
Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

1

Big graphs for big data: parallel matching and
clustering on billion-vertex graphs

Rob H. Bisseling

Mathematical Institute, Utrecht University

Collaborators: Bas Fagginger Auer, Fredrik Manne, Mostofa Patwary,
Daan Pelt, Albert-Jan Yzelman

Workshop AMLaGAP, Orléans, May 19, 2014

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

2

Graph Matching
Introduction
Greedy algorithm
Parallelisable 1/2-approximation algorithm
BSP algorithm
GPU algorithm
Results

Clustering
Introduction
Sequential algorithm
GPU algorithm
Results

2D sparse matrix partitioning

2D (edge-based) matching

Conclusion

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

3

Matchmaker, Matchmaker, Make me a match

From the film Fiddler on the roof

I Hodel: Well, somebody has to arrange the matches.
Young people can’t decide these things themselves.

I Hodel: For Papa, make him a scholar.

I Chava: For Mama, make him rich as a king.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

4

Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

5

Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices.
I It has applications in

• medicine: finding suitable donors for organs
• social networks: finding partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening: making the graph smaller by merging

similar vertices before partitioning it for parallel
computations

• bioinformatics: finding similarity in Protein-Protein
Interaction networks

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

6

Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time.

I Time for weighted matching in graph G = (V ,E) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is a billion vertices, n = 109, with 100 edges per
vertex, i.e. m = 1011.

I Thus, a time of O(1020) = 100, 000 Petaflop units is far
too long. Fastest supercomputer today, the Tianhe-2,
performs 33.8 Petaflop/s.

I We need linear-time greedy or approximation algorithms.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

7

Formal definition of graph matching

I A graph is a pair G = (V ,E) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

8

Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

9

Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

10

Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

11

Sequential greedy matching

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v ,

greedy random matching
• the neighbour w with maximum ω(v ,w),

greedy weighted matching

I Or: we sort all the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w).
This is commonly called greedy matching.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

12

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

13

Greedy matching is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

I Time complexity is O(m log m), because all edges must be
sorted.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Two vertices each find an unmatched neighbour. . .

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

14

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

15

Parallelisable dominant-edge algorithm

while E 6= ∅ do
pick a dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}

9

7

3
2

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

16

Sequential approximation algorithm: initialisation

function SeqMatching(V ,E)
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

17

Mutual preferences

9

7

3
2

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

18

Non-mutual preferences

9

12

7

3

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

19

Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}

{ Set new preference }
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

20

Properties of the dominant-edge algorithm

I Dominant-edge algorithm is a 1/2-approximation:

ω(M) ≥ ωoptimal/2

I Dominant edge means mutual preference:

v = pref (w) and w = pref (v).

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, use vertex numbering to break ties.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

21

Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

22

Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I This is a p-way partitioning of the vertex set.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

23

Halo vertices

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

24

Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
SetNewPreference(v ,Adjv , pref ,Vs ,Ds ,Ms , φ)

Sync

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

25

Setting a vertex preference

function SetNewPreference(v ,Adj ,V ,D,M, φ)
pref (v) := argmax{ω(v ,w) : w ∈ Adj}
if pref (v) ∈ V then

if pref (pref (v)) = v then
D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

26

How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

27

Parallel algorithm for P(s): main loop

while Ds 6= ∅ do
pick v ∈ Ds

Ds := Ds \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

else {x ∈ Hs}
put unavailable(v , x) in P(φ(x))

Sync

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

28

Parallel algorithm for P(s): communication

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

if m = unavailable(v , x) then
if (x , pref (x)) /∈ Ms then

Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

29

Termination

I The algorithm alternates supersteps of computation
running the main loop and communication handling the
received messages.

I The whole algorithm terminates when no messages have
been received by processor P(s) and the local set Ds is
empty, for all s.

I This can be checked at every synchronisation point.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

30

Load balance

I Processors can have different amounts of work, even if
they have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit
of time needed to ‘handle’ a vertex x (in O(1)).

I Here, ‘handling’ could mean setting a new preference.

I After every k ticks, everybody synchronises.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

31

Synchronisation frequency

I Guidance for the choice of k is provided by the BSP
parameter l , the cost of a global synchronisation.

I Choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be
busy during most supersteps.

I Good choice: k = 2l?

