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Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

I Hodel: Well, somebody has to arrange the matches.
Young people can’t decide these things themselves.

I Hodel: For Papa, make him a scholar.

I Chava: For Mama, make him rich as a king.



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

4

Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012
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Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices.
I It has applications in

• medicine: finding suitable donors for organs
• social networks: finding partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening: making the graph smaller by merging

similar vertices before partitioning it for parallel
computations

• bioinformatics: finding similarity in Protein-Protein
Interaction networks
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Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time.

I Time for weighted matching in graph G = (V ,E ) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is a billion vertices, n = 109, with 100 edges per
vertex, i.e. m = 1011.

I Thus, a time of O(1020) = 100, 000 Petaflop units is far
too long. Fastest supercomputer today, the Tianhe-2,
performs 33.8 Petaflop/s.

I We need linear-time greedy or approximation algorithms.
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Formal definition of graph matching

I A graph is a pair G = (V ,E ) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).
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Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.
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Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.
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Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.
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Sequential greedy matching

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v ,

greedy random matching
• the neighbour w with maximum ω(v ,w),

greedy weighted matching

I Or: we sort all the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w).
This is commonly called greedy matching.
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Greedy matching is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

I Time complexity is O(m log m), because all edges must be
sorted.
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Parallel greedy matching: trouble
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Suppose we match vertices simultaneously.
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Two vertices each find an unmatched neighbour. . .
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. . . but generate an invalid matching.
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Parallelisable dominant-edge algorithm

while E 6= ∅ do
pick a dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}
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Sequential approximation algorithm: initialisation

function SeqMatching(V ,E )
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}
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Mutual preferences
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Non-mutual preferences
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Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}

{ Set new preference }
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

20

Properties of the dominant-edge algorithm

I Dominant-edge algorithm is a 1/2-approximation:

ω(M) ≥ ωoptimal/2

I Dominant edge means mutual preference:

v = pref (w) and w = pref (v).

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, use vertex numbering to break ties.
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Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.
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Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I This is a p-way partitioning of the vertex set.



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

23

Halo vertices

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .
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Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
SetNewPreference(v ,Adjv , pref ,Vs ,Ds ,Ms , φ)

Sync
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Setting a vertex preference

function SetNewPreference(v ,Adj ,V ,D,M, φ)
pref (v) := argmax{ω(v ,w) : w ∈ Adj}
if pref (v) ∈ V then

if pref (pref (v)) = v then
D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))
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How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w
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Parallel algorithm for P(s): main loop

while Ds 6= ∅ do
pick v ∈ Ds

Ds := Ds \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

else {x ∈ Hs}
put unavailable(v , x) in P(φ(x))

Sync
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Parallel algorithm for P(s): communication

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

if m = unavailable(v , x) then
if (x , pref (x)) /∈ Ms then

Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

29

Termination

I The algorithm alternates supersteps of computation
running the main loop and communication handling the
received messages.

I The whole algorithm terminates when no messages have
been received by processor P(s) and the local set Ds is
empty, for all s.

I This can be checked at every synchronisation point.
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Load balance

I Processors can have different amounts of work, even if
they have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit
of time needed to ‘handle’ a vertex x (in O(1)).

I Here, ‘handling’ could mean setting a new preference.

I After every k ticks, everybody synchronises.
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Synchronisation frequency

I Guidance for the choice of k is provided by the BSP
parameter l , the cost of a global synchronisation.

I Choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be
busy during most supersteps.

I Good choice: k = 2l?
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Sending messages

I The BSP system takes care that messages are sent
automatically, in bulk. A useful BSPlib primitive for doing
this is bsp send.

I In the next superstep, all received messages are read (using
bsp move) and processed.

I Google’s Pregel system (Malewicz 2010) follows this BSP
style.
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MulticoreBSP enables shared-memory BSP

Albert-Jan Yzelman 2014, www.multicorebsp.org
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Matching with MulticoreBSP

I BSP program can remain the same, giving portability.

I To exploit the ease of reading data in shared memory, the
bsp direct get is available in MulticoreBSP.

I This performs the communication immediately and blocks
until the communication has been carried out.

I Possible use: replace the set Ms of matched edges by a
boolean array matched s marking the local matched
vertices.

I This array can be read by all processors using
bsp direct get, to replace the check (x , pref (x)) /∈ Ms .
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GPU matching
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I A different approach, tightly coupled to the GPU
architecture.

I To prevent matching conflicts, we create two groups of
vertices:

• Blue vertices propose.
• Red vertices respond.

I Proposals that were responded to, are matched.
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GPU implementation

I The graph (neighbour ranges, indices, and weights) is
stored as a triplet of 1D textures (read-only arrays).

I We create one thread for each vertex in V .
I Each vertex v ∈ V only updates

• its colour/matching value π(v);
• and its proposal/response value σ(v).

I π(v) = π(w) means (v ,w) ∈ M.

I Both π and σ are stored in 1D arrays in global memory.
and hence are visible to all threads.
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GPU matching
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Quality of the matching
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ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)

Fraction of matched vertices as a function of the number of
iterations. Number of edges between 2 and 47 million.
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Random colouring of the vertices

I At each iteration, we colour the vertices v ∈ V differently.

