
Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

1

Big graphs for big data: parallel matching and
clustering on billion-vertex graphs

Rob H. Bisseling

Mathematical Institute, Utrecht University

Collaborators: Bas Fagginger Auer, Fredrik Manne, Albert-Jan Yzelman

Asia-trip A-Eskwadraat, July 2014

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

2

Graph Matching
Introduction
Greedy algorithm
Parallelisable 1/2-approximation algorithm
BSP algorithm
GPU algorithm
Results

Clustering
Introduction
Sequential algorithm
GPU algorithm
Results

Conclusion

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

3

Matching can win you a Nobel prize

Source: Slate magazine October 15, 2012

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

4

Motivation of graph matching

I Graph matching is a pairing of neighbouring vertices.
I It has applications in

• medicine: finding suitable donors for organs
• social networks: finding partners
• scientific computing: finding pivot elements in matrix

computations
• graph coarsening: making the graph smaller by merging

similar vertices

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

5

Motivation of greedy/approximation graph
matching

I Optimal solution is possible in polynomial time.

I Time for weighted matching in graph G = (V ,E) is
O(mn + n2 log n) with n = |V | the number of vertices,
and m = |E | the number of edges (Gabow 1990).

I The aim is a billion vertices, n = 109, with 100 edges per
vertex, i.e. m = 1011.

I Thus, a time of O(1020) = 100, 000 Petaflop units is far
too long. Fastest supercomputer today, the Chinese
Tianhe-2 (Milky-Way 2), performs 33.8 Petaflop/s.

I We need linear-time greedy or approximation algorithms.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

6

Formal definition of graph matching

I A graph is a pair G = (V ,E) with vertices V and edges E .

I All edges e ∈ E are of the form e = (v ,w) for vertices
v ,w ∈ V .

I A matching is a collection M ⊆ E of disjoint edges.

I Here, the graph is undirected, so (v ,w) = (w , v).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

7

Maximal matching

I A matching is maximal if we cannot enlarge it further by
adding another edge to it.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

8

Maximum matching

I A matching is maximum if it possesses the largest possible
number of edges, compared to all other matchings.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

9

Edge-weighted matching

I If the edges are provided with weights ω : E → R>0,
finding a matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called edge-weighted matching.

I Greedy matching provides us with maximal matchings,
but not necessarily with maximum possible weight.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

10

Sequential greedy matching

I In random order, vertices v ∈ V select and match
neighbours one-by-one.

I Here, we can pick
• the first available neighbour w of v ,

greedy random matching
• the neighbour w with maximum ω(v ,w),

greedy weighted matching

I Or: we sort all the edges by weight, and successively match
the vertices v and w of the heaviest available edge (v ,w).
This is commonly called greedy matching.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

11

Sequential greedy random matching

9

8

6
5

7
3

1

4

2

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

12

Greedy matching is a 1/2-approximation algorithm

I Weight ω(M) ≥ ωoptimal/2

I Cardinality |M| ≥ |Mcard−max|/2, because M is maximal.

I Time complexity is O(m log m), because all edges must be
sorted.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

13

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

13

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

Two vertices each find an unmatched neighbour. . .

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

13

Parallel greedy matching: trouble

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

14

Parallelisable dominant-edge algorithm

while E 6= ∅ do
pick a dominant edge (v ,w) ∈ E
M := M ∪ {(v ,w)}
E := E \ {(x , y) ∈ E : x = v ∨ x = w}
V := V \ {v ,w}

return M

I An edge (v ,w) ∈ E is dominant if

ω(v ,w) = max{ω(x , y) : (x , y) ∈ E ∧ (x = v ∨ x = w)}

9

7

3
2

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

15

Sequential approximation algorithm: initialisation

function SeqMatching(V ,E)
for all v ∈ V do

pref (v) = null
D := ∅
M := ∅

{ Find dominant edges }
for all v ∈ V do

Adjv := {w ∈ V : (v ,w) ∈ E}
pref (v) := argmax{ω(v ,w) : w ∈ Adjv}
if pref (pref (v)) = v then

D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

16

Mutual preferences

9

7

3
2

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

17

Non-mutual preferences

9

12

7

3

6 w
v

5

6
8

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

18

Sequential approximation algorithm: main loop

while D 6= ∅ do
pick v ∈ D
D := D \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ M do

Adjx := Adjx \ {v}

{ Set new preference }
pref (x) := argmax{ω(x ,w) : w ∈ Adjx}
if pref (pref (x)) = x then

D := D ∪ {x , pref (x)}
M := M ∪ {(x , pref (x))}

return M

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

19

Properties of the dominant-edge algorithm

I Dominant-edge algorithm is a 1/2-approximation:

ω(M) ≥ ωoptimal/2

I Dominance is a local property: easy to parallelise.

I Algorithm keeps going until set of dominant vertices D is
empty and matching M is maximal.

I Assumption without loss of generality: weights are unique.
Otherwise, use vertex numbering to break ties.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

20

Time complexity

I Linear time complexity O(|E |) if edges of each vertex are
sorted by weight.