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

32

Sending messages

I The BSP system takes care that messages are sent
automatically, in bulk. A useful BSPlib primitive for doing
this is bsp send.

I In the next superstep, all received messages are read (using
bsp move) and processed.

I Google’s Pregel system (Malewicz 2010) follows this BSP
style.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

33

MulticoreBSP enables shared-memory BSP

Albert-Jan Yzelman 2014, www.multicorebsp.org

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

34

Matching with MulticoreBSP

I BSP program can remain the same, giving portability.

I To exploit the ease of reading data in shared memory, the
bsp direct get is available in MulticoreBSP.

I This performs the communication immediately and blocks
until the communication has been carried out.

I Possible use: replace the set Ms of matched edges by a
boolean array matched s marking the local matched
vertices.

I This array can be read by all processors using
bsp direct get, to replace the check (x , pref (x)) /∈ Ms .

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

35

GPU matching

9

8

6
5

7
3

1

4

2

I A different approach, tightly coupled to the GPU
architecture.

I To prevent matching conflicts, we create two groups of
vertices:

• Blue vertices propose.
• Red vertices respond.

I Proposals that were responded to, are matched.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

36

GPU implementation

I The graph (neighbour ranges, indices, and weights) is
stored as a triplet of 1D textures (read-only arrays).

I We create one thread for each vertex in V .
I Each vertex v ∈ V only updates

• its colour/matching value π(v);
• and its proposal/response value σ(v).

I π(v) = π(w) means (v ,w) ∈ M.

I Both π and σ are stored in 1D arrays in global memory.
and hence are visible to all threads.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π - - - - - - - - -
σ - - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ - - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 - - 3 6 - 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 b 5 5 3 2 r
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - 1 - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π 1 2 3 1 5 5 3 2 d
σ 4 - - 1 - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

38

Quality of the matching

 0

 20

 40

 60

 80

 100

 0 5 10 15 20M
at

ch
ed

 v
er

tic
es

/to
ta

l n
r.

 o
f v

er
tic

es
 (

%
)

Number of iterations

Saturation of matching size

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)

Fraction of matched vertices as a function of the number of
iterations. Number of edges between 2 and 47 million.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

39

Random colouring of the vertices

I At each iteration, we colour the vertices v ∈ V differently.

I For a fixed p ∈ [0, 1]

colour(v) =

{
blue with probability p,
red with probability 1− p.

I How to choose p? Maximise the number of matched
vertices.

I For large random graphs, the expected fraction of matched
vertices can be approximated by

2 (1− p)
(
1− e−

p
1−p

)
.

This is independent of the edge density.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

40

Choosing the probability p

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
ax

im
um

 v
al

ue
 (

%
)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Matching weight
Matching size
Matching time

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
at

ch
ed

 v
er

tic
es

 (
%

)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Observed
Equation (2)

Following the expectation formula, we should choose
p ≈ 0.53406.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

41

Experimental results (Fagginger Auer & Bisseling
2012)

I Implementation on the GPU using CUDA, on the CPU
using Intel Threading Building Blocks (TBB).

I We consider both greedy random and greedy weighted
matching.

I Test set: 10th DIMACS challenge on graph partitioning
and University of Florida Sparse Matrix Collection.

I Test hardware: dual quad-core Xeon E5620 and an
NVIDIA Tesla C2050 (the Little Green Machine).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

42

Results: strong scaling

 10

 20

 30

 40

 50

 60
 70
 80
 90

 100

 1 2 4 8 16

R
el

at
iv

e
m

at
ch

in
g

tim
e

(%
)

Number of CPU threads

Matching time scaling

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)
ideal scaling

Scaling of Intel TBB implementation
(8 physical cores + hyperthreading).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

43

Parallel vs. sequential greedy random matching

 80

 85

 90

 95

 100

 105

 110

 115

 120

101 102 103 104 105 106 107 108

M
at

ch
in

g
si

ze
 r

el
. t

o
A

lg
. 1

 (
%

)

Number of graph edges

Matching size for random parallel matching (vs. Alg. 1)

CUDA
TBB

 0

 1

 2

 3

 4

 5

 6

 7

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 1

Number of graph edges

Speedup for random parallel matching (vs. Alg. 1)

