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What are inverse problems?

Inverse problems are determining cause for an observed effect.

Forward Problem

Cause Effect
Inverse Problem
yerse FToblc!

(Parameters) (Data)

» Forward Problem: x — F(x)
> Inverse Problem: F(x) — x
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Properties of Inverse Problems
Forward problems are always well-posed, while inverse problems are
not!
Well-posedness in terms of Hadamard conditions:
» There exists a solution for all input data.
» |f solution exists, it must be unique.

» solution of the problem depends continuously on input datum.

If any of these conditions is violated, problem is called ill-posed.
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Linear Inverse Problem

F(z) is a linear functional.

Problems of form

y ~ Ax

» we are given A € RM*N e observe y € RM and want to
find (or estimate) x € RY.

» most fundamental concept in all of engineering, science, and
applied maths!

> two areas of Interests:

— Supervised Learning
— Computational Imaging
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Supervised Learning

estimate a function f(t) on R” from observations of its samples.
f(bm) ®Ym, m=1,....M
» f:RP 5 R

» Problem is not well-posed (many f possible).

> Need to define set of functions F from which to choose f.
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Supervised Learning

Example: Linear Regression

F contain set of all linear functionals on R”.
linear function f : RP — R obeys

flaty + Bta) = af(t1) + Bf(t2)
for all o, 8 € R and t1,ts € RP.

every linear functional on R? is uniquely represented by vector
Xy € RP (Riesz Representation Theorem, holds in any Hilbert space)

f(t) = (t,xy)
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Supervised Learning

Example: Linear Regression

given (ty,, Ym), find x such that y,, = (t;,,x).
_ t? _
y = Ax, where =

T
J— tM N
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Supervised Learning

Example: Non-Linear Regression using a basis

F is spanned by basis functions ¥, -+ , 1.

N
f(t) = anwn(t)
n=1

Again, fitting can be rewritten as:

(7 Pi(t)  a(th) ... Yn(t1) | |2
v2 | _ Pi(ta)  aha(te) ... Un(t2) | |22
mr] o) eatar) o ot Lon
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Computational Imaging

recover a function f that represents some physical structure
indexed by location

> similar to regression problem: discretize the problem by
representing f using a basis.

> Unlike regression problem: not observe f, but more general
linear functions.
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Computational Imaging

Example: Range profiling using deconvolution

sending a pulse out (of electromagnetic or acoustic energy) and
listening to the echo.

Applications:

>

>

>

radar imaging

underwater acoustic imaging

seismic imaging

medical imaging

channel equalization in wireless communications

image deblurring
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Computational Imaging

Example: Range profiling using deconvolution

send a pulse p(t) out, and receive back a signal y(t)
vt) = [ it - 9)ds
assuming f(t) is time-limited, {1,,} basis for La([0,T7])
N
f(t) = Z Tntn(t)
n=1
This leads to

y(t) = nf:lxn </_Z U (s)p(t — s) ds>
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Computational Imaging

Example: Range profiling using deconvolution

we only observe finite set of samples of y(¢):

Ym = Y(tm) = i:l:rn </Z Y (8)p(tm — 5) d3>

= ZA[m, n|xy,

oo
where  A[m,n] = / U (8)p(tm — 8) ds = (P, ¥,,)
— 0o
can write deconvolution problem as:
y = Ax
a solution can be synthesized using

R N
f(t) = Zinwn(t)
=1
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Computational Imaging

Example: Tomographic reconstruction

Tomography: learn about the interior of an object while only
taking measurements on the exterior
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Computational Imaging

Example: Tomographic reconstruction

f(S,t) = Z%%(Sat) = Ym = erﬂm [f(S,t)]

vyel
N\ i
400 \) \\)(/
pré \ N
W3 / N3k
] Balin
: : % A\
L

Resulting problem is a linear IP:

y=Ax, Am,n]=R;, 0, [V
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Least-squares

Least-squares
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Least-Squares formulation

LS framework: find an x that minimizes length of residual
r=y-— Ax

solve an optimization problem

S 9

minimize [y — Ax]|2
If A written using Singular value decomposition:
A =UxV?, UeRMXE s cRrREXE v eRVXE

Then the solution to least-squares problem is:

xis = VE1UTy
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Least-squares solution

xis = VE1UTy

When y = Ax has
> exact solution: it must be x.
> no exact solution: xjs is a solution to least-squares problem
» infinite solutions: xjs is the one with smallest norm.

Solution can be written in compact form:
X]s = ATy
At (= VE~1UT) is called pseudo-inverse!

Least-squares
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Pseudo-inverse

v

A is a square matrix
Af=A-1

A has full column rank

v

At = (ATA) AT

A has full row rank

v

At = AT (AAT)!

v

Otherwise (for low-rank matrix)
At =vyu’

Least-squares
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Reconstruction Methods

Reconstruction Methods
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Stable Reconstructions

Two important methods:
» Truncated SVD

» Tikhonov regularization

Reconstruction Methods
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Truncated SVD

The solution of  minimize ||y — Ax|? is given by:
x€RN

R T R T (< tr
X =V Uy =>" T Yy, = > w7 F9) 5)vr

r=1 Ir r=1 or
If o — 0, noise § affects the solution.
Truncate SVD:
» throw away contributions of o, < €.
. T
» assuming oy,...,0K > € then Tig = Zf(_l =Yy,
- T
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Tikhonov regularization

minimize — Ax|2 + \||x]|2
inimize [y — Ax]3 + Alx|3
solution is obtained by setting gradient to zero:

xex = (ATA + A1) " ATy

Tikhonov reconstruction in SVD form:
R

(oF
Xtk = Y =5 (W y)ve

2
r=1 or A

Generalized Tikhonov regularization:

—1
minimize [y — Ax[3 + A[Lx[} = xgen_t;k:(ATA+)\LTL) ATy
xeR
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Iterative methods

Two types of methods:

» specifically for linear problems - Krylov subspace methods
{ Arnoldi, Lanczos, conjugate gradient (CG, BiCG,
NLCG,etc), GMRES, IDR, ...}

» Convex optimization

k+1 k

X :xk+aks

» s, - descent direction

— Gradient descent method: s, = Vf
— Newton method: s, = H(f)"'Vf

> «y - step size, chosen from line search method

Reconstruction Methods
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Sparse reconstruction

minimize — Ax|? + )\||x
inimize. |y — Ax]3 -+ Al

» /{5 regularization induces smoothness.

» (1 regularization induces sparsity, £1 norm
in higher dimension is very pointy.

» The above problem is also known as
LASSO in statistics.

» widely used in statistics, machine
learning, signal processing.

Reconstruction Methods
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Examples

Examples
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Image denoising

minimize —Ix|?
inimize |1y — x|}

True Image Tikhonov Reg

Noisy Image
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Image deblurring

minimize — Dx||?
inimize |y — Dx}

True Image Blurred Image Sparse Reg
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X-Ray Tomography

minimize — Wx||?
inimize |1y ~ W

True Image Projection Data

? A

/////AM
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X-Ray Tomography

True Image LSQR
Tikhonov reg Sparse reg
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Summary

> Inverse problems : an active field of research

> arises in many applications including computational imaging,
machine learning, remote sensing, etc

> Least-squares is a popular choice for inversion.

» Stable reconstructions are important, and hence the
regularization.

» Sparse reconstruction methods have gained popularity in last
two decades.
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Thank you!

If interested in the topic, Join us in the journey!

Current Team Members:

.‘_

Tristan van Leeuwen Sarah Gaaf Nick Luiken Ajinkya Kadu

Opportunities:
» Undergraduate/Graduate Thesis

» Summer Research Project
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