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What are inverse problems?

Inverse problems are determining cause for an observed effect.

Cause

Forward Problem

Effect
Inverse Problem

(Parameters) (Data)

I Forward Problem: x→ F (x)

I Inverse Problem: F (x)→ x
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Properties of Inverse Problems

Forward problems are always well-posed, while inverse problems are
not!

Well-posedness in terms of Hadamard conditions:

I There exists a solution for all input data.

I If solution exists, it must be unique.

I solution of the problem depends continuously on input datum.

If any of these conditions is violated, problem is called ill-posed.
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Linear Inverse Problem

F (x) is a linear functional.

Problems of form

y ≈ Ax

I we are given A ∈ RM×N , we observe y ∈ RM and want to
find (or estimate) x ∈ RN .

I most fundamental concept in all of engineering, science, and
applied maths!

I two areas of Interests:

– Supervised Learning
– Computational Imaging
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Supervised Learning

estimate a function f(t) on RD from observations of its samples.

f(tm) ≈ ym, m = 1, . . . ,M

I f : RD → R.

I Problem is not well-posed (many f possible).

I Need to define set of functions F from which to choose f .
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Supervised Learning
Example: Linear Regression

F contain set of all linear functionals on RD.

linear function f : RD → R obeys

f(αt1 + βt2) = αf(t1) + βf(t2)

for all α, β ∈ R and t1, t2 ∈ RD.

every linear functional on RD is uniquely represented by vector
xf ∈ RD (Riesz Representation Theorem, holds in any Hilbert space)

f(t) = 〈t,xf 〉
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Supervised Learning
Example: Linear Regression

given (tm, ym), find x such that ym = 〈tm,x〉.

y = Ax, where A =


tT1
tT2
...

tTM

 , y =


y1

y2
...
yM


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Supervised Learning
Example: Non-Linear Regression using a basis

F is spanned by basis functions ψ1, · · · ,ψN .

f(t) =

N∑
n=1

xnψn(t)

Again, fitting can be rewritten as:
y1

y2
...
yM

 =


ψ1(t1) ψ2(t1) . . . ψN (t1)
ψ1(t2) ψ2(t2) . . . ψN (t2)

...
. . .

ψ1(tM ) ψ2(tM ) . . . ψN (tM )



x1

x2
...
xN


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Computational Imaging

recover a function f that represents some physical structure
indexed by location

I similar to regression problem: discretize the problem by
representing f using a basis.

I Unlike regression problem: not observe f , but more general
linear functions.
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Computational Imaging
Example: Range profiling using deconvolution

sending a pulse out (of electromagnetic or acoustic energy) and
listening to the echo.

Applications:

I radar imaging

I underwater acoustic imaging

I seismic imaging

I medical imaging

I channel equalization in wireless communications

I image deblurring
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Computational Imaging
Example: Range profiling using deconvolution

send a pulse p(t) out, and receive back a signal y(t)

y(t) =

∫ ∞
−∞

f(s)p(t− s) ds

assuming f(t) is time-limited, {ψn} basis for L2([0, T ])

f(t) =

N∑
n=1

xnψn(t)

This leads to

y(t) =

N∑
n=1

xn

(∫ ∞
−∞

ψn(s)p(t− s) ds

)
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Computational Imaging
Example: Range profiling using deconvolution

we only observe finite set of samples of y(t):

ym := y(tm) =

N∑
n=1

xn

(∫ ∞
−∞

ψn(s)p(tm − s) ds

)
=
∑
n

A[m,n]xn

where A[m,n] =

∫ ∞
−∞

ψn(s)p(tm − s) ds = 〈pm,ψn〉

can write deconvolution problem as:

y = Ax

a solution can be synthesized using

ˆf(t) =

N∑
i=1

x̂nψn(t)
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Computational Imaging
Example: Tomographic reconstruction

Tomography: learn about the interior of an object while only
taking measurements on the exterior

R[f ] =

∫
f(s, t) dl
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Computational Imaging
Example: Tomographic reconstruction

f(s, t) =
∑
γ∈Γ

xγψγ(s, t) =⇒ ym = Rrm,θm [f(s, t)]

