
SIAM REVIEW c© 2005 Society for Industrial and Applied Mathematics
Vol. 47, No. 1, pp. 67–95

A Two-Dimensional Data
Distribution Method for Parallel
Sparse Matrix-Vector Multiplication∗

Brendan Vastenhouw†

Rob H. Bisseling‡

Abstract. A new method is presented for distributing data in sparse matrix-vector multiplication.
The method is two-dimensional, tries to minimize the true communication volume, and
also tries to spread the computation and communication work evenly over the processors.
The method starts with a recursive bipartitioning of the sparse matrix, each time splitting
a rectangular matrix into two parts with a nearly equal number of nonzeros. The commu-
nication volume caused by the split is minimized. After the matrix partitioning, the input
and output vectors are partitioned with the objective of minimizing the maximum commu-
nication volume per processor. Experimental results of our implementation, Mondriaan,
for a set of sparse test matrices show a reduction in communication volume compared
to one-dimensional methods, and in general a good balance in the communication work.
Experimental timings of an actual parallel sparse matrix-vector multiplication on an SGI
Origin 3800 computer show that a sufficiently large reduction in communication volume
leads to savings in execution time.

Key words. matrix partitioning, matrix-vector multiplication, parallel computing, recursive biparti-
tioning, sparse matrix

AMS subject classifications. 05C65, 65F10, 65F50, 65Y05

DOI. 10.1137/S0036144502409019

1. Introduction. Sparse matrix-vector multiplication lies at the heart of many
iterative solvers for linear systems and eigensystems. In these solvers, a multiplication
u := Av has to be carried out repeatedly for the same m × n sparse matrix A, each
time for a different input vector v. On a distributed-memory parallel computer,
efficient multiplication requires a suitable distribution of the data and the associated
work. In particular, this requires distributing the sparse matrix and the input and
output vectors over the p processors of the parallel computer such that each processor
has about the same number of nonzeros and such that the communication overhead
is minimal.

The natural parallel algorithm for sparse matrix-vector multiplication with an
arbitrary distribution of the matrix and the vectors consists of the following four
phases:

1. Each processor sends its components vj to those processors that possess a
nonzero aij in column j.

∗Received by the editors May 29, 2002; accepted for publication (in revised form) April 18, 2004;
published electronically February 1, 2005.

http://www.siam.org/journals/sirev/47-1/40901.html
†Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht,

The Netherlands (brendan@isi.uu.nl).
‡Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

(Rob.Bisseling@math.uu.nl).

67

68 BRENDAN VASTENHOUW AND ROB H. BISSELING

2. Each processor computes the products aijvj for its nonzeros aij and adds the
results for the same row index i. This yields a set of contributions uis, where
s is the processor identifier, 0 ≤ s < p.

3. Each processor sends its nonzero contributions uis to the processor that pos-
sesses ui.

4. Each processor adds the contributions received for its components ui, giving
ui =

∑p−1
t=0 uit.

To facilitate theoretical time analysis, processors are assumed to synchronize globally
between the phases. In an actual implementation, this requirement may be relaxed.

In this paper, we propose a new general scheme for distributing the matrix and the
vectors over the processors that enables us to obtain a good load balance and minimize
the communication cost in the algorithm above. A good distribution scheme has the
following characteristics:

(i) It tries to spread the matrix nonzeros evenly over the processors, to minimize
the maximum amount of work of a processor in phase 2.

(ii) It tries to minimize the true communication volume, i.e., the total number of
data words communicated, and not a different metric. (If the same vector component
vj is needed twice by a processor—for instance, because of nonzeros aij and ai′j—it
is sent only once by the algorithm, and the cost function of the distribution scheme
should reflect this.)

(iii) It tries to spread the communication evenly over the processors, with respect
to both sending and receiving, to minimize the maximum number of data words sent
and received by a processor in phases 1 and 3.

(iv) It tries to partition the matrix in both dimensions, e.g., by splitting it into
rectangular blocks. Under certain conditions, two-dimensional (2D) partitioning lim-
its the number of destination processors of a vector component vj in phase 1 to

√
p−1,

provided vj resides on one of the processors that needs it. In the same way, it also
limits the communication in phase 3. Although a one-dimensional (1D) row distribu-
tion has the advantage that it removes phases 3 and 4, the price to be paid is high:
the elements of a column must be distributed over a larger number of processors, and
the number of destination processors of vj can reach p−1. Of course, for certain well-
structured matrices this number may be far less. For instance, for sparse matrices
from the finite-element field, it is only a small constant. Such matrices are expected
to gain little from a 2D approach.

In recent years, much work has been done in this area. Commonly, the matrix
partitioning problem has been formulated as a graph partitioning problem, where (in
the row-oriented version) a vertex i represents matrix row i together with the vector
components ui and vi, and where an edge (i, j) represents a nonzero aij , and the
aim is to minimize the number of cut edges. An edge (i, j) is cut if vertices i and j
are assigned to different processors. This 1D method is the basis of the partitioning
algorithms implemented in software such as Chaco [25] and Metis [31], which have
found widespread use. The success of these partitioning programs can be attributed to
their incorporated efficient multilevel bipartitioning algorithms. Multilevel methods,
first proposed by Bui and Jones [9], coarsen a graph by merging vertices at several
successive levels until the remaining graph is sufficiently small, then partition the
result and finally uncoarsen it, projecting back the partitioning and refining it at
every level. The partitioning itself is done sequentially; a parallel version of Metis,
ParMetis [32], has recently been developed.

Hendrickson [22] criticizes the graph partitioning approach because it can handle
only square symmetric matrices, imposes the same partitioning for the input and

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 69

output vectors, and does not necessarily try to minimize the communication volume,
nor the number of messages, nor the maximum communication load of a processor.
Hendrickson and Kolda [23] show that these disadvantages hold for all applications
of graph partitioning in parallel computing, and not only for sparse matrix-vector
multiplication. They note that often we have been fortunate that the effect of these
disadvantages has been limited. This is because many applications originate in differ-
ential equations discretized on a grid, where the number of neighbors of a grid point
is limited, so that the number of cut edges may not be too far from the true communi-
cation volume. In more complex applications, we may not be so lucky. Bilderback [5]
shows for five different graph partitioning packages that the number of cut edges varies
significantly between the processors, pointing to the potential for improvement of the
communication load balance. Hendrickson and Kolda [24] present an alternative, the
bipartite graph model, which identifies the rows of an m× n matrix with a set of m
row vertices, the columns with a set of n column vertices, and the nonzero elements
aij with edges (i, j) between a row vertex i and a column vertex j. The row and
column vertices are each partitioned into p sets. This determines the distribution of
the input and output vectors. The matrix distribution is a 1D row distribution that
conforms to the partitioning of the row vertices. The vertices are partitioned by a
multilevel algorithm that tries to minimize the number of cut edges while keeping
the difference in work between processors less than the work of a single matrix row
or column. A disadvantage of this approach is that only an approximation to the
communication volume is minimized, and not the true volume. The bipartite model
can handle nonsymmetric square matrices and rectangular matrices, and it does not
impose the same distribution for the input and output vectors.

Çatalyürek and Aykanat [10] present a multilevel partitioning algorithm that
models the communication volume exactly by using a hypergraph formulation. A
hypergraph H = (V,N) consists of a set of vertices V = {0, . . . , n − 1} and a set of
hyperedges N = {n0, . . . , nm−1}, also called nets. A hyperedge is a subset of V. In
their row-net model, each row of anm×n matrix corresponds to a hyperedge and each
column to a vertex; each vertex has a weight equal to the number of nonzeros in the
corresponding column. (They also present a similar column-net model.) Çatalyürek
and Aykanat assume that m = n and that the vector distribution is determined by
the matrix distribution: components uj , vj are assigned to the same processor as
matrix column j. The problem they solve is how to partition the vertices into sets
V0, . . . ,Vp−1 such that the total vertex weight is balanced among the sets and the
total cost of the cut hyperedges is minimal. A cut hyperedge ni intersects at least
two sets Vs. The cost of a cut hyperedge is the number of sets it intersects, minus
one. This is exactly the number of processors that has to send a nonzero contribu-
tion to ui in phase 3. (Phase 1 vanishes.) The advantage of this approach is that
it minimizes the true communication volume and not an approximation to the vol-
ume. This indeed leads to less communication: experimental results for the PaToH
(partitioning tool for hypergraphs) program show a 35% reduction in volume for a
set of test matrices from the Rutherford–Boeing collection [14, 15] and some linear
programming (LP) matrices, compared to the Metis implementation of graph parti-
tioning. Çatalyürek and Aykanat [10] also tested hMetis, a hypergraph-based version
of Metis, and found that PaToH and hMetis produce partitionings of equal quality but
that PaToH partitions about three times faster than hMetis. The hypergraph-based
approach can also be applied to rectangular matrices, as shown by Pinar et al. [40] for
the partitioning of rectangular LP matrices. (Taking a different approach, Pinar and
Aykanat [38] transform rectangular LP matrices to an undirected graph representing

70 BRENDAN VASTENHOUW AND ROB H. BISSELING

the interaction between the rows, thus enabling the use of graph partitioners. This
minimizes an approximation to the communication volume.)

Hu, Maguire, and Blake [30] present a similar algorithm for the purpose of re-
ordering a nonsymmetric matrix by row and column permutations into bordered block-
diagonal form, implemented in MONET (matrix ordering for minimal net-cut). This
form facilitates subsequent parallel numerical factorization. The algorithm tries to
assign matrix rows to processors in such a way that the number of cut columns is
minimal.

Both the standard graph partitioning approach and the hypergraph approach
produce 1D matrix partitionings that can be used together with a two-phase matrix-
vector multiplication. Two-dimensional matrix partitionings have also been proposed,
but these are typically less optimized and are often used with variants of the four-
phase matrix-vector multiplication that exploit sparsity only for computation but not
for communication. Such methods rely mainly on the strength of 2D partitioning as
a means of reducing communication. Fox et al. [18, Chap. 21] present a four-phase
algorithm for dense matrix-vector multiplication that uses a square block distribution
of the matrix. In work on the NAS parallel conjugate gradient benchmark, Lewis and
van de Geijn [36] and Hendrickson, Leland, and Plimpton [26] describe algorithms that
are suitable for dense matrices or relatively dense irregular sparse matrices. These
algorithms exploit the sparsity for computation, but not for communication. Lewis
and van de Geijn compare their 2D algorithms with a 1D algorithm and find gains of
a factor of 2.5 on an Intel iPSC/860 hypercube. Ogielski and Aiello [37] partition the
rows and columns of a matrix A by first permuting them randomly, giving a matrix
PAQ, and then distributing the rows and columns of PAQ by blocks. This gives a
2D partitioning with an expected good load balance. Pinar and Aykanat [39] split the
matrix first into blocks of rows, and then split each block independently into blocks
of subcolumns, taking only computation load balance into account. The rows and
columns are not permuted. This gives a 2D rowwise jagged partitioning.

