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Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012
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Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices.
I It has applications in

• medicine: finding suitable donors for organs
• social networks: finding partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening: making the graph smaller by merging

similar vertices



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

5

Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time.

I Time for weighted matching in graph G = (V ,E ) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is a billion vertices, n = 109, with 100 edges per
vertex, i.e. m = 1011.

I Thus, a time of O(1020) = 100, 000 Petaflop units is far
too long. Fastest supercomputer today, the Chinese
Tianhe-2 (Milky-Way 2), performs 33.8 Petaflop/s.

I We need linear-time greedy or approximation algorithms.
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Formal definition of graph matching

I A graph is a pair G = (V ,E ) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).
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Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.
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Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.
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Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.
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Sequential greedy matching

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v ,

greedy random matching
• the neighbour w with maximum ω(v ,w),

greedy weighted matching

I Or: we sort all the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w).
This is commonly called greedy matching.
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Sequential greedy random matching
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Greedy matching is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

I Time complexity is O(m log m), because all edges must be
sorted.
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Parallel greedy matching: trouble
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Two vertices each find an unmatched neighbour. . .
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. . . but generate an invalid matching.
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Parallelisable dominant-edge algorithm

while E 6= ∅ do
pick a dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}
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Sequential approximation algorithm: initialisation

function SeqMatching(V ,E )
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}
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Mutual preferences
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Non-mutual preferences

9

12

7

3

6 w
v

5

6
8



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

18

Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}

{ Set new preference }
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M
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Properties of the dominant-edge algorithm

I Dominant-edge algorithm is a 1/2-approximation:

ω(M) ≥ ωoptimal/2

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, use vertex numbering to break ties.
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Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.
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Parallel computer: abstract model

M
P P P PP

M M M M

Communication
network

Bulk synchronous parallel (BSP) computer.
Proposed by Leslie Valiant, 1989.
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Parallel algorithm: supersteps

P(0) P(1) P(2) P(3) P(4)

sync

sync

sync

sync

sync

comm

comm

comm

comp

comp
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Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

24

Mondriaan data distribution for matrix prime60

I Non-Cartesian block distribution of 60× 60 matrix
prime60 with 462 nonzeros, for p = 4

I aij 6= 0⇐⇒ i |j or j |i (1 ≤ i , j ≤ 60)



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

25

Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I This is a p-way partitioning of the vertex set.



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

26

Halo vertices

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .
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Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
SetNewPreference(v ,Adjv , pref ,Vs ,Ds ,Ms , φ)

Sync
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Setting a vertex preference

function SetNewPreference(v ,Adj ,V ,D,M, φ)
pref (v) := argmax{ω(v ,w) : w ∈ Adj}
if pref (v) ∈ V then

if pref (pref (v)) = v then
D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))
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How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w
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Parallel algorithm for P(s): main loop

process received messages

while Ds 6= ∅ do
pick v ∈ Ds

Ds := Ds \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

else {x ∈ Hs}
put unavailable(v , x) in P(φ(x))

Sync
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Parallel algorithm for P(s): process received
messages

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

if m = unavailable(v , x) then
if (x , pref (x)) /∈ Ms then

Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)
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Termination

I The algorithm alternates supersteps of computation
running the main loop and communication handling the
received messages.

I The whole algorithm terminates when no messages have
been received by processor P(s) and the local set Ds is
empty, for all s.

I This can be checked at every synchronisation point.
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Load balance

I Processors can have different amounts of work, even if
they have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit
of time needed to ‘handle’ a vertex x (in O(1)).

I Here, ‘handling’ could mean setting a new preference.

I After every k ticks, everybody synchronises.
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Synchronisation frequency

I Guidance for the choice of k is provided by the BSP
parameter l , the cost of a global synchronisation.

I Choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be
busy during most supersteps.

I Good choice: k = 2l?
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MulticoreBSP enables shared-memory BSP

Albert-Jan Yzelman 2014, www.multicorebsp.org
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GPU matching
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I A different approach, tightly coupled to the GPU
architecture.

I To prevent matching conflicts, we create two groups of
vertices:

• Blue vertices propose.
• Red vertices respond.

I Proposals that were responded to, are matched.
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GPU matching
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Quality of the matching
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Number of iterations

Saturation of matching size

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)

Fraction of matched vertices as a function of the number of
iterations. Number of edges between 2 and 47 million.
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Random colouring of the vertices

I At each iteration, we colour the vertices v ∈ V differently.