I For a fixed p ∈ [0, 1]

colour(v) =

{
blue with probability p,
red with probability 1− p.

I How to choose p? Maximise the number of matched
vertices.

I For large random graphs, the expected fraction of matched
vertices can be approximated by

2 (1− p)
(
1− e−

p
1−p

)
.

This is independent of the edge density.
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Choosing the probability p
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Observed
Equation (2)

Following the expectation formula, we should choose
p ≈ 0.53406.
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Experimental results (Fagginger Auer & Bisseling
2012)

I Implementation on the GPU using CUDA, on the CPU
using Intel Threading Building Blocks (TBB).

I We consider both greedy random and greedy weighted
matching.

I Test set: 10th DIMACS challenge on graph partitioning
and University of Florida Sparse Matrix Collection.

I Test hardware: dual quad-core Xeon E5620 and an
NVIDIA Tesla C2050 (the Little Green Machine).
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Results: strong scaling
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thermal2 (3,676,134)
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nlpkkt120 (46,651,696)

cage15 (47,022,346)
ideal scaling

Scaling of Intel TBB implementation
(8 physical cores + hyperthreading).
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Parallel vs. sequential greedy random matching
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Parallel vs. sequential greedy weighted matching
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Parallel weighted vs. sequential greedy matching

 0

 50

 100

 150

 200

 250

101 102 103 104 105 106 107 108

M
at

ch
in

g 
w

ei
gh

t r
el

. t
o 

A
lg

. 2
 (

%
)

Number of graph edges

Matching weight for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

 0

 5

 10

 15

 20

 25

 30

 35

 40

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o 

A
lg

. 2

Number of graph edges

Speedup for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

Matching weight and speedup.
Sequential greedy matching is 1/2-approximation.
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Clustering of road network of the Netherlands

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering
(G21)

Graph with 2,216,688 vertices and 2,441,238 edges
yields 506 clusters with modularity 0.995.
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DIMACS challenge February 2012
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Formal definition of a clustering

I A clustering of an undirected graph G = (V ,E ) is a
collection C of disjoint subsets of V satisfying

V =
⋃
C∈C

C .

I Elements C ∈ C are called clusters.

I The number of clusters is not fixed beforehand.

I Extreme cases: a single large cluster, |V | single-vertex
clusters.
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Quality measure for clustering: modularity

I The quality measure modularity was introduced by
Newman and Girvan in 2004 for finding communities.

I Let G = (V ,E , ω) be a weighted undirected graph without
self-edges. We define

ζ(v) =
∑

(u,v)∈E

ω(u, v), Ω =
∑
e∈E

ω(e).

I Then, the modularity of a clustering C of G is defined by

mod(C) =

∑
C∈C

∑
(u,v)∈E

u,v∈C

ω(u, v)

Ω
−

∑
C∈C

( ∑
v∈C

ζ(v)

)2

4Ω2
.

I −1
2 ≤ mod(C) ≤ 1.
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Merging clusters: change in modularity

I The weight of a cluster is

ζ(C ) =
∑
v∈C

ζ(v).

I The set of all cut edges between clusters C and C ′ is

cut(C ,C ′) = {{u, v} ∈ E | u ∈ C , v ∈ C ′}

I If we merge clusters C and C ′ from C into one cluster
C ∪ C ′, then the modularity of the new clustering C′ is

mod(C′) = mod(C)+ 1

4 Ω2

(
4 Ω ω(cut(C ,C ′))−2 ζ(C ) ζ(C ′)

)
,

and ζ(C ∪ C ′) = ζ(C ) + ζ(C ′).
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Agglomerative greedy clustering heuristic

max← −∞
G 0 = (V 0,E 0, ω0, ζ0)
i ← 0
C0 ← {{v} | v ∈ V }
while |V i | > 1 do

if mod(G , C i ) ≥ max then
max← mod(G , C i )
Cbest ← C i

µ← weighted match clusters(G i )
(πi ,G i+1)← coarsen(G i , µ)
C i+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
i ← i + 1

return Cbest



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

52

Parallelisation

I Based on slight adaptations of functions from Thrust, an
open-source template library for developing CUDA
applications (modelled after C++ STL).

I Also, for. . . parallel do constructs indicating a for-loop
where each iteration can be executed in parallel.
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Results: clustering time for DIMACS graphs
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I DIMACS categories: clustering/, coauthor/,
streets/, random/, delaunay/, matrix/, walshaw/,
dyn-frames/, and redistrict/.

I CUDA implementation with the Thrust template library
and Intel TBB implementation.

I Web link graph uk-2002 with 0.26 billion vertices
clustered in 30 s using Intel TBB.
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Results: strong scaling
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I The clustering time as a function of the number of threads.

I Graphs from the category random/ with 215–224 vertices.