CUDA
TBB

Matching size and speedup.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

44

Parallel vs. sequential greedy weighted matching

 0

 50

 100

 150

 200

 250

101 102 103 104 105 106 107 108

M
at

ch
in

g
w

ei
gh

t r
el

. t
o

A
lg

. 1
 (

%
)

Number of graph edges

Matching weight for weighted parallel matching (vs. Alg. 1)

CUDA
TBB

 0

 1

 2

 3

 4

 5

 6

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 1

Number of graph edges

Speedup for weighted parallel matching (vs. Alg. 1)

CUDA
TBB

Matching weight and speedup.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

45

Parallel weighted vs. sequential greedy matching

 0

 50

 100

 150

 200

 250

101 102 103 104 105 106 107 108

M
at

ch
in

g
w

ei
gh

t r
el

. t
o

A
lg

. 2
 (

%
)

Number of graph edges

Matching weight for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

 0

 5

 10

 15

 20

 25

 30

 35

 40

101 102 103 104 105 106 107 108

S
pe

ed
up

 r
el

. t
o

A
lg

. 2

Number of graph edges

Speedup for weighted parallel matching (vs. Alg. 2)

CUDA
TBB

Matching weight and speedup.
Sequential greedy matching is 1/2-approximation.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

46

Clustering of road network of the Netherlands

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering
(G21)

Graph with 2,216,688 vertices and 2,441,238 edges
yields 506 clusters with modularity 0.995.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

47

DIMACS challenge February 2012

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

48

Formal definition of a clustering

I A clustering of an undirected graph G = (V ,E) is a
collection C of disjoint subsets of V satisfying

V =
⋃
C∈C

C .

I Elements C ∈ C are called clusters.

I The number of clusters is not fixed beforehand.

I Extreme cases: a single large cluster, |V | single-vertex
clusters.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

49

Quality measure for clustering: modularity

I The quality measure modularity was introduced by
Newman and Girvan in 2004 for finding communities.

I Let G = (V ,E , ω) be a weighted undirected graph without
self-edges. We define

ζ(v) =
∑

(u,v)∈E

ω(u, v), Ω =
∑
e∈E

ω(e).

I Then, the modularity of a clustering C of G is defined by

mod(C) =

∑
C∈C

∑
(u,v)∈E

u,v∈C

ω(u, v)

Ω
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4Ω2
.

I −1
2 ≤ mod(C) ≤ 1.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

50

Merging clusters: change in modularity

I The weight of a cluster is

ζ(C) =
∑
v∈C

ζ(v).

I The set of all cut edges between clusters C and C ′ is

cut(C ,C ′) = {{u, v} ∈ E | u ∈ C , v ∈ C ′}

I If we merge clusters C and C ′ from C into one cluster
C ∪ C ′, then the modularity of the new clustering C′ is

mod(C′) = mod(C)+ 1

4 Ω2

(
4 Ω ω(cut(C ,C ′))−2 ζ(C) ζ(C ′)

)
,

and ζ(C ∪ C ′) = ζ(C) + ζ(C ′).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

51

Agglomerative greedy clustering heuristic

max← −∞
G 0 = (V 0,E 0, ω0, ζ0)
i ← 0
C0 ← {{v} | v ∈ V }
while |V i | > 1 do

if mod(G , C i) ≥ max then
max← mod(G , C i)
Cbest ← C i

µ← weighted match clusters(G i)
(πi ,G i+1)← coarsen(G i , µ)
C i+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
i ← i + 1

return Cbest

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

52

Parallelisation

I Based on slight adaptations of functions from Thrust, an
open-source template library for developing CUDA
applications (modelled after C++ STL).

I Also, for. . . parallel do constructs indicating a for-loop
where each iteration can be executed in parallel.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

53

Results: clustering time for DIMACS graphs

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
lu

s
te

ri
n
g
 t
im

e
 (

s
)

Number of graph edges |E|

Clustering time

3*10
-7

 |E|
CUDA

TBB

I DIMACS categories: clustering/, coauthor/,
streets/, random/, delaunay/, matrix/, walshaw/,
dyn-frames/, and redistrict/.

I CUDA implementation with the Thrust template library
and Intel TBB implementation.