I For a fixed p ∈ [0, 1]

colour(v) =

{
blue with probability p,
red with probability 1− p.

I How to choose p? Maximise the number of matched
vertices.

I For large random graphs, the expected fraction of matched
vertices can be approximated by

2 (1− p)
(
1− e−

p
1−p

)
.

This is independent of the edge density.



Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

40

Clustering of road network of the Netherlands

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering
(G21)

Graph with 2,216,688 vertices and 2,441,238 edges
yields 506 clusters with modularity 0.995.
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Formal definition of a clustering

I A clustering of an undirected graph G = (V ,E ) is a
collection C of disjoint subsets of V satisfying

V =
⋃
C∈C

C .

I Elements C ∈ C are called clusters.

I The number of clusters is not fixed beforehand.
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Quality measure for clustering: modularity

I The quality measure modularity was introduced by
Newman and Girvan in 2004 for finding communities.

I Let G = (V ,E , ω) be a weighted undirected graph without
self-edges. We define

ζ(v) =
∑

(u,v)∈E

ω(u, v), Ω =
∑
e∈E

ω(e).

I Then, the modularity of a clustering C of G is defined by

mod(C) =

∑
C∈C

∑
(u,v)∈E

u,v∈C

ω(u, v)

Ω
−

∑
C∈C

( ∑
v∈C

ζ(v)

)2

4Ω2
.

I −1
2 ≤ mod(C) ≤ 1.
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Merging clusters: change in modularity

I The set of all cut edges between clusters C and C ′ is

cut(C ,C ′) = {{u, v} ∈ E | u ∈ C , v ∈ C ′}

I If we merge clusters C and C ′ from C into one cluster
C ∪ C ′, then we get a new clustering C′ with

mod(C′) = mod(C)+ 1

4 Ω2

(
4 Ω ω(cut(C ,C ′))−2 ζ(C ) ζ(C ′)

)
,

ζ(C ∪ C ′) = ζ(C ) + ζ(C ′).
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Agglomerative greedy clustering heuristic

max← −∞
G 0 = (V 0,E 0, ω0, ζ0)
i ← 0
C0 ← {{v} | v ∈ V }
while |V i | > 1 do

if mod(G , C i ) ≥ max then
max← mod(G , C i )
Cbest ← C i

µ← weighted match clusters(G i )
(πi ,G i+1)← coarsen(G i , µ)
C i+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
i ← i + 1

return Cbest
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Results: clustering time for DIMACS graphs
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TBB

I DIMACS categories: clustering/, coauthor/,
streets/, random/, delaunay/, matrix/, walshaw/,
dyn-frames/, and redistrict/.

I CUDA implementation with the Thrust template library
and Intel TBB implementation.

I Web link graph uk-2002 with 0.26 billion vertices
clustered in 30 s using Intel TBB.
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DIMACS road networks and coauthor graphs

G |V | |E | mod t mod t
CU CU TBB TBB

luxembourg 114,599 119,666 0.99 0.13 0.99 0.14
belgium 1,441,295 1,549,970 0.99 0.44 0.99 1.11
netherlands 2,216,688 2,441,238 0.99 0.62 0.99 1.72
italy 6,686,493 7,013,978 1.00 1.54 1.00 5.26
great-britain 7,733,822 8,156,517 1.00 1.79 1.00 6.00
germany 11,548,845 12,369,181 1.00 2.82 1.00 9.57
asia 11,950,757 12,711,603 1.00 2.69 1.00 9.33
europe 50,912,018 54,054,660 - -.- 1.00 45.21
coAuthorsCite 227,320 814,134 0.84 0.42 0.85 0.23
coAuthorsDBLP 299,067 977,676 0.75 0.59 0.76 0.28
citationCite 268,495 1,156,647 0.64 0.89 0.68 0.32
coPapersDBLP 540,486 15,245,729 0.64 6.43 0.67 2.28
coPapersCite 434,102 16,036,720 0.75 6.49 0.77 2.27

mod = modularity, t = time in s, CU = CUDA
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Conclusions

I BSP is extremely suitable for parallel graph computations:
• no worries about communication because we buffer

messages until the next synchronisation;
• no send-receive pairs, but one-sided put or get operations;
• BSP cost model gives synchronisation frequency;
• correctness proof of algorithm becomes simpler;
• no deadlock possible.

I Matching can be the basis for clustering, as demonstrated
for GPUs and multicore CPUs.

I We clustered Asia’s road network with 12M vertices and
12.7M edges in 2.7 seconds on a GPU.
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