I Sorting costs are∑
v

deg(v) log deg(v) ≤
∑
v

deg(v) log ∆ = 2|E | log ∆,

where ∆ is the maximum vertex degree.

I This algorithm is based on a dominant-edge algorithm by
Preis (1999), called LAM, which is linear-time O(|E |),
does not need sorting, and also is a 1/2-approximation, but
is hard to parallelise.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

21

Parallel computer: abstract model

M
P P P PP

M M M M

Communication
network

Bulk synchronous parallel (BSP) computer.
Proposed by Leslie Valiant, 1989.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

22

Parallel algorithm: supersteps

P(0) P(1) P(2) P(3) P(4)

sync

sync

sync

sync

sync

comm

comm

comm

comp

comp

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

23

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

24

Mondriaan data distribution for matrix prime60

I Non-Cartesian block distribution of 60× 60 matrix
prime60 with 462 nonzeros, for p = 4

I aij 6= 0⇐⇒ i |j or j |i (1 ≤ i , j ≤ 60)

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

25

Parallel algorithm (Manne & Bisseling, 2007)

I Processor P(s) has vertex set Vs , with

p−1⋃
s=0

Vs = V

and Vs ∩ Vt = ∅ if s 6= t.

I This is a p-way partitioning of the vertex set.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

26

Halo vertices

I The adjacency set Adjv of a vertex v may contain vertices
w from another processor.

I We define the set of halo vertices

Hs =
⋃

v∈Vs

Adjv \ Vs

I The weights ω(v ,w) are stored with the edges, for all
v ∈ Vs and w ∈ Vs ∪ Hs .

I Es = {(v ,w) ∈ E : v ∈ Vs}
is the subset of all the edges connected to Vs .

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

27

Parallel algorithm for P(s): initialisation

function ParMatching(Vs ,Hs ,Es , distribution φ)
for all v ∈ Vs do

pref (v) = null
Ds := ∅
Ms := ∅

{ Find dominant edges }
for all v ∈ Vs do

Adjv := {w ∈ Vs ∪ Hs : (v ,w) ∈ Es}
SetNewPreference(v ,Adjv , pref ,Vs ,Ds ,Ms , φ)

Sync

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

28

Setting a vertex preference

function SetNewPreference(v ,Adj ,V ,D,M, φ)
pref (v) := argmax{ω(v ,w) : w ∈ Adj}
if pref (v) ∈ V then

if pref (pref (v)) = v then
D := D ∪ {v , pref (v)}
M := M ∪ {(v , pref (v))}

else
put proposal(v , pref (v)) in P(φ(pref (v)))

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

29

How to propose

Source: www.theguardian.com

proposal(v ,w): v proposes to w

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

30

Parallel algorithm for P(s): main loop

process received messages

while Ds 6= ∅ do
pick v ∈ Ds

Ds := Ds \ {v}
for all x ∈ Adjv \ {pref (v)} : (x , pref (x)) /∈ Ms do

if x ∈ Vs then
Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

else {x ∈ Hs}
put unavailable(v , x) in P(φ(x))

Sync

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

31

Parallel algorithm for P(s): process received
messages

for all messages m received do
if m = proposal(x , y) then

if pref (y) = x then
Ds := Ds ∪ {y}
Ms := Ms ∪ {(x , y)}
put accepted(x , y) in P(φ(x))

if m = accepted(x , y) then
Ds := Ds ∪ {x}
Ms := Ms ∪ {(x , y)}

if m = unavailable(v , x) then
if (x , pref (x)) /∈ Ms then

Adjx := Adjx \ {v}
SetNewPreference(x ,Adjx , pref ,Vs ,Ds ,Ms , φ)

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

32

Termination

I The algorithm alternates supersteps of computation
running the main loop and communication handling the
received messages.

I The whole algorithm terminates when no messages have
been received by processor P(s) and the local set Ds is
empty, for all s.

I This can be checked at every synchronisation point.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

33

Load balance

I Processors can have different amounts of work, even if
they have the same number of vertices or edges.

I Use can be made of a global clock based on ticks, the unit
of time needed to ‘handle’ a vertex x (in O(1)).

I Here, ‘handling’ could mean setting a new preference.

I After every k ticks, everybody synchronises.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

34

Synchronisation frequency

I Guidance for the choice of k is provided by the BSP
parameter l , the cost of a global synchronisation.

I Choosing k ≥ l guarantees that at most 50% of the total
time is spent in synchronisation.

I Choosing k sufficiently small will cause all processors to be
busy during most supersteps.

I Good choice: k = 2l?

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

35

MulticoreBSP enables shared-memory BSP

Albert-Jan Yzelman 2014, www.multicorebsp.org

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

36

GPU matching

9

8

6
5

7
3

1

4

2

I A different approach, tightly coupled to the GPU
architecture.

I To prevent matching conflicts, we create two groups of
vertices:

• Blue vertices propose.
• Red vertices respond.