Bisseling [6] presents a 2D algorithm aimed at a square mesh of transputers that
exploits sparsity both for computation and communication. The matrix is distributed
by the square cyclic distribution. Vector components are distributed over all the
processors; communication is done within chains of processors of minimal length. For
instance, vj is broadcast to a set of processors (s, t), smin ≤ s ≤ smax, in processor
column t, where the range is chosen as small as possible. Bisseling and McColl [7]
improve this algorithm so that only truly needed communication is performed; they
achieve this by transferring the algorithm from the restricted model of a square mesh
with store-and-forward routing to the more general bulk synchronous parallel model.
They analyze the communication of various distributions, taking the maximum of
the number of data words sent by a processor and the number received as the local
cost, and taking the maximum over all the processors of this local cost as the cost
function for the communication. The matrix distribution is Cartesian, i.e., defined by
partitioning the matrix rows into M sets Is, the columns into N sets Jt, and assigning
the p = MN Cartesian products Is × Jt to the processors. The vector distribution is
the same as that of the matrix diagonal. Experiments for several classes of matrices
show that tailoring the distribution to the matrix at hand yields better distributions
than matrix-independent schemes. This work makes no attempt, however, to find the
best data distribution for an arbitrary sparse matrix, as is done by general-purpose
multilevel partitioning algorithms.

In recent work, Çatalyürek and Aykanat extend their previous 1D hypergraph-
based partitioning method to two dimensions. In a coarse-grain approach [12], they

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 71

produce a Cartesian matrix distribution by first partitioning the rows into M sets
with an approximately equal number of nonzeros, and then partitioning the columns
while trying to spread the nonzeros in all the row sets simultaneously by solving
a multiconstraint partitioning problem. The distribution of the vectors u and v is
identical and equal to the distribution of the matrix diagonal. For the choiceM = N =√
p, the maximum number of messages per processor decreases to 2(

√
p−1), compared

to the p − 1 messages of a 1D distribution. This is an advantage on a computer
with a high startup cost for messages, in particular for relatively small matrices.
In their experiments, the number of messages indeed decreases significantly and the
communication volume stays about the same, both compared to a 1D distribution.
In [11], Çatalyürek and Aykanat take a different, fine-grain approach which formulates
the matrix partitioning problem as a hypergraph partitioning problem by identifying
each nonzero with a vertex, each row with a hyperedge, and each column with a
hyperedge (thus reversing the roles of vertices and hyperedges compared to previous
hypergraph-based methods). Since individual nonzeros are assigned to processors, the
resulting 2D partitioning is in principle the most general possible. Experiments for a
set of square test matrices show an average savings of 43% in communication volume
compared to the volume of a 1D hypergraph-based implementation.

Berger and Bokhari [3] present a recursive bisection-based strategy for partition-
ing nonuniform 2D grids. The partitioning divides the grid alternatingly in horizontal
and vertical directions, with the aim of achieving a good balance in the computa-
tional work. Recursive bisection is a well-known optimization technique, which has
been used, for instance, in parallel circuit simulation; see Fox et al. [18, Chap. 22].
It can also be used for partitioning matrices, as has been done by Romero and Zap-
ata [41] to achieve good load balance in sparse-matrix vector multiplication.

In the present work, we bring several techniques discussed above together, hoping
to obtain a more efficient sparse matrix-vector multiplication. Our primary focus
is the general case of a sparse rectangular matrix with input and output vectors
that can be distributed independently. The original motivation of our work is the
design of a parallel web-search engine [45] based on latent semantic indexing; see [4]
for a recent review of such information retrieval methods. The indexing is done by
computing a singular value decomposition using Lanczos bidiagonalization [21], which
requires the repeated multiplication of a rectangular sparse matrix and a vector. We
view our distribution problem exclusively as a partitioning problem and do not take
the mapping of the parts to the processors of a particular parallel machine with
a particular communication network into account. Tailoring the distribution to a
machine would harm portability. More generic approaches are possible (see, e.g.,
Walshaw and Cross [46]), but adopting such an approach would make our algorithm
more complicated.

The remainder of this paper is organized as follows. Section 2 presents a 2D
method for partitioning the sparse matrix that attempts to minimize the communi-
cation volume. Section 3 presents a method for partitioning the input and output
vectors that attempts to balance the communication volume among the processors.
Section 4 discusses possible adaptation of our methods to special cases such as square
matrices or square symmetric matrices. Section 5 presents experimental results of
our program, Mondriaan, for a set of test matrices. Section 6 draws conclusions and
outlines possible future work.

2. Matrix Partitioning. We make the following assumptions. The matrix A has
size m × n, with m,n ≥ 1. The matrix is sparse; i.e., many of its elements are zero.

72 BRENDAN VASTENHOUW AND ROB H. BISSELING

Since, for the purpose of partitioning, we are only interested in the sparsity pattern of
the matrix (and not in the numerical values), we assume that the elements aij , with
0 ≤ i < m and 0 ≤ j < n, are either 0 or 1. Without loss of generality, we assume
that each row and column has at least one nonzero. (Empty rows and columns can
easily be removed from the problem.) The input vector v is a dense vector of length
n and the output vector u is a dense vector of length m. We do not exploit possible
sparsity in the vectors. The parallel computer has p processors, p ≥ 1, each with its
own local memory.

We sometimes view a matrix as just a set of index pairs, writing

A = {(i, j) : 0 ≤ i < m ∧ 0 ≤ j < n}.(2.1)

The number of nonzeros in A is

nz (A) = |{(i, j) ∈ A : aij = 1}|.(2.2)

A subset B ⊂ A is a subset of index pairs. A k-way partitioning of A is a set
{A0, . . . , Ak−1} of nonempty, mutually disjoint subsets of A that satisfy

⋃k−1
r=0 Ar = A.

The communication volume of the natural parallel algorithm for sparse matrix-
vector multiplication is the total number of data words that are sent in phases 1
and 3. This volume depends on the data distribution chosen for the matrix and the
vectors. From now on, we assume that vector component vj is assigned to one of
the processors that owns a nonzero aij in matrix column j. Such an assignment is
better than assignment to a nonowner, which causes an extra communication. We also
assume that ui is assigned to one of the processors that owns a nonzero aij in matrix
row i. Under these two assumptions, the communication volume is independent of
the vector distributions. This motivates the following matrix-based definition.

Definition 2.1. Let A be an m × n sparse matrix and let A0, . . . , Ak−1 be
mutually disjoint subsets of A, where k ≥ 1. Define

λi = λi(A0, . . . , Ak−1)
= |{r : 0 ≤ r < k ∧ (∃j : 0 ≤ j < n ∧ aij = 1 ∧ (i, j) ∈ Ar)}|,(2.3)

i.e., the number of subsets that has a nonzero in row i of A, for 0 ≤ i < m, and

µj = µj(A0, . . . , Ak−1)
= |{r : 0 ≤ r < k ∧ (∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ Ar)}|,(2.4)

i.e., the number of subsets that has a nonzero in column j of A, for 0 ≤ j < n. Define
λ′i = max(λi − 1, 0) and µ′j = max(µj − 1, 0). Then the communication volume for
the subsets A0, . . . , Ak−1 is defined as

V (A0, . . . , Ak−1) =
m−1∑

i=0

λ′i +
n−1∑

j=0

µ′j .

Note that V is also defined when the k mutually disjoint subsets do not form a
k-way partitioning. If k = p and the subsets form a p-way partitioning of A, and if we
assign each subset to a processor, then V (A0, . . . , Ap−1) is exactly the communication
volume in the natural parallel algorithm. This is because every vj is sent from its
owner to all the other µ′j processors that possess a nonempty part of column j and
every ui is the sum of a local contribution by its owner and contributions received

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 73

from the other λ′i processors. An important property of the volume function is the
following.

Theorem 2.2. Let A be an m × n matrix and let A0, . . . , Ak−1 be mutually
disjoint subsets of A, where k ≥ 2. Then

V (A0, . . . , Ak−1) = V (A0, . . . , Ak−3, Ak−2 ∪Ak−1) + V (Ak−2, Ak−1).(2.5)

Proof. It is sufficient to prove (2.5) with V replaced by λ′i, for 0 ≤ i < m, and by
µ′j , for 0 ≤ j < n, from which the result follows by summing. We will only treat the
case of the λ′i; the case of the µ′j is similar. Let i be a row index. We have to prove
that

λ′i(A0, . . . , Ak−1) = λ′i(A0, . . . , Ak−3, Ak−2 ∪Ak−1) + λ′i(Ak−2, Ak−1).(2.6)

If Ak−2 or Ak−1 has a nonzero in row i, we can substitute λ′i = λi− 1 in the terms of
the equation. The resulting equality is easy to prove, starting at the right-hand side,
because

λi(A0, . . . , Ak−3, Ak−2 ∪Ak−1)− 1 + λi(Ak−2, Ak−1)− 1
= λi(A0, . . . , Ak−3) + 1− 1 + λi(Ak−2, Ak−1)− 1
= λi(A0, . . . , Ak−3, Ak−2, Ak−1)− 1,(2.7)

which is the left-hand side. If Ak−2 and Ak−1 do not have a nonzero in row i, the
left-hand side and the right-hand side of (2.6) both equal λ′i(A0, . . . , Ak−3).

This theorem is a generalization to arbitrary subsets of a remark by Çatalyürek
and Aykanat [10] on the case where each subset Ar consists of a set of complete
matrix columns. The theorem implies that to see how much extra communication is
generated by splitting a subset of the matrix, we only have to look at that subset.

We also define a function that gives the maximum amount of computational work
of a processor in the local matrix-vector multiplication. For simplicity, we express the
amount of work in multiplications (associated with matrix nonzeros); we ignore the
additions.

Definition 2.3. Let A be an m × n matrix and let A0, . . . , Ak−1 be mutually
disjoint subsets of A, where k ≥ 1. Then the maximum amount of computational work
for the subsets A0, . . . , Ak−1 is

W (A0, . . . , Ak−1) = max
0≤r<k

nz (Ar).