Resulting problem is a linear IP:

y = Ax, A[m,n] = Rrm,θm [Ψn]
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Least-Squares formulation

LS framework: find an x that minimizes length of residual

r = y −Ax

solve an optimization problem

minimize
x∈RN

‖y −Ax‖22

If A written using Singular value decomposition:

A = UΣVT , U ∈ RM×R, Σ ∈ RR×R, V ∈ RN×R

Then the solution to least-squares problem is:

xls = VΣ−1UTy
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Least-squares solution

xls = VΣ−1UTy

When y = Ax has

I exact solution: it must be xls.

I no exact solution: xls is a solution to least-squares problem

I infinite solutions: xls is the one with smallest norm.

Solution can be written in compact form:

xls = A†y

A†(= VΣ−1UT ) is called pseudo-inverse!
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Pseudo-inverse

I A is a square matrix

A† = A−1

I A has full column rank

A† =
(
ATA

)−1
AT

I A has full row rank

A† = AT
(
AAT

)−1

I Otherwise (for low-rank matrix)

A† = VΣ−1UT
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Stable Reconstructions

Two important methods:

I Truncated SVD

I Tikhonov regularization
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Truncated SVD

The solution of minimize
x∈RN

‖y −Ax‖22 is given by:

x? = VΣ−1UTy =

R∑
r=1

ur
Ty

σr
vr =

R∑
r=1

ur
T (ytr + δ)

σr
vr

If σr → 0, noise δ affects the solution.

Truncate SVD:

I throw away contributions of σr < ε.

I assuming σ1, . . . , σK > ε then xtsvd =
∑K

r=1
ur

Ty
σr

vr
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Tikhonov regularization

minimize
x∈RN

‖y −Ax‖22 + λ‖x‖22

solution is obtained by setting gradient to zero:

xtik =
(
ATA + λI

)−1
ATy

Tikhonov reconstruction in SVD form:

xtik =

R∑
r=1

σr
σ2
r + λ

(uTr y)vr

Generalized Tikhonov regularization:

minimize
x∈RN

‖y −Ax‖22 + λ‖Lx‖22 =⇒ xgen-tik =
(
ATA+ λLTL

)−1

ATy
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Iterative methods

Two types of methods:

I specifically for linear problems - Krylov subspace methods
{ Arnoldi, Lanczos, conjugate gradient (CG, BiCG,
NLCG,etc), GMRES, IDR, . . . }

I Convex optimization

xk+1 = xk + αks
k

I sk - descent direction

– Gradient descent method: sk = ∇f
– Newton method: sk = H(f)−1∇f

I αk - step size, chosen from line search method
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Sparse reconstruction

minimize
x∈RN

‖y −Ax‖22 + λ‖x‖1

I `2 regularization induces smoothness.

I `1 regularization induces sparsity, `1 norm
in higher dimension is very pointy.

I The above problem is also known as
LASSO in statistics.

I widely used in statistics, machine
learning, signal processing.
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Image denoising

minimize
x∈RN

‖y − Ix‖22

True Image Noisy Image Tikhonov Reg
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Image deblurring

minimize
x∈RN

‖y −Dx‖22

True Image Blurred Image Sparse Reg
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X-Ray Tomography

minimize
x∈RN

‖y −Wx‖22

True Image Projection Data
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X-Ray Tomography

True Image LSQR

Tikhonov reg Sparse reg
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Summary

I Inverse problems : an active field of research

I arises in many applications including computational imaging,
machine learning, remote sensing, etc

I Least-squares is a popular choice for inversion.

I Stable reconstructions are important, and hence the
regularization.

I Sparse reconstruction methods have gained popularity in last
two decades.
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Thank you!

If interested in the topic, Join us in the journey!

Current Team Members:

Tristan van Leeuwen Sarah Gaaf Nick Luiken Ajinkya Kadu

Opportunities:

I Undergraduate/Graduate Thesis

I Summer Research Project
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