I Intel TBB implementation on 2 quad-core 2.4 GHz Intel
Xeon E5620 processors with up to 16 threads by
hyperthreading.
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DIMACS road networks and coauthor graphs

G |V | |E | mod t mod t
CU CU TBB TBB

luxembourg 114,599 119,666 0.99 0.13 0.99 0.14
belgium 1,441,295 1,549,970 0.99 0.44 0.99 1.11
netherlands 2,216,688 2,441,238 0.99 0.62 0.99 1.72
italy 6,686,493 7,013,978 1.00 1.54 1.00 5.26
great-britain 7,733,822 8,156,517 1.00 1.79 1.00 6.00
germany 11,548,845 12,369,181 1.00 2.82 1.00 9.57
asia 11,950,757 12,711,603 1.00 2.69 1.00 9.33
europe 50,912,018 54,054,660 - -.- 1.00 45.21
coAuthorsCite 227,320 814,134 0.84 0.42 0.85 0.23
coAuthorsDBLP 299,067 977,676 0.75 0.59 0.76 0.28
citationCite 268,495 1,156,647 0.64 0.89 0.68 0.32
coPapersDBLP 540,486 15,245,729 0.64 6.43 0.67 2.28
coPapersCite 434,102 16,036,720 0.75 6.49 0.77 2.27

mod = modularity, t = time in s, CU = CUDA
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Sparse matrix partitioning and graph partitioning

I A sparse matrix is the adjacency matrix of a sparse graph:

aij 6= 0⇔ (i , j) ∈ E

I Partitioning the nonzeros of a matrix is the same as
partioning the edges of a graph.

I 2D partitioning splits both rows and columns.

I Partitioning for parallel sparse matrix-vector multiplication
(SpMV) can be used in Google PageRank computation.

I Partitioning for SpMV also gives a good partitioning for
many graph computations.
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Advantage of 2D partitioning

I We can use both dimensions of the matrix to reduce SpMV
communication.

I For a
√

p ×√p block distribution, each matrix row or
column is distributed over at most

√
p processors, instead

of p processors for a 1D distribution.

I Relatively dense rows and columns can be split and do not
cause load imbalance or memory overflow.
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Methods for 2D partitioning

I Existing 2D methods: coarse-grain, fine-grain, Mondriaan.

I New medium-grain method (Pelt & Bisseling 2014) based
on splitting the m × n matrix

A = Ar + Ac ,

putting a nonzero aij into Ar if row i has less nonzeros
than column j , and in Ac otherwise.

I Then partition the (m + n)× (m + n) matrix B by a 1D
column partitioning:

B =

[
In (Ar )T

Ac Im

]
,

where Im is the identity matrix of size m ×m.
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Pajek Graph Drawing contest 1997

I 46 nodes, 132 edges

I Source: University of Florida Sparse Matrix Collection
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Medium-grain method for partitioning

I 47× 47 matrix gd97 b with 264 nonzeros

I Partitioning for 2 processors

I Communication volume = 11, which is optimal



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

61

Communication volume for 2 processors
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I Test set: 2264 Florida matrices, 500 ≤ nz ≤ 5, 000, 000
I LB = localbest (original Mondriaan) = best of 1D row and

1D column partitioning
I FG = fine-grain
I MG = medium-grain
I IR = iterative refinement, to improve the partitioning
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2D (edge-based) parallel matching

SpMV Matching
Name 1D 2D 1D 2D

rw9 (af shell10) 113 105 169 150
rw10 (boneS10) 150 145 228 189
rw11 (Stanford) 340 141 479 234
rw12 (gupta3) 710 44 1,305 61
rw13 (St Berk.) 716 448 1,152 812
rw14 (F1) 139 130 148 139
sw1 (small world) 1,007 417 2,111 303
sw2 1,957 829 3,999 563
sw3 2,017 832 4,255 528
er1 (random) 1,856 1,133 1,788 1,157
er2 3,451 1,841 3,721 1,635
er3 5,476 2,569 6,350 1,990

Communication volume in sparse matrix–vector multiplication
and Karp–Sipser matching.
Source: Patwary, Bisseling, Manne (2010).
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Conclusions
I BSP is extremely suitable for parallel graph computations:

• no worries about communication because we buffer
messages until the next synchronisation;

• no send-receive pairs;
• BSP cost model gives synchronisation frequency;
• correctness proof of algorithm becomes simpler;
• no deadlock possible.

I Matching can be the basis for clustering, as demonstrated
for GPUs and multicore CPUs.

I We clustered Europe’s road network with 51M vertices and
54M edges in 45 seconds on an 8-core CPU.

I Partitioning for sparse matrix-vector multiplication reduces
communication volume for Karp–Sipser matching as well:

1

2
Vol(SpMV) ≤ Vol(Matching) ≤ 3

2
Vol(SpMV).

I Parallel graph algorithms will benefit from
partitioning the edges instead of the vertices.
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It’s all about the connections...

Merci beaucoup!
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Further reading I

Rob H. Bisseling, Bas O. Fagginger Auer, A. N. Yzelman,

Tristan van Leeuwen, and Ümit V. Çatalyürek.
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