The function V describes the cost of phases 1 and 3 of the parallel algorithm, the
function W that of phase 2. The cost of phase 4 is ignored in our description. Usually
this cost is much less than that of the other phases: the total number of additions
by all the processors in phase 4 is bounded by V , because every contribution added
has been received previously in phase 3, and addition is usually much cheaper than
communication. Minimizing V thus minimizes an upper bound on the cost of phase 4.
Balancing the communication load in phase 3 automatically balances the computation
load in phase 4.

Our aim in this section is to design an algorithm for finding a p-way partitioning
of the matrix A that satisfies the load-balance criterion

W (A0, . . . , Ap−1) ≤ (1 + ε)
W (A)

p
(2.8)

74 BRENDAN VASTENHOUW AND ROB H. BISSELING

and that has low communication volume V (A0, . . . , Ap−1). Here, ε > 0 is the load
imbalance parameter, a constant that expresses the relative amount of load imbalance
that is permitted.

First, we examine the simplest possible partitioning problem, the case p = 2.
One way to split the matrix is to assign complete columns to A0 or A1. This has
the advantage that µ′j = 0 for all j, thus causing no communication of vector com-
ponents vj . (Splitting a column j by assigning nonzeros to different processors would
automatically cause a communication.) If two columns j and j′ have a nonzero in
the same row i, i.e., aij = aij′ = 1, then these columns should preferably be as-
signed to the same processor; otherwise λ′i = 1. The problem of assigning columns
to two processors is exactly the two-way hypergraph partitioning problem defined
by the hypergraph H = (V,N), with V = {0, . . . , n − 1} the set of vertices (repre-
senting the matrix columns) and N = {n0, . . . , nm−1} the set of hyperedges where
ni = {j : 0 ≤ j < n ∧ aij = 1}. The problem is to partition the vertices into two sets
V0 and V1 such that the number of cut hyperedges is minimal and the load balance
criterion (2.8) is satisfied. Here, a cut hyperedge ni intersects both V0 and V1 and
its cost is 1. To calculate the work load, every vertex j is weighted by the number of
nonzeros cj of column j, giving the criterion

∑

j∈Vr

cj ≤ (1 + ε) · 1
2
·
∑

j∈V
cj for r = 1, 2.(2.9)

Methods developed for this problem [10] are directly applicable to our situation. Such
methods are necessarily heuristic, since the general hypergraph partitioning problem
is NP-complete [35]. To capture these methods, we define a hypergraph splitting
function h on a matrix subset A by

(A0, A1)← h(A, sign, ε).(2.10)

The output is a pair of mutually disjoint subsets (A0, A1) with A0 ∪ A1 = A that
satisfies W (A0, A1) ≤ (1 + ε)W (A)/2. If sign = 1, the columns of the subset are
partitioned (i.e., elements of A from the same matrix column are assigned to the
same processor); if sign = −1, the rows are partitioned. We do not specify the
function h further, but just assume that such a function is available and that it works
well, partitioning optimally or close to the optimum.

Splitting a matrix into two parts by assigning complete columns has the advan-
tages of simplicity and absence of communication in phase 1. Still, it may sometimes
be beneficial to allow a column j to be split, for instance because its first half resem-
bles a column j′ and the other half resembles a column j′′. Assigning the first half to
the same processor as j′ and the second half to the same as j′′ can save more than
one communication in phase 3. In this approach, individual elements are assigned to
processors instead of complete columns. To keep our overall algorithm simple, we do
not follow this approach.

Next, we consider the case p = 4. Aiming at a 2D partitioning we could first
partition the columns into sets J0 and J1, and then the rows into sets I0 and I1. This
would split the matrix into four submatrices, identified with the Cartesian products
I0×J0, I0×J1, I1×J0, and I1×J1. This distribution, like most matrix distributions
currently in use, is Cartesian. The four-processor case reveals a serious disadvantage of
Cartesian distributions: the same partitioning of the rows must be applied to both sets
of columns. A good row partitioning for the columns of J0 may be bad for the columns

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 75

Fig. 2.1 Block distribution of the 59× 59 matrix impcol b with 312 nonzeros from the Rutherford–
Boeing collection [14, 15] over four processors, depicted by the colors red, yellow, blue, and
black. The matrix is first partitioned into two blocks of columns, and then each block is
partitioned independently into two blocks of rows, as shown by the bold lines. The resulting
number of nonzeros of the processors is 76, 76, 80, and 80, respectively. Also shown is a
Cartesian distribution, where both column blocks are split in the same way, as indicated by
the dashed line. Now, the number of nonzeros is 126, 28, 128, and 30, respectively.

of J1, and vice versa. This will often lead to a compromise partitioning of the rows.
Dropping the Cartesian constraint enlarges the set of possible partitionings and hence
gives better solutions. Therefore, we partition both parts separately. Theorem 2.2
implies that this can even be done independently, because

V (A0, A1, A2, A3) = V (A0 ∪A1, A2 ∪A3) + V (A0, A1) + V (A2, A3),(2.11)

where the parts are denoted by A0, A1, A2, A3 with A0 ∪ A1 the first set of columns
and A2 ∪A3 the second set. To partition A0 ∪A1 in the best way, we do not have to
consider the partitioning of A2 ∪A3.

The advantage of independent partitioning is illustrated by Figure 2.1. For ease of
understanding, the matrix shown in the figure has been split by a simple scheme that
is solely based on minimizing the computational load imbalance and that partitions
the matrix optimally into contiguous blocks. (In general, however, we also try to
minimize communication and we allow partitioning into noncontiguous matrix parts.)
Note that independent partitioning leads to a much better load balance, giving a
maximum of 80 nonzeros per processor, or ε ≈ 2.6%, compared to the 128 nonzeros,
or ε ≈ 64%, for the Cartesian case. (Of course, 1D partitionings can also easily
achieve good load balance, but our goal is to partition in both dimensions.) The total
communication volume is about the same, 66 vs. 63. It is clear that independent

76 BRENDAN VASTENHOUW AND ROB H. BISSELING

MatrixPartition(A, sign, p, ε)
input: A is an m× n matrix.

sign is the sign of the first bipartitioning to be done.
p is the number of processors, p = 2q with q ≥ 0.
ε: allowed load imbalance, ε > 0.

output: p-way partitioning of A satisfying criterion (2.8).

if p > 1 then
maxnz := (1 + ε)nz(A)

p ;
q := log2 p;
(A0, A1) := h(A, sign, ε/q);
ε0 := maxnz

nz(A0) ·
p
2 − 1;

ε1 := maxnz
nz(A1) ·

p
2 − 1;

MatrixPartition(A0,−sign, p/2, ε0);
MatrixPartition(A1,−sign, p/2, ε1);

else output A;

Algorithm 1 Recursive bipartitioning algorithm with alternating directions.

partitioning gives much better possibilities to improve the load balance or minimize
the communication cost.

The method used to obtain a four-way partitioning from a two-way partitioning
into equal-sized parts can be applied repeatedly, resulting in a recursive p-way parti-
tioning algorithm with p a power of 2, given as Algorithm 1. This algorithm is greedy
because it tries to bipartition the current matrix in the best possible way, without
taking subsequent bipartitionings into account. When q = log2 p bipartitioning levels
remain, we allow in principle a load imbalance of ε/q for each bipartitioning. The value
ε/q is used once, but then the value for the remaining levels is adapted to the outcome
of the current bipartitioning. For instance, the part with the smallest amount of work
will have a larger allowed imbalance than the other part. The corresponding value of
ε is based on the maximum number of nonzeros, maxnz , allowed per processor. The
partitioning direction is chosen alternatingly.

Many variations on this basic algorithm are possible, for instance, regarding the
load balance criterion and the partitioning direction. We could allow a different
value δp ≤ ε as load imbalance parameter for the current bipartitioning, instead of
ε/ log2 p. The partitioning direction need not be chosen alternatingly; it could also be
determined by trying both row and column partitionings and then choosing the best
direction.

For the alternating-direction strategy, we can guarantee an upper bound on the
number of processors µj that holds a matrix column j. The bound is µj ≤

√
p, for

0 ≤ j < n, if p is an even power of 2. This is because each level of partitioning
with sign = −1 causes at most a doubling of the maximum number of processors
that holds a matrix column, whereas each level with sign = 1 does not affect this
maximum. Similarly, µj ≤

√
2p if p is an odd power of 2 and the first bipartitioning

has sign = −1; otherwise the bound is µj ≤
√
p/2.

A straightforward generalization of Algorithm 1 to the case where p is not neces-
sarily a power of 2 can be obtained by generalizing the splitting function to

(A0, A1)← h(A, sign, ε0, ε1, f0).(2.12)

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 77

u A

v

Fig. 2.2 Global view of the distribution of the matrix impcol b over four processors by the recursive
bipartitioning algorithm with the best-direction strategy. The processors are depicted by the
colors red, yellow, blue, and black; they possess 79, 78, 79, and 76 nonzeros, respectively.
Also given is a distribution of the input and output vectors that assigns each component vj
to one of the processors that owns a nonzero in matrix column j and assigns ui to one of
the owners of a nonzero in row i. This distribution is obtained by the vector distribution
algorithm given in section 3.

This function tries to assign a fraction f0 of the workload to processor 0 and a fraction
1− f0 to processor 1, guaranteeing that

W (A0) ≤ (1 + ε0)f0W (A), W (A1) ≤ (1 + ε1)(1− f0)W (A).(2.13)

For ε0 = ε1 = ε and f0 = 1/2, the original function is retrieved. The splitting function
is called in the generalized algorithm with f0 = p0/p, where p0 = �p/2�; furthermore,
let p1 = �p/2�. This choice makes the fractions as close to 1/2 as possible and thus
minimizes the number of split levels. The imbalance parameters are ε/q0 and ε/q1,
where qr = �log2 pr�+1 for r = 0, 1. The generalized algorithm calls itself recursively
with p0 and p1 processors.

The result of the recursive bipartitioning algorithm is a p-way partitioning of
the matrix A. Processor s obtains a subset Is × Js of the original matrix, where
Is ⊂ {0, . . . ,m − 1} and Js ⊂ {0, . . . , n − 1}. This subset is itself a submatrix, but
its rows and columns are not necessarily consecutive. Figures 2.2 and 2.3 show the
result of such a partitioning from two different viewpoints.