I Web link graph uk-2002 with 0.26 billion vertices
clustered in 30 s using Intel TBB.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

54

Results: strong scaling

 10

 20

 30

 40

 50

 60

 70
 80
 90

 100

 1 2 4 8 16

R
e
la

ti
v
e
 c

lu
s
te

ri
n
g
 t
im

e
 (

%
)

Number of CPU threads

Clustering time scaling

linear
2

15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

I The clustering time as a function of the number of threads.

I Graphs from the category random/ with 215–224 vertices.

I Intel TBB implementation on 2 quad-core 2.4 GHz Intel
Xeon E5620 processors with up to 16 threads by
hyperthreading.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

55

DIMACS road networks and coauthor graphs

G |V | |E | mod t mod t
CU CU TBB TBB

luxembourg 114,599 119,666 0.99 0.13 0.99 0.14
belgium 1,441,295 1,549,970 0.99 0.44 0.99 1.11
netherlands 2,216,688 2,441,238 0.99 0.62 0.99 1.72
italy 6,686,493 7,013,978 1.00 1.54 1.00 5.26
great-britain 7,733,822 8,156,517 1.00 1.79 1.00 6.00
germany 11,548,845 12,369,181 1.00 2.82 1.00 9.57
asia 11,950,757 12,711,603 1.00 2.69 1.00 9.33
europe 50,912,018 54,054,660 - -.- 1.00 45.21
coAuthorsCite 227,320 814,134 0.84 0.42 0.85 0.23
coAuthorsDBLP 299,067 977,676 0.75 0.59 0.76 0.28
citationCite 268,495 1,156,647 0.64 0.89 0.68 0.32
coPapersDBLP 540,486 15,245,729 0.64 6.43 0.67 2.28
coPapersCite 434,102 16,036,720 0.75 6.49 0.77 2.27

mod = modularity, t = time in s, CU = CUDA

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

56

Sparse matrix partitioning and graph partitioning

I A sparse matrix is the adjacency matrix of a sparse graph:

aij 6= 0⇔ (i , j) ∈ E

I Partitioning the nonzeros of a matrix is the same as
partioning the edges of a graph.

I 2D partitioning splits both rows and columns.

I Partitioning for parallel sparse matrix-vector multiplication
(SpMV) can be used in Google PageRank computation.

I Partitioning for SpMV also gives a good partitioning for
many graph computations.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

57

Advantage of 2D partitioning

I We can use both dimensions of the matrix to reduce SpMV
communication.

I For a
√

p ×√p block distribution, each matrix row or
column is distributed over at most

√
p processors, instead

of p processors for a 1D distribution.

I Relatively dense rows and columns can be split and do not
cause load imbalance or memory overflow.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

58

Methods for 2D partitioning

I Existing 2D methods: coarse-grain, fine-grain, Mondriaan.

I New medium-grain method (Pelt & Bisseling 2014) based
on splitting the m × n matrix

A = Ar + Ac ,

putting a nonzero aij into Ar if row i has less nonzeros
than column j , and in Ac otherwise.

I Then partition the (m + n)× (m + n) matrix B by a 1D
column partitioning:

B =

[
In (Ar)T

Ac Im

]
,

where Im is the identity matrix of size m ×m.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

59

Pajek Graph Drawing contest 1997

I 46 nodes, 132 edges

I Source: University of Florida Sparse Matrix Collection

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

60

Medium-grain method for partitioning

I 47× 47 matrix gd97 b with 264 nonzeros

I Partitioning for 2 processors

I Communication volume = 11, which is optimal

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

61

Communication volume for 2 processors

1.0 1.2 1.4 1.6 1.8 2.0

Communication volume relative to best

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

te
st

ca
se

s

LB

LB+IR

FG

FG+IR

MG

MG+IR

I Test set: 2264 Florida matrices, 500 ≤ nz ≤ 5, 000, 000
I LB = localbest (original Mondriaan) = best of 1D row and

1D column partitioning
I FG = fine-grain
I MG = medium-grain
I IR = iterative refinement, to improve the partitioning

