := suitor(v);
if ω(u, v) > ω(x, v) then

suitor(v) := u;
RejectSuitor(v, x,Qs,Vs, alive, pref )

else
put reject(v, u) in P (φ(u));

If the proposal is successful, we call the RejectSuitor function which re-
turns a local suitor x to the queue Qs, or sends a reject message to a
nonlocal suitor x. If the proposal fails, we send a reject message to the
proposer u.

• Video: Tie-breaking and load balancing. The graph has 5 cut edges,
so the edge cut is EC φ = 5.

In the (mixed) superstep (0), the blue processor finds 5 matches and sets
the preferences of the vertices at its left boundary. Since one preference is
nonlocal (with weight 12), it sends a proposal. In the same superstep, the
red processor sets all preferences to the right, and since the preferences at
the right boundary are all nonlocal, it sends 5 proposals. The situation at
the end of superstep (0) is :

16



it s 2 4 8

4 6 10

6 8 12

8 10 14

10 12 16

1 3 5

3 5 7

5 7 9

7 9 11

In superstep (1), the blue processor tacitly accepts the match at the top
(with weight 12), and accepts all proposals from the red processor by send-
ing an accept message. It locally registers the matches. Blue is then done.
In the same superstep, the red processor also tacitly accepts the match at
the top (with weight 12), removes two adjacent edges, and waits for the
answer to its 4 proposals. The situation at the end of superstep (1) is :

it s 2 4 8

4 6 10

6 8 12

8 10 14

10 12 16

1 3

3 5

5 7

7 9

In superstep 2, the red processor receives the 4 accept messages and then
finishes its own computation, so that both processors are done. Thus there
are 3 supersteps. The situation at the end of superstep (2) is the same as
after the sequential computation, see the solution above. The total weight
achieved is 110. The total communication volume is V = 10. This attains
the upper bound of 2EC φ

• Video: Reducing communication in parallel graph matching. The

dense graph has n(n−1)
2 edges, since each of the n vertices is connected

to all (n − 1) others, where we count every edge twice. Similarly, each

processor has n
p vertices, and hence n

2p

(
n
p − 1

)
internal edges. The total

number of internal edges of all p processors is thus n
2

(
n
p − 1

)
. The edge

cut is the number of external edges, which equals

EC φ =
n(n− 1)

2
− n

2

(
n

p
− 1

)
=
n

2

(
n− n

p

)
=
n2

2

(
1− 1

p

)
.

17



For the broadcast of a match of vertex v, a data word has to be sent to
p − 1 processors. For all n vertices, this amounts to a communication
volume of

Vφ = n(p− 1).

This means that the communication volume is a factor n
2p smaller than

the edge cut. Therefore, the extra cost of broadcasting matches is very
small. But its gains may be large: many proposals may be prevented,
thereby reducing communication and also computation (through shrinking
adjacency lists).

18