Figure 2.2 gives the global view of the matrix and vector partitioning, showing
the original matrix and vectors with the processor assignment for each element. This
view reveals, for instance, that the four blocks of nonzeros from the original matrix
impcol b are each distributed over all four processors. The total communication vol-

78 BRENDAN VASTENHOUW AND ROB H. BISSELING

Fig. 2.3 Local view of the matrix distribution from Figure 2.2. The best-direction strategy chooses
first to partition in the horizontal direction and then to partition the resulting parts both
in the vertical direction. As a result, the red, yellow, blue, and black processors possess
submatrices of size 27× 21, 26× 23, 27× 24, and 24× 22, respectively. Empty local rows
and columns have been removed; they are collected in separate blocks.

ume is 76, which is slightly more than the volume of 66 of the simple block-based
distribution method shown by the bold lines in Figure 2.1. (Here, the block-based
method is lucky because of the presence of the four large blocks of nonzeros. In gen-
eral, the recursive bipartitioning method is much better.) In the global view, it is
easy to see where communication takes place: every matrix column that has nonzeros
in a different color than the vector component above it causes communication, and
similarly for rows.

Figure 2.3 gives the local view of the matrix partitioning, showing the submatrices
stored locally at the processors; these submatrices fit in the space of the original
matrix. This view displays the structure of the local submatrices. We have removed
empty local rows and columns, thus reducing the size of Is×Js, to emphasize the true
local structure. A good splitting function h leads to many empty rows and columns.
For instance, the first split leads to 16 empty columns above the splitting line, which
means that all the nonzeros in the corresponding matrix columns are located below
the line, thus causing no communication. (In an implementation, empty rows and
columns can be deleted from the data structure. In a figure, we have some freedom
where to place them.) Note that nonzeros within the same column of a submatrix
Is× Js belong to the same column of the original matrix A, but that there is no such
relation between nonzeros from different submatrices, because columns are broken

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 79

into parts by the first split and the resulting column parts are permuted to different
positions in the top and bottom part of the picture.

3. Vector Partitioning. After the matrix distribution has been chosen with the
aim of minimizing communication volume under the computational load balance con-
straint, we can now choose the vector distribution freely to achieve other aims as well,
such as a good balance in the communication or an even spread of the vector com-
ponents. As long as we assign input vector components to one of the processors that
have nonzeros in the corresponding matrix column, and output vector components to
one of the processors that have nonzeros in the corresponding matrix row, the total
communication volume is not affected.

We assume that the input and output vectors can be assigned independently,
which will usually be the case for rectangular, nonsquare matrices. Because the
communication pattern in phase 3 of the computation of Av is the same as that in
phase 1 of the computation of ATu, but with the roles of sends and receives reversed,
we can partition the output vector for multiplication by A using the method for
partitioning input vectors, but then applied to AT . Therefore, we will discuss only
the partitioning of the input vector.

Define Vs as the set of indices j corresponding to vector components vj assigned
to processor s. The number of data words sent by processor s in phase 1 equals

Ns(s) =
∑

j∈Vs

µ′j(A0, . . . , Ap−1)(3.1)

and the number of data words received equals

Nr(s) = |{j : 0 ≤ j < n ∧ j �∈ Vs ∧ (∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ As)}|.(3.2)

A vector partitioning method could attempt to minimize the following:
1. max0≤s<pNs(s), the maximum number of data words sent by a processor;
2. max0≤s<pNr(s), the maximum number of data words received by a processor;
3. max0≤s<p |Vs|, the maximum number of components of a processor.

The first two aims are equally important, for the following reasons. First, from a
computer hardware point of view, congestion at a communication link to a processor
can occur because of both outgoing and incoming communication. This justifies trying
to minimize both. Second, we partition the output vector of Av by partitioning it as
the input vector of ATu. If our partitioning method would only minimize the number
of data words sent but not the number of data words received, this could lead to
many data words received in phase 1 of the multiplication by AT and hence to many
data words sent in phase 3 of the multiplication by A. Third, sometimes the output
vector Av is subsequently multiplied by AT , either immediately or after some vector
operations. (This happens, for instance, in Lanczos bidiagonalization and in the
conjugate gradient method applied to the normal equations [21].) This multiplication
can be carried out using the stored matrix A in its present distribution, and the result
ATAv can be delivered in the distribution of v. The communication pattern of phase
1 for AT is the same as that of phase 3 for A, except that sending and receiving are
interchanged. A data partitioning for multiplication by A that minimizes both the
number of data words sent and the number of data words received is therefore also
optimal for multiplication by AT .

The third aim, balancing the number of vector components, is less important,
because it does not influence the time of the matrix-vector multiplication itself. It

80 BRENDAN VASTENHOUW AND ROB H. BISSELING

only affects the time of linear vector operations such as norm or inner product com-
putations, or DAXPYs, in the remaining part of iterative solvers. Often these vector
operations are much less time consuming than the matrix-vector multiplication. If
desired, we could use load balance in linear vector operations to break ties when our
primary objectives are equally met. (Moreover, the maximum number of compo-
nents could be included in a cost function, with a weight factor reflecting its relative
importance in the iterative solver concerned.)

Consider the assignment of a vector component vj to a processor. If µj = 1, vj
has to be assigned to the processor that has all the nonzeros of column j, so that
no communication occurs. Now assume that µj ≥ 2. Assigning vj to a processor
increases the number of data words sent by that processor by µj − 1 and the number
received by the µj−1 other processors involved by 1. If we take as the cost incurred by
a processor the sum of the number of data words sent and received, i.e., Ns(s)+Nr(s)
for processor s, we see that the sum for the sender increases by µj − 1 ≥ 1 and for
the receivers by 1. This suggests a greedy assignment of vj to the processor with the
smallest sum so far, among those that have part of column j. This heuristic assigns
a cost of at least 1 to all the processors involved and tries to avoid increasing the
maximum cost as much as possible.

Our vector partitioning algorithm is presented as Algorithm 2. In step 1 of the
algorithm, the sum of each processor is initialized to the number of data words that in-
evitably must be communicated, one word sent or received per nonempty column part.
Initializing the sums before assigning components has the advantage that this amount
of unavoidable communication is already taken into account from the first moment
that choices must be made. Processors with much unavoidable communication will
be assigned fewer components during the algorithm. In step 3, the increment of µj−2
represents the extra communication of the sender. In step 4, where µj = 2, the sums
are not increased anymore. Now, an attempt is made to balance the number of data
words sent with the number received. The choice between sending from processor s to
s′ or vice versa is made on the basis of the current values ofNs(s), Nr(s), Ns(s′), Nr(s′).
The component vj is assigned to processor s if

Ns(s) +Nr(s′) ≤ Ns(s′) +Nr(s),(3.3)

and to s′ otherwise. This gives rise to one data word communicated in the least busy
send-receive direction. The order of the assignments in steps 3 and 4 may influence
the quality of the resulting vector distribution. Therefore, we have left the order open
by using a for all statement. (The default of our implementation is to handle the
columns with µj ≥ 3 in random order and those with µj = 2 in a fixed order.)

We expect Algorithm 2 to minimize max0≤s<p(Ns(s)+Nr(s)) because each of its
assignments greedily minimizes this cost function and because it takes all knowledge
about inevitable communication cost into account from the start. As a result of
successful matrix partitioning, µj is often small: in the typical case, µj = 1 for the
vast majority of columns, avoiding communication altogether; µj = 2 for most of the
remaining columns; and µj ≥ 3 for relatively few columns. The range of possible
values for µj is restricted by µj ≤ p. In the case of the alternating-direction strategy,
µj ≤

√
p, provided p is an even power of 2. Thus, the algorithm adds relatively

little cost to the cost that was inevitable from the start. Furthermore, we expect
Algorithm 2 to minimize the metric max0≤s<pmax(Ns(s), Nr(s)) as well, because the
relatively large number of columns with µj = 2 gives many opportunities for balancing
sending and receiving.

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 81

VectorPartition(A0, . . . , Ap−1,v, p)
input: A0, . . . , Ap−1 is a p-way partitioning of a sparse m× n matrix A.

v is a vector of length n.
p is the number of processors, p ≥ 1.

output: p-way partitioning of v.

1. for s := 0 to p− 1 do
sum(s) := |{j : 0 ≤ j < n ∧ µj ≥ 2∧

(∃i : 0 ≤ i < m ∧ aij = 1 ∧ (i, j) ∈ As)}|;
2. for j := 0 to n− 1 do

if µj = 1 then
Assign vj to unique owner of nonzeros in column j;

3. for all j : 0 ≤ j < n ∧ µj ≥ 3 do
Assign vj to processor s with current lowest sum(s);
sum(s) := sum(s) + µj − 2;

4. for all j : 0 ≤ j < n ∧ µj = 2 do
Assign vj to one of the two owners of nonzeros in column j,
trying to balance sending and receiving.

Algorithm 2 Vector partitioning algorithm.

4. Square Matrices. In this section, we discuss the special case where the matrix
is square and the input and output vector distribution must be chosen the same. This
extra constraint makes it more difficult to balance the communication, and sometimes
it may even lead to an increase in communication volume.

First, we consider a square nonsymmetric matrix. Iterative algorithms such as
GMRES [42], QMR [19], BiCG [17], and Bi-CGSTAB [43] target this type of ma-
trix. These algorithms are most conveniently carried out in parallel if all vectors
involved are distributed in the same way, to avoid communication during linear vec-
tor operations such as norm or inner product computations, or DAXPYs. The matrix
partitioning can be done as before, but the vector partitioning must be modified to
treat the input and output vector in the same way. This implies that the partitioning
of v determines the communication in both phases 1 and 3. We cannot balance these
phases separately anymore. The vector partitioning algorithm is a straightforward
modification of Algorithm 2, where a sum now represents the total sum for phases 1
and 3, and a component vj is now assigned to a processor in the intersection of the
owner set of column j and the owner set of row j. If the preceding matrix partitioning
has been done by Algorithm 1, then each processor s in the intersection owns a sub-
matrix Is × Js with (j, j) ∈ Is × Js. Because the submatrices are disjoint, there can
only be one submatrix containing (j, j), and hence the intersection contains at most
one processor. If furthermore ajj = 1, the intersection contains exactly one processor,
namely, the owner of ajj ; otherwise, the intersection may be empty.

If the intersection is empty, each of the λj+µj processors involved can be chosen as
the owner of vj , but the communication volume increases by 1. This is a consequence
of the fact that we cannot simultaneously satisfy the assumptions from section 2
that vj is assigned to a processor that holds nonzeros in matrix column j, and uj is
assigned to a processor that holds nonzeros in matrix row j. This situation can occur

82 BRENDAN VASTENHOUW AND ROB H. BISSELING

only if ajj = 0, and hence an upper bound on the volume after constrained vector
partitioning is

V (distr(u) = distr(v)) ≤ V + |{j : 0 ≤ j < n ∧ ajj = 0}| ≤ V + n.(4.1)

We may try to reduce the additional volume by slightly modifying the matrix parti-
tioning. Following Çatalyürek and Aykanat [10], we add dummy nonzeros ajj to the
matrix diagonal before the matrix is partitioned, to make it completely nonzero. We
exclude dummy nonzeros from nonzero counts for the purpose of computational load
balancing. Most likely, a dummy nonzero ajj attracts other (genuine) nonzeros both
from row j and from column j to its processor during the matrix partitioning; in that
case the resulting intersection is nonempty. If this does not happen, the intersection
is empty and we still must perform the extra communication. Since the dummies are
irrelevant for the vector partitioning, we can delete them at the end of the matrix
partitioning.