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

62

2D (edge-based) parallel matching

SpMV Matching
Name 1D 2D 1D 2D

rw9 (af shell10) 113 105 169 150
rw10 (boneS10) 150 145 228 189
rw11 (Stanford) 340 141 479 234
rw12 (gupta3) 710 44 1,305 61
rw13 (St Berk.) 716 448 1,152 812
rw14 (F1) 139 130 148 139
sw1 (small world) 1,007 417 2,111 303
sw2 1,957 829 3,999 563
sw3 2,017 832 4,255 528
er1 (random) 1,856 1,133 1,788 1,157
er2 3,451 1,841 3,721 1,635
er3 5,476 2,569 6,350 1,990

Communication volume in sparse matrix–vector multiplication
and Karp–Sipser matching.
Source: Patwary, Bisseling, Manne (2010).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

63

Conclusions
I BSP is extremely suitable for parallel graph computations:

• no worries about communication because we buffer
messages until the next synchronisation;

• no send-receive pairs;
• BSP cost model gives synchronisation frequency;
• correctness proof of algorithm becomes simpler;
• no deadlock possible.

I Matching can be the basis for clustering, as demonstrated
for GPUs and multicore CPUs.

I We clustered Europe’s road network with 51M vertices and
54M edges in 45 seconds on an 8-core CPU.

I Partitioning for sparse matrix-vector multiplication reduces
communication volume for Karp–Sipser matching as well:

1

2
Vol(SpMV) ≤ Vol(Matching) ≤ 3

2
Vol(SpMV).

I Parallel graph algorithms will benefit from
partitioning the edges instead of the vertices.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

64

It’s all about the connections...

Merci beaucoup!

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

65

Further reading I

Rob H. Bisseling, Bas O. Fagginger Auer, A. N. Yzelman,

Tristan van Leeuwen, and Ümit V. Çatalyürek.
Two-dimensional approaches to sparse matrix partitioning.
In Uwe Naumann and Olaf Schenk, editors, Combinatorial
Scientific Computing, Computational Science Series, pages
321–349. CRC Press, Taylor & Francis Group, Boca Raton,
FL, 2012.

Bas O. Fagginger Auer and Rob H. Bisseling.
A GPU algorithm for greedy graph matching.
In Rainer Keller, David Kramer, and Jan-Philipp Weiss,
editors, Proceedings Facing the Multicore Challenge II,
Karlsruhe 2011, volume 7174 of Lecture Notes in Computer
Science, pages 108–119. Springer-Verlag, Berlin, 2012.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

66

Further reading II

Bas O. Fagginger Auer and Rob H. Bisseling.
Graph coarsening and clustering on the GPU.
In David A. Bader, Henning Meyerhenke, Peter Sanders,
and Dorothea Wagner, editors, Graph Partitioning and
Graph Clustering, volume 588 of Contemporary
Mathematics, pages 223–240. AMS, Providence, RI, 2013.

Fredrik Manne and Rob H. Bisseling.
A parallel approximation algorithm for the weighted
maximum matching problem.
In Proceedings Seventh International Conference on Parallel
Processing and Applied Mathematics (PPAM 2007),
volume 4967 of Lecture Notes in Computer Science, pages
708–717, 2008.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

67

Further reading III

Md. Mostofa Ali Patwary, Rob H. Bisseling, and Fredrik
Manne.
Parallel greedy graph matching using an edge partitioning
approach.
In Proceedings of the fourth international workshop on
High-level parallel programming and applications, HLPP
’10, pages 45–54, New York, NY, USA, 2010. ACM.

Daniël M. Pelt and Rob H. Bisseling.
A medium-grain method for fast 2D bipartitioning of sparse
matrices.
In Proceedings IEEE International Parallel and Distributed
Processing Symposium 2014. IEEE Press, 2014.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Results

Clustering

Introduction

Sequential

GPU algorithm

Results

2D partitioning

2D matching

Conclusion

References

68

Further reading IV

A. N. Yzelman, R. H. Bisseling, D. Roose, and
K. Meerbergen.
MulticoreBSP for C: a high-performance library for
shared-memory parallel programming.
International Journal of Parallel Programming, 2013.

	Outline
	Graph Matching
	Introduction
	Greedy
	Parallelisable
	BSP algorithm
	GPU algorithm
	Results

	Clustering
	Introduction
	Sequential
	GPU algorithm
	Results

	2D sparse matrix partitioning
	2D (edge-based) matching
	Conclusion
	References