In the nonsymmetric square case, the transposed matrix AT can be applied using
the stored matrix A, at the same communication cost as for A, as discussed in section 3
for the rectangular case. This is useful in iterative algorithms such as QMR and BiCG
that require multiplication of a vector or related vectors by both A and AT .

Next, we consider a square symmetric matrix, which is the target of algorithms
such as conjugate gradients [27]. We assume that the diagonal is completely nonzero,
which is quite common and holds, e.g., for positive definite matrices. In the matrix
partitioning, we may try to exploit the symmetry by requiring the matrix partitioning
to assign aij and aji to the same processor. The following symmetric partitioning
method achieves this. First, we create a lower triangular matrix L from A by deleting
the nonzeros aij with i < j; then we execute Algorithm 1 or one of its variants on
L; and finally we assign each deleted nonzero aij to the same processor as its partner
aji. The communication volume for the resulting partitioning of A is exactly twice the
volume for L. This is because, by a remark above, the intersection of the owners of
nonzeros in row j of L and the owners in column j consists of one processor, namely,
the owner of ljj (and hence of vj and uj). Each value vj sent by this processor in
phase 1 of the multiplication by L must also be sent in phase 1 of the multiplication
by A. Correspondingly, a contribution to uj is received by the same processor in
phase 3 of the multiplication by A. A similar remark can be made for the values ui
from phase 3 for L. (This reasoning also holds for 1D partitionings of L, but it may
not hold if a more general partitioning algorithm is used that splits L into arbitrary
disjoint subsets of the nonzeros, not necessarily submatrices.) As a result, phases
1 and 3 of the multiplication by A have the same communication pattern, although
with sending and receiving reversed. The advantage of symmetric partitioning is that
it is based on solving a smaller partitioning problem, which may lead to a better and
faster solution; the disadvantage is that it restricts the possible solutions.

5. Experimental Results.

5.1. Implementation. We have implemented several variants of Algorithm 1,
the recursive bipartitioning of the matrix, and Algorithm 2, the vector partitioning,
in a program called Mondriaan.1 Our implementation assumes that p is a power of
2. The hypergraph bipartitioning function h given in (2.10) has been implemented as

1The program Mondriaan is named after the Dutch painter Piet Mondriaan (1872–1944) who is
renowned for his colorful rectangle-based compositions.

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 83

a multilevel algorithm, similar to the bipartitioning in PaToH [10]. For column bi-
partitioning, our implementation is as follows. Empty rows and columns are removed
from the matrix before the bipartitioning starts.

First, in the coarsening phase, the matrix is reduced in size by merging columns in
pairs. An unmarked column j is picked and its neighboring columns are determined,
i.e., those columns j′ with a nonzero aij′ such that aij is also nonzero. The unmarked
column j′ with the largest number of such nonzeros is chosen as the match for j. The
resulting merged column has a nonzero in row i if aij or aij′ is nonzero. The amount
of work represented by the new column is the sum of the amounts of its constituent
columns (initially, before the coarsening, the amount of work of a column equals its
number of nonzeros). Both j and j′ are then marked and a successful matching is
registered. To prevent dominance of a single column, a match is forbidden if it would
yield a column with more than 20% of the total amount of work. If no unmarked
neighboring column exists, then j is marked and registered as unmatched at this level.
This process is repeated until all columns are marked. (This matching scheme is the
same as heavy connectivity matching [10].) We found it advantageous to choose the
columns j in order of decreasing number of nonzeros. As a result, the matrix size will
be nearly halved. The coarsening is repeated until the matrix is sufficiently small; we
choose as our stopping criterion a size of at most 200 columns or a coarsening phase
that only reduces the number of columns by less than 5%. The coarsening phase
requires both rowwise and columnwise access to the matrix. Therefore, it is convenient
to use as data structure both compressed row storage (CRS) and compressed column
storage (CCS), but without numerical values.

Second, the small matrix produced by the coarsening phase is randomly bipar-
titioned, taking care to balance the amount of work between the two parts, and the
bipartitioning is then improved by running the Kernighan–Lin algorithm [33] in the
faster Fiduccia–Mattheyses version [16], which we denote by KL–FM. The whole pro-
cedure is carried out eight times and the best result is kept. In the KL–FM algorithm,
columns are moved from one matrix part to the other based on their gain value, i.e.,
the difference between the number of cut rows after and before a move. Here, a cut
row is a row with nonzeros in both parts. For the sake of brevity, we will omit the
details.

Third, in the uncoarsening phase, the matrix is increased in size at successive
uncoarsening levels, each time separating the columns that were merged at the corre-
sponding coarsening level, in the first instance assigning them to the same processor
as the merged column. After the uncoarsening at a level is finished, KL–FM is run
once to refine the partitioning.

5.2. Test Matrices. We have tested version 1.01 of Mondriaan to check the qual-
ity of the partitioning produced, using a test set of sparse matrices from publicly
available collections, supplemented with a few of our own matrices (which are also
available). Table 5.1 presents the rectangular (nonsquare) matrices, Table 5.2 the
square matrices without structural symmetry, and Table 5.3 the structurally sym-
metric matrices (with aij �= 0 if and only if aji �= 0). In the following, we will call
these matrices rectangular, square, and symmetric. Note that structural symmetry is
relevant here and not numerical symmetry (aij = aji), because the sparsity pattern
determines the communication requirements and the amount of local computation.
The matrices in the tables are ordered by increasing number of nonzeros. The number
of nonzeros given is the total number of explicitly stored entries, irrespective of their
numerical value. Thus we include entries that happen to be numerically zero. We

84 BRENDAN VASTENHOUW AND ROB H. BISSELING

Table 5.1 Properties of the rectangular test matrices.

Name Rows Columns Nonzeros Application area

dfl001 6071 12230 35632 Linear programming
cre b 9648 77137 260785 Linear programming
tbdmatlab 19859 5979 430171 Information retrieval
nug30 52260 379350 1567800 Linear programming
tbdlinux 112757 20167 2157675 Information retrieval

Table 5.2 Properties of the square test matrices.

Name Rows/ Diagonal Nonzeros Application area
columns nonzeros

west0381 381 1 2157 Chemical engineering
gemat11 4929 13 33185 Power flow optimization
memplus 17758 17758 99147 Circuit simulation
onetone2 36057 9090 227628 Circuit simulation
lhr34 35152 102 764014 Chemical engineering

Table 5.3 Properties of the structurally symmetric test matrices. All diagonal elements are nonzero.

Name Rows/ Nonzeros Application area
columns

cage10 11397 150645 DNA electrophoresis
hyp 200 2 1 40000 200000 Laplacian operation
finan512 74752 596992 Portfolio optimization
bcsstk32 44609 2014701 Structural engineering
bcsstk30 28924 2043492 Structural engineering

make one exception: to facilitate comparison with results in other work [24], we re-
moved 27,003 explicitly stored zeros from the matrix memplus, leaving 99,147 entries
that are numerically nonzero. The number of nonzeros is for the complete matrix
(below, on, and above the main diagonal), and this also holds in the symmetric case.

The matrices west0381, gemat11, bcsstk32, and bcsstk30 were obtained from
the Rutherford–Boeing collection [14, 15]; the matrix memplus from the Matrix Mar-
ket [8]; and dfl001 and cre b (part of the Netlib LP collection [20]), nug30, onetone2,
lhr34, and finan512 from the University of Florida collection [13]; hyp 200 2 1 is a
matrix generated by the MLIB package [7] representing a five-point Laplacian operator
on a 200 × 200 grid with periodic boundaries. The matrix tbdmatlab is a term-by-
document matrix used for testing our web-search application [45]; it represents the
5979 English-language documents in HTML format of the Matlab 5.3 CD-ROM, con-
taining 48,959 distinct terms, of which 19,859 are used as keywords (the other terms
are stopwords). The nonzeros represent scaled term frequencies in the documents.
The matrix tbdlinux is a term-by-document matrix describing the documentation of
the SuSE Linux 7.1 operating system. The matrix cage10 [44] is a stochastic matrix
describing transition probabilities in the cage model of a DNA polymer of length 10
moving in a gel under the influence of an electric field.

5.3. Communication Volume. The total communication volume is perhaps the
most important metric for expressing communication cost. Reducing the communi-

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 85

Table 5.4 Communication volume of p-way partitioning for rectangular test matrices. The lowest
volume is marked in boldface.

Name p 1D 1D 2D 2D 2D
row col alt alt best

row col dir

dfl001 2 1514 684 1513 695 714
4 3096 1498 2170 2209 1484
8 4693 2544 3941 3185 2550
16 6122 3714 4883 4924 3713
32 7536 4930 6521 5905 4925
64 9140 6241 7587 7645 6224

cre b 2 20377 755 20196 749 747
4 35977 1872 22897 16490 1872
8 47936 3199 35803 18227 3195
16 60360 4708 37028 34440 4698
32 71779 6600 51406 36755 6564
64 84497 9240 54862 53586 9214

tbdmatlab 2 5033 6485 5034 6486 5029
4 14456 15181 11295 11384 10857
8 30610 26835 20775 19872 17774
16 58132 42140 29571 29370 28041
32 99413 62102 45525 40611 39381
64 152132 93418 56458 56819 52467

nug30 2 191273 26417 191261 26439 26435
4 287279 56370 212991 185711 55924
8 334237 88525 304462 211728 88148
16 357444 126220 328530 320535 126255
32 369188 167702 375729 347621 167448
64 378197 212567 397624 414942 212303

tbdlinux 2 15765 24902 15766 24965 15767
4 43147 54759 40822 40507 30667
8 91951 96568 68012 70202 49096
16 172077 154276 98885 100011 73240
32 299114 228033 145532 140671 105671
64 486484 330466 187112 189442 146771

cation volume is always desirable. Sometimes the volume completely determines the
communication time of a matrix-vector multiplication on a particular computer—for
instance, on a simple Ethernet-based PC cluster where communication is serialized.
Table 5.4 presents the total communication volume for the partitioning of the rectan-
gular test matrices using the Mondriaan program with five different direction-choosing
strategies: a 1D strategy that always chooses to partition in the row direction; a
strategy that always chooses the column direction; a strategy that alternates between
the two directions, but starts with the row direction; an alternating strategy that
starts with the column direction; the best-direction strategy that tries both direc-
tions and chooses the best. The number of processors ranges between 2 and 64; the
computational load imbalance specified is ε = 0.03, which is the value used in the
experiments reported in [10, 11, 12]. Each result in the table represents the average
over 100 runs of the Mondriaan program (each run with a different random number
seed). The results have been rounded to the nearest integer. The maximum standard
deviation obtained for the results of the matrix dfl001 is 21%; for the other four ma-
trices, it is 10%, 2.4%, 3.7%, and 2.2%, respectively. Often, the standard deviation is
smaller.

86 BRENDAN VASTENHOUW AND ROB H. BISSELING

Table 5.5 Communication volume of p-way partitioning for square test matrices. The lowest volume
for the first five strategies is marked in boldface.

Name p 1D 1D 2D 2D 2D 2D eq
row col alt alt best best

row col dir dir

west0381 2 50 56 50 56 50 185
4 179 255 194 220 177 371
8 417 510 456 488 409 606
16 792 864 772 753 692 907
32 (1213) (1317) 1207 1228 1124 1404
64 1675 1644 (1471) (1830)

gemat11 2 92 58 92 58 58 1255
4 185 180 268 147 134 2310
8 335 388 421 329 286 3592
16 520 631 668 558 474 4646
32 838 1066 1020 977 814 5657
64 1869 2376 2010 1891 1657 6861

memplus 2 2755 2543 2741 2543 2541 2539
4 4910 4710 5210 5132 4561 4562
8 6566 6450 7112 7143 6183 6220
16 8312 8155 8928 8845 7886 7886
32 9864 9721 10536 10443 9255 9262
64 11787 11629 12391 12313 11075 11058

onetone2 2 524 1079 513 1082 534 940
4 1698 2103 1750 1933 1626 2661
8 2545 3090 2621 2854 2518 4338
16 3364 4224 3625 3741 3319 5630
32 4594 5888 4922 5288 4522 7853
64 6563 8726 7349 7331 6455 10866

lhr34 2 402 1364 394 1331 376 64
4 1562 2338 1884 1968 1470 6457
8 2476 3127 3024 3424 2337 14091
16 3945 6240 6171 6298 4183 21635
32 6455 11801 (11367) 11677 (6724) 29202
64 (10241) 15421 15501 (15016) (9916) 37535

The main conclusion that can be drawn from Table 5.4 is that the best-direction
strategy is the best in the majority of cases (25 out of 30 problem instances, i.e.,
matrix/p combinations). In the remaining cases, it is very close to the optimum. For
the term-by-document matrices, the best-direction strategy is much better than the
best of the purely 1D strategies, for instance, gaining a factor of 2.25 for tbdlinux/64.
The alternating-direction strategies also gain, but not as much. For the LP matrices,
the best-direction strategy is about as good as the best of the purely 1D strategies.
Here, the alternating-direction strategies perform less well; they sometimes force par-
titioning in unfavorable directions, so that their volume lies between the volumes
of the two 1D strategies. Based on this comparison and others, we have made the
best-direction strategy the default of our program.

Table 5.5 presents the total communication volume for the partitioning of the
square test matrices using the Mondriaan program with six different strategies, namely,
the five strategies shown in Table 5.4, each followed by unconstrained vector partition-
ing, and the best-direction strategy with dummy addition followed by vector partition-
ing with the constraint distr(u) = distr(v). (We found dummy addition almost always
to be advantageous.) In a few cases, our program was unable to achieve the specified

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 87

load balance. If this happened in one or more runs for a particular problem instance,
but the average imbalance over all the runs was still within the specified value, the
result is shown parenthesized in the table. For the smallest matrix, west0381, the
average imbalance is above the specified value for the 1D strategies with p = 64.
Therefore, we have omitted these results. (This is a hard problem instance, since
each processor should obtain 33.7 nonzeros on average, and 34 nonzeros at most.) For
the largest matrix, lhr34, we have included some results (between brackets) with an
average imbalance slightly above the threshold of 3%; for these results, the average
was within 3.1% and the excess imbalance was due to a single run (out of a hundred)
with a higher imbalance than allowed. The maximum standard deviation obtained
for the five matrices is 10%, 18%, 3.4%, 25%, 33%, respectively. The exceptionally
high maxima for the matrices onetone2 and lhr34 are due to the case p = 2; for
p ≥ 4, the maxima are 12% and 14%, respectively.

The results from Table 5.5 show that the best-direction strategy is the best of the
first five strategies, winning in 27 out of 30 instances. Compared to the rectangular
case, the gains are only modest: the largest gain percentage compared to the best 1D
strategy is 26% for gemat11/4. Imposing the constraint on the vector distribution
causes much extra communication, except for the matrix memplus, which has only
nonzeros on the diagonal (see Table 5.2), and hence no extra communication. For
this matrix, the last two columns of Table 5.5 represent the same strategy.

Table 5.6 presents the total communication volume for the partitioning of the
symmetric test matrices using the Mondriaan program with four different partitioning
strategies, including the symmetric strategy based on partitioning the lower triangu-
lar part of the input matrix. We present results for the 1D row-direction strategy,
but we omit the results for the column-direction strategy, because these are almost
the same for symmetric matrices. For the same reason, we only present results for
the alternating strategy that starts in the row direction. For all strategies, the matrix
partitioning is followed by a constrained vector partitioning. All diagonal elements of
the symmetric matrices are already nonzero, so that no dummies need to be added
during the matrix partitioning and the communication volume does not increase dur-
ing the vector partitioning; cf. (4.1). The maximum standard deviation obtained for
the five matrices is 4.8%, 6.8%, 28%, 17%, and 21%, respectively.

The results of Table 5.6 show that, similar to the rectangular and square case, the
best-direction strategy performs best. Exploitation of symmetry is advantageous for
the two stochastic matrices, cage10 and finan512. The gain can be up to a factor of 3,
for finan512/2. (For p = 2, symmetric partitioning turns an essentially 1D strategy
into a 2D strategy, which is beneficial here.) For the other three matrices, which
represent computational grids, symmetry cannot explicitly be used to our advantage.
The two finite-element matrices, bcsstk30 and bcsstk32, display gains in the range
5–13% for the best-direction strategy compared to the 1D strategy, for p ≥ 4. This
indicates that even in applications where 1D methods work very well, modest gains
can be obtained by using our 2D method.

5.4. Communication Balance. On many advanced architectures such as PC
clusters with sophisticated communication switches and massively parallel computers,
it is important to balance the communication, which is precisely the aim of our vector
partitioning algorithm. A useful metric for expressing the communication balance
obtained is the normalized communication time T̂ , defined as follows. Let T (s) =
max(Ns(s), Nr(s)) be the communication time (in units of one data word sent or
received) for processor s, where we assume that a processor can send and receive

88 BRENDAN VASTENHOUW AND ROB H. BISSELING

Table 5.6 Communication volume of p-way partitioning for symmetric test matrices. The constraint
distr(u) = distr(v) has been imposed for all strategies; the volumes for the corresponding
strategies without this constraint are the same. The lowest volume is marked in boldface.

Name p 1D eq 2D eq 2D eq 2D eq
row alt best best

row dir dir
lower

cage10 2 2342 2336 2329 2021
4 5427 5131 5065 4416
8 8849 8201 7937 6980
16 12785 11496 11296 9660
32 17393 15221 14880 13214
64 23346 19701 19272 17679

hyp 200 2 1 2 800 800 800 800
4 1534 1542 1526 1598
8 2124 2094 2056 2401
16 2848 2835 2796 3246
32 3778 3808 3739 4730
64 5271 5251 5116 6581

finan512 2 292 293 292 100
4 811 909 705 416
8 1587 1609 1258 679
16 2115 2268 1861 1246
32 2712 3296 2373 1814
64 9483 10038 9309 10326

bcsstk32 2 1259 1263 1259 1598
4 2915 2926 2581 2995
8 5373 5581 4915 5853
16 8713 9145 8254 9906
32 13606 14058 12951 15082
64 20560 21131 19410 22534

bcsstk30 2 946 946 929 689
4 1991 2116 1891 3483
8 4881 4987 4350 5584
16 9340 9370 8639 10247
32 15855 15791 14436 16293
64 26872 25395 23464 25912

simultaneously. Let T 1(s) be the communication time for processor s in phase 1
and T 3(s) the time in phase 3. Then T = max0≤s<p T

1(s) + max0≤s<p T
3(s) is the

total communication time of the matrix-vector multiplication, where we assume that
the communication time of a phase is determined by the busiest processor. The
normalized communication time is then T̂ = Tp/V , i.e., the ratio between the time
T and the time V/p for perfectly balanced communication. It holds that 1 ≤ T̂ ≤ p.

Table 5.7 shows the normalized communication time for the test matrices par-
titioned using the best-direction strategy. As before, the results are averages over
100 runs of our partitioning program. For p = 2, near-perfect balance (T̂ ≈ 1) is
achieved for all rectangular matrices, due to the preference we give to sending data
in the least busy direction when λi = 2 or µj = 2. For most matrices, the commu-
nication is reasonably well balanced, with T̂ = 3.45 in the worst case memplus/64.
For the term-by-document matrices, the decrease in communication volume obtained
by the 2D strategy is somewhat counteracted by the deteriorating communication
balance, but the overall time saving is still significant. For example, tbdlinux/64
has T̂ = 1.86 and hence T = 9590 with the 1D column-direction strategy, but only

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 89

Table 5.7 Normalized communication time of p-way partitioning for the 2D best-direction strategy.
The constraint distr(u) = distr(v) has been imposed for the square matrices (second
group) and the symmetric matrices (third group). Dummies have been added for the
square matrices.

Name p = 2 4 8 16 32 64

dfl001 1.00 1.12 1.08 1.14 1.39 1.52
cre b 1.00 1.05 1.18 1.44 1.66 1.91
tbdmatlab 1.00 1.80 2.12 2.08 2.12 2.14
nug30 1.00 1.01 1.26 1.55 1.71 1.90
tbdlinux 1.00 1.71 2.31 2.61 2.89 3.06
west0381 1.22 1.46 1.52 1.65 1.70 (2.03)
gemat11 1.08 1.72 1.84 1.85 1.94 1.96
memplus 1.46 2.14 2.51 3.09 3.26 3.45
onetone2 1.08 1.44 1.66 1.89 2.13 2.92
lhr34 1.00 1.89 1.86 1.94 2.10 2.20
cage10 1.03 1.26 1.57 1.73 1.93 2.15
hyp 200 2 1 1.00 1.28 1.49 1.70 1.91 2.04
finan512 1.00 1.47 1.95 2.26 2.31 2.33
bcsstk32 1.07 1.60 2.06 2.44 2.54 2.72
bcsstk30 1.03 1.62 2.16 2.24 2.37 2.52

T = 7024 for the 2D best-direction strategy. One reason for the better balance of
the 1D method is that only one large phase must be balanced, instead of two smaller
phases.

Rectangular matrices provide the best opportunities for communication balanc-
ing, because the input and output vectors can be partitioned independently. Square
matrices with a completely nonzero diagonal, such as memplus and all the symmet-
ric matrices, do not provide any opportunity for balancing, because the constraint
distr(u) = distr(v) forces vj and uj to be assigned to the same processor as the di-
agonal element ajj ; see section 4. This has the advantage of avoiding an increase in
communication volume by the constraint, but it leaves no choice during the vector
partitioning. Thus the vectors are distributed in the same way as the matrix diagonal,
as in previous methods [6, 7, 10, 11, 12, 25, 31]. For square matrices with zeros on the
diagonal, we have some opportunities for balancing: if the intersection between the
owners of row and column j is empty, we can choose one of the owners in the union
of the two sets, trying to optimize the communication balance.

5.5. Comparison. To check the quality of our implementation, and in particular
that of the splitting function h, we compare several results to previously published
ones. The matrix dfl001 was used for testing in [24]. The best result, for a 1D column
partitioning with the ML–FM method, was a volume of 5875 for p = 8; for the same
strategy, our result is 2544. The maximum volume per processor (data words sent or
received) is 1022; our result is 674. Note, however, that for a fair comparison, time
should also be taken into account: our computation took about 4 seconds on a 500
MHz Sun Blade workstation, whereas the partitioning in [24] took 2 seconds on a
PC with a 300 MHz Pentium II processor. (Spending more time can help improve
solution quality.) The results for memplus are: total volume 6333 for ML–FM in [24],
and 6566 for our 1D row method; the maximum volume is 1339 and 2427, respectively.

The matrix hyp 200 2 1 was used for testing in [7], where the corresponding
200× 200 grid was partitioned into “digital circles.” (A digital circle is the set of all
grid points within a certain Manhattan distance from a center point; see [7] for an

90 BRENDAN VASTENHOUW AND ROB H. BISSELING

illustration.) For p = 64, block partitioning of the grid gave a corresponding volume
of 6400; the 1D Mondriaan result is 5271. An approximate digital circle with 625
points has a boundary of 73 neighboring grid points, which would give V = 4672 for
p = 64 if we could fit such circles together. This means that our hypergraph-based
partitioning improves considerably upon the block partitioning and comes close to a
lower bound for partitioning into digital circles.

The square matrices gemat11, onetone2, lhr34, finan512, bcsstk32, and
bcsstk30 were used for testing in [10]. We can compare, for instance, gemat11
with [10, Table 3]. For our 1D row partitioning with dummies and with distr(u) =
distr(v), we obtain for p = 8, 16, 32, 64 scaled volumes of 0.73, 0.94, 1.15, and 1.45,
respectively, which is close to the values 0.75, 0.96, 1.15, and 1.32 of PaToH-HCM,
and 0.79, 1.00, 1.18, and 1.33 of hMetis. (The scaled communication volume of a
partitioned matrix equals V/n; see [10, Table 3].) We may conclude that our bipar-
titioning implementation is similar in quality to that of the other hypergraph-based
partitioners and that this is a good basis for our 2D partitioner.

5.6. Timings of Parallel SparseMatrix-VectorMultiplication. To check whether
a reduction in communication volume achieved by using a 2D distribution actually
leads to a reduction in execution time compared to a 1D distribution, we have im-
plemented the four-phase parallel sparse matrix-vector multiplication algorithm from
section 1 and have run it on a 32-processor subsystem of the 1024-processor Silicon
Graphics Origin 3800 parallel computer located at SARA in Amsterdam. Each pro-
cessor of this machine has a MIPS RS14000 CPU with a clock rate of 500 MHz and
a theoretical peak performance of 1 Gflop/s, a primary data cache of 32 Kbyte, a
secondary cache of 8 Mbyte, and a memory of 1 Gbyte.

As test matrices, we choose the two term-by-document matrices, tbdmatlab and
tbdlinux, because these rectangular matrices display the largest reduction in com-
munication volume, and the largest finite-element matrix, bcsstk30, because this
symmetric matrix displays only a modest reduction. The contrast between these
two types of matrices should give us insight into the trade-off between 1D and 2D
distributions. For bcsstk30, we impose distr(u) = distr(v).

Our program is a highly optimized implementation of the four-phase algorithm.
The data structure used to store the sparse matrix is CRS. All overhead has been re-
moved by preprocessing, so that only the numerical values of vector components vj and
contributions uis are sent during the multiplication, but no indexing or other tagging
information. The program has been optimized to take advantage of a 1D distribution
by removing two phases and hence an unnecessary global synchronization in the 1D
case. The communication is performed using a one-sided put primitive, which is very
efficient. All data destined for the same processor are combined into one message. The
program has been written in the programming language C and the communication in-
terface BSPlib [29], and it has been run using version 1.4 of the Oxford BSP toolset [28]
implementation of BSPlib. We compiled our program using the standard SGI ANSI
C-compiler with optimization flags -O2 for computation and -flibrary-level 2
bspfifo 500000 -fcombine-puts -fcombine-puts-buffer 256K,128M,4K for com-
munication.

We performed experiments for one 1D row, 1D column, and 2D partitioning of
each problem instance. The measured execution times are given in Table 5.8. The
specific partitioning used was obtained by running Mondriaan with the default random
number seed. For reference, the resulting communication volumes are also given in
Table 5.8; they differ somewhat from the corresponding averages over 100 runs given

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 91

Table 5.8 Communication volume (in data words) and time (in ms) of parallel sparse matrix-
vector multiplication on an SGI Origin 3800. The lowest volume and time are marked
in boldface.

Name p Volume Time
1D row 1D col 2D 1D row 1D col 2D

tbdmatlab 1 0 0 0 5.74 5.71 5.77
2 5056 6438 5056 3.28 3.31 3.20
4 14650 14949 11005 2.08 2.06 1.95
8 30982 26804 17792 1.62 1.40 1.34
16 56923 42291 27735 1.34 1.19 1.17
32 98791 62410 40497 1.77 1.58 1.70

tbdlinux 1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 14.06 12.22 12.14
8 90919 96038 49120 6.49 6.35 6.62
16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23

bcsstk30 1 0 0 0 50.99 50.96 56.18
2 948 948 940 28.37 28.24 26.04
4 2099 2099 2124 6.00 6.03 5.83
8 5019 5019 4120 2.87 2.90 2.88
16 9344 9344 8491 1.53 1.56 1.64
32 15593 15593 14771 1.08 1.12 1.17

in Tables 5.4 and 5.6. The execution time of a matrix-vector multiplication has been
obtained by averaging over 100 multiplications, performed as iterations in the main
loop of the program. Each such experiment was carried out three times, and the
smallest timing value was taken as the result, since this value presumably was least
influenced by interference from other activities on the parallel computer. (The system
guarantees exclusive access to the CPUs involved, but in standard operating mode it
cannot guarantee exclusive access to all machine resources.)

The timings given in Table 5.8 for the term-by-document matrices show that
the 2D method performs best in most cases. For small p, the computation time is
dominant and the savings in communication time for a 2D method are relatively
small compared to the total time. Furthermore, the difference in volume between
the best 1D method and the 2D method is small (for p = 2, there is no difference).
For larger p, communication time becomes more important and the savings become
larger. Note, for instance, the savings of over 21% in total time for tbdlinux/32,
leading to a speedup of 21 compared to the best p = 1 time, which is close to the time
of an overhead-free sequential program. Table 5.8 reveals superlinear speedups, e.g.,
5.6 for tbdlinux/4. This must be due to beneficial cache effects. For tbdmatlab/32,
execution time starts to increase, due to the increase in communication time per data
word and the global synchronization time as a function of p. We measured the time of
an isolated global synchronization as 0.05 ms for p = 16 and 0.14 ms for p = 32. If we
include message startup costs for an all-to-all communication pattern, these values
become 0.33 ms for p = 16 and 1.01 ms for p = 32. For large p, the reduction in
communication volume obtained for tbdmatlab does not compensate for the extra
synchronization time needed in the 2D case. The extra time is independent of the
problem size, and therefore it is less important for the larger problem tbdlinux/32.

The timings given in Table 5.8 for the finite-element matrix bcsstk30 do not
show an advantage for the 2D method. The average saving in communication volume

92 BRENDAN VASTENHOUW AND ROB H. BISSELING

as given by Table 5.6 is small, and for the particular partitioning given by Table 5.8
significant savings only occur for p ≥ 8. For these values of p, however, the extra
synchronization time is larger than the savings in communication time.

6. Conclusions and Future Work. In this work, we have presented a new 2D
method for distributing the data for sparse matrix-vector multiplication. The method
has the desirable characteristics stated in section 1: it tries to spread the matrix
nonzeros evenly over the processors; it tries to minimize the true communication
volume; it tries to spread the communication evenly; and it is 2D. The experimental
results of our implementation, Mondriaan, show that for many matrices this indeed
leads to lower communication cost than for a comparable 1D implementation such
as Mondriaan in 1D mode. For term-by-document matrices, the gain of the new
method is large; for most other test matrices, it is small but noticeable. Somewhat
surprisingly, even for finite-element matrices the new method displays a gain.

Our algorithms minimize two metrics, namely, total communication volume and
maximum amount of communication per processor. We make no attempt to reduce
the number of messages: in the worst case, 2(p − 1)p messages are sent by all the
processors together, in case each processor communicates with all the others in both
communication phases of the matrix-vector multiplication. We consider this number
less important because it does not grow with the problem size. The best variant of
our algorithm uses the strategy of trying both splitting directions and then choosing
the best. This has the advantage that the strategy adapts itself automatically to the
matrix, without requiring any prior knowledge.

The main motivation for using 2D partitioning methods is an expected reduction
in communication volume, which in turn should lead to performance gains in the
actual parallel sparse matrix-vector multiplication, especially for large matrices. We
have observed such gains for term-by-document matrices. One-dimensional methods,
however, also have their advantages. For instance, rowwise partitioning halves the
upper bound on the number of messages since phase 3 can be skipped. This may
be particularly important for small matrices and for parallel computers with high
startup costs for sending messages. For very sparse matrices with only a few nonzeros
per row, 1D partitioning may lead to a lower communication volume. (In principle,
the 2D best-direction strategy should detect this automatically and produce a 1D
distribution, but this may not always happen.) Furthermore, in the 1D case no
redundant additions are performed, because phase 4 can be skipped. The length of
the average local row will be larger, since rows are kept complete. This may reduce
data-structure overhead in phase 2 and hence improve the computing speed. (A good
2D partitioner tries to keep rows complete as well, and our program Mondriaan often
succeeds in this.) One-dimensional methods respect the connection between a matrix
row and a variable (i.e., a vector component), allowing us to store all related data
together on one processor. This may be important in particular applications, e.g.,
in certain finite-element computations. Two-dimensional methods, however, break
this connection, since they may spread the matrix elements of a row over several
processors. This requires explicit assembly of the matrix and perhaps even the use of
a different data structure in the iterative solver part of an application. The trade-off
between these concerns depends, of course, on the specific problem at hand. Overall,
we expect that for large problems the gains in communication performance obtained
by using 2D partitioning are well worthwhile.

To achieve our goals, we had to generalize the Cartesian matrix distribution
scheme to a matrix partitioning into rectangular, possibly scattered submatrices,

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 93

which we call, in a lighter vein, the Mondriaan distribution. This scheme is not
as simple as the Cartesian scheme, which includes most commonly used partitioning
methods. In the Cartesian scheme, we can view a matrix distribution as the result of
permuting the original matrix A into a matrix PAQ, splitting its rows into consecu-
tive blocks, splitting its columns into consecutive blocks, and assigning each resulting
submatrix to a processor. This view does not apply anymore. Still, the matrix part
of a processor is defined by a set of rows I and columns J , and its set of index pairs
is a Cartesian product I × J . We can fit all the submatrices into a nice figure that
bears some resemblance to a Mondriaan painting.

Much future work remains to be done. First, we have made several design de-
cisions concerning the heuristics in our algorithm. Further investigation of all the
possibilities may yield even better heuristics. Second, we have presented a general-
ized algorithm which can handle all values of p, but we have implemented it only for
powers of 2; the Mondriaan program should be adapted to the general case. Third,
we have presented the general distribution method, but have not investigated special
situations such as square symmetric matrices in depth. Further theoretical and ex-
perimental work in this area is important for many iterative solvers. Fourth, parallel
implementations of iterative solvers such as those in the Templates projects [1, 2]
should be developed that can handle every possible matrix and vector distribution.
For this purpose, an object-oriented iterative linear system solver package called Par-
allel Templates, running on top of MPI-1 or BSPlib, has already been developed by
Koster [34]. Fifth, the partitioning itself should be done in parallel to enable solving
very large problems that do not fit in the memory of one processor. Preferably, the
result of the parallel partitioning method should be of the same quality as that of the
corresponding sequential method. Since quality may be more important than speed,
a distributed algorithm that more or less simulates the sequential partitioning algo-
rithm could be the best approach. The recursive nature of the partitioning process
may be helpful, as this already has some natural parallelism.

Acknowledgments. We are grateful to the anonymous referees for their com-
ments, which greatly helped to improve this paper. We thank the Dutch national
computing facilities foundation NCF and the SARA computing center in Amsterdam
for providing access to an SGI Origin 3800.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on mul-
tiprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570–580.

[4] M. W. Berry, Z. Drmač, and E. R. Jessup, Matrices, vector spaces, and information re-
trieval, SIAM Rev., 41 (1999), pp. 335–362.

[5] M. L. Bilderback, Improving unstructured grid application execution times by balancing the
edge-cuts among partitions, in Proceedings of the 9th SIAM Conference on Parallel Pro-
cessing for Scientific Computing, CD-ROM, SIAM, Philadelphia, 1999.

[6] R. H. Bisseling, Parallel iterative solution of sparse linear systems on a transputer network,
in Parallel Computation, A. E. Fincham and B. Ford, eds., Inst. Math. Appl. Conf. Ser.
New Ser. 46, Oxford University Press, Oxford, UK, 1993, pp. 253–271.

[7] R. H. Bisseling and W. F. McColl, Scientific computing on bulk synchronous parallel archi-
tectures, in Technology and Foundations: Information Processing ’94, Vol. I, B. Pehrson
and I. Simon, eds., IFIP Trans. A 51, Elsevier, Amsterdam, 1994, pp. 509–514.

94 BRENDAN VASTENHOUW AND ROB H. BISSELING

[8] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, Matrix
Market: A web resource for test matrix collections, in The Quality of Numerical Software:
Assessment and Enhancement, R. F. Boisvert, ed., Chapman and Hall, London, 1997,
pp. 125–137.

[9] T. N. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, in
Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Computing,
SIAM, Philadelphia, 1993, pp. 445–452.

[10] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for paral-
lel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Systems, 10 (1999),
pp. 673–693.

[11] Ü. V. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2D decomposition of
sparse matrices, in Proceedings of the 8th International Workshop on Solving Irregularly
Structured Problems in Parallel, IEEE, Los Alamitos, CA, 2001, p. 118.

[12] Ü. V. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain
decomposition, in Proceedings of Supercomputing 2001, ACM, New York, 2001, p. 42.

[13] T. A. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/
research/sparse/matrices, 1994–2003.

[14] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[15] I. S. Duff, R. G. Grimes, and J. G. Lewis, The Rutherford–Boeing Sparse Matrix Collection,
Technical Report TR/PA/97/36, CERFACS, Toulouse, France, 1997.

[16] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network par-
titions, in Proceedings of the 19th Design Automation Conference, IEEE, Los Alamitos,
CA, 1982, pp. 175–181.

[17] R. Fletcher, Conjugate gradient methods for indefinite systems, in Proceedings of the Dundee
Biennial Conference on Numerical Analysis, G. A. Watson, ed., Lecture Notes in Math. 506,
Springer-Verlag, Berlin, 1976, pp. 73–89.

[18] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,
Solving Problems on Concurrent Processors: Vol. I, General Techniques and Regular Prob-
lems, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[19] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[20] D. M. Gay, Electronic mail distribution of linear programming test problems, MPS COAL
Newsletter, 13 (Dec. 1985), pp. 10–12.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[22] B. Hendrickson, Graph partitioning and parallel solvers: Has the emperor no clothes?, in
Proceedings of the 5th International Workshop on Solving Irregularly Structured Problems
in Parallel, A. Ferreira, J. Rolim, H. Simon, and S.-H. Teng, eds., Lecture Notes in Comput.
Sci. 1457, Springer-Verlag, Berlin, 1998, pp. 218–225.

[23] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Comput., 26 (2000), pp. 1519–1534.

[24] B. Hendrickson and T. G. Kolda, Partitioning rectangular and structurally unsymmetric
sparse matrices for parallel processing, SIAM J. Sci. Comput., 21 (2000), pp. 2048–2072.

[25] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proceedings
of Supercomputing 1995, ACM, New York, 1995.

[26] B. Hendrickson, R. Leland, and S. Plimpton, An efficient parallel algorithm for matrix-
vector multiplication, Internat. J. High Speed Comput., 7 (1995), pp. 73–88.

[27] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–436.

[28] J. M. D. Hill, S. R. Donaldson, and A. McEwan, Installation and User Guide for the
Oxford BSP Toolset (v1.4) Implementation of BSPlib, Technical Report, Oxford University
Computing Laboratory, Oxford, UK, 1998.

[29] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,

T. Suel, T. Tsantilas, and R. H. Bisseling, BSPlib: The BSP programming library,
Parallel Comput., 24 (1998), pp. 1947–1980.

[30] Y. F. Hu, K. C. F. Maguire, and R. J. Blake, A multilevel unsymmetric matrix ordering
algorithm for parallel process simulation, Comput. Chem. Engrg, 23 (2000), pp. 1631–1647.

[31] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[32] G. Karypis and V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs,
SIAM Rev., 41 (1999), pp. 278–300.

2D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 95

[33] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
System Tech. J., 49 (1970), pp. 291–307.

[34] J. H. H. Koster, Parallel Templates for Numerical Linear Algebra: A High-Performance
Computation Library, Master’s thesis, Mathematical Institute, Utrecht University, Utrecht,
The Netherlands, 2002.

[35] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, New York, 1990.
[36] J. G. Lewis and R. A. van de Geijn, Distributed memory matrix-vector multiplication and

conjugate gradient algorithms, in Proceedings of Supercomputing 1993, ACM, New York,
1993, pp. 484–492.

[37] A. T. Ogielski and W. Aiello, Sparse matrix computations on parallel processor arrays,
SIAM J. Sci. Comput., 14 (1993), pp. 519–530.

[38] A. Pinar and C. Aykanat, An effective model to decompose linear programs for parallel solu-
tion, in Proceedings of PARA ’96, J. Waśniewski, J. Dongarra, K. Madsen, and D. Olesen,
eds., Lecture Notes in Comput. Sci. 1184, Springer-Verlag, Berlin, 1997, pp. 592–601.

[39] A. Pinar and C. Aykanat, Sparse matrix decomposition with optimal load balancing, in Pro-
ceedings of the International Conference on High Performance Computing, IEEE, 1997,
pp. 224–229.

[40] A. Pinar, Ü. V. Çatalyürek, C. Aykanat, and M. Pinar, Decomposing linear programs for
parallel solution, in Proceedings of PARA ’95, J. Dongarra, K. Madsen, and J. Waśniewski,
eds., Lecture Notes in Comput. Sci. 1041, Springer-Verlag, Berlin, 1996, pp. 473–482.

[41] L. F. Romero and E. L. Zapata, Data distributions for sparse matrix vector multiplication,
Parallel Comput., 21 (1995), pp. 583–605.

[42] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[43] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[44] A. van Heukelum, G. T. Barkema, and R. H. Bisseling, DNA electrophoresis studied with
the cage model, J. Comput. Phys., 180 (2002), pp. 313–326.

[45] B. Vastenhouw, A Parallel Web Search Engine Based on Latent Semantic Indexing, Master’s
thesis, Mathematical Institute, Utrecht University, Utrecht, The Netherlands, 2001.

[46] C. Walshaw and M. Cross, Multilevel mesh partitioning for heterogeneous communication
networks, Fut. Gen. Comput. Syst., 17 (2001), pp. 601–623.