I Proposals that were responded to, are matched.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π - - - - - - - - -
σ - - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ - - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 - - 3 6 - 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 b 5 5 3 2 r
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ 3 8 7 3 6 5 3 2 -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - - - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - 1 - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

37

GPU matching

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π 1 2 3 1 5 5 3 2 d
σ 4 - - 1 - - - - -

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

38

Quality of the matching

 0

 20

 40

 60

 80

 100

 0 5 10 15 20M
at

ch
ed

 v
er

tic
es

/to
ta

l n
r.

 o
f v

er
tic

es
 (

%
)

Number of iterations

Saturation of matching size

ecology2 (1,997,996)
ecology1 (1,998,000)

G3_circuit (3,037,674)
thermal2 (3,676,134)

kkt_power (6,482,320)
af_shell9 (8,542,010)

ldoor (22,785,136)
af_shell10 (25,582,130)

audikw1 (38,354,076)
nlpkkt120 (46,651,696)

cage15 (47,022,346)

Fraction of matched vertices as a function of the number of
iterations. Number of edges between 2 and 47 million.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

39

Random colouring of the vertices

I At each iteration, we colour the vertices v ∈ V differently.

I For a fixed p ∈ [0, 1]

colour(v) =

{
blue with probability p,
red with probability 1− p.

I How to choose p? Maximise the number of matched
vertices.

I For large random graphs, the expected fraction of matched
vertices can be approximated by

2 (1− p)
(
1− e−

p
1−p

)
.

This is independent of the edge density.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

40

Clustering of road network of the Netherlands

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering
(G21)

Graph with 2,216,688 vertices and 2,441,238 edges
yields 506 clusters with modularity 0.995.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

41

Formal definition of a clustering

I A clustering of an undirected graph G = (V ,E) is a
collection C of disjoint subsets of V satisfying

V =
⋃
C∈C

C .

I Elements C ∈ C are called clusters.

I The number of clusters is not fixed beforehand.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

42

Quality measure for clustering: modularity

I The quality measure modularity was introduced by
Newman and Girvan in 2004 for finding communities.

I Let G = (V ,E , ω) be a weighted undirected graph without
self-edges. We define

ζ(v) =
∑

(u,v)∈E

ω(u, v), Ω =
∑
e∈E

ω(e).

I Then, the modularity of a clustering C of G is defined by

mod(C) =

∑
C∈C

∑
(u,v)∈E

u,v∈C

ω(u, v)

Ω
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4Ω2
.

I −1
2 ≤ mod(C) ≤ 1.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

43

Merging clusters: change in modularity

I The set of all cut edges between clusters C and C ′ is

cut(C ,C ′) = {{u, v} ∈ E | u ∈ C , v ∈ C ′}

I If we merge clusters C and C ′ from C into one cluster
C ∪ C ′, then we get a new clustering C′ with

mod(C′) = mod(C)+ 1

4 Ω2

(
4 Ω ω(cut(C ,C ′))−2 ζ(C) ζ(C ′)

)
,

ζ(C ∪ C ′) = ζ(C) + ζ(C ′).

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

44

Agglomerative greedy clustering heuristic

max← −∞
G 0 = (V 0,E 0, ω0, ζ0)
i ← 0
C0 ← {{v} | v ∈ V }
while |V i | > 1 do

if mod(G , C i) ≥ max then
max← mod(G , C i)
Cbest ← C i

µ← weighted match clusters(G i)
(πi ,G i+1)← coarsen(G i , µ)
C i+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
i ← i + 1

return Cbest

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

45

Results: clustering time for DIMACS graphs

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
lu

s
te

ri
n
g
 t
im

e
 (

s
)

Number of graph edges |E|

Clustering time

3*10
-7

 |E|
CUDA

TBB

I DIMACS categories: clustering/, coauthor/,
streets/, random/, delaunay/, matrix/, walshaw/,
dyn-frames/, and redistrict/.

I CUDA implementation with the Thrust template library
and Intel TBB implementation.

I Web link graph uk-2002 with 0.26 billion vertices
clustered in 30 s using Intel TBB.

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

46

DIMACS road networks and coauthor graphs

G |V | |E | mod t mod t
CU CU TBB TBB

luxembourg 114,599 119,666 0.99 0.13 0.99 0.14
belgium 1,441,295 1,549,970 0.99 0.44 0.99 1.11
netherlands 2,216,688 2,441,238 0.99 0.62 0.99 1.72
italy 6,686,493 7,013,978 1.00 1.54 1.00 5.26
great-britain 7,733,822 8,156,517 1.00 1.79 1.00 6.00
germany 11,548,845 12,369,181 1.00 2.82 1.00 9.57
asia 11,950,757 12,711,603 1.00 2.69 1.00 9.33
europe 50,912,018 54,054,660 - -.- 1.00 45.21
coAuthorsCite 227,320 814,134 0.84 0.42 0.85 0.23
coAuthorsDBLP 299,067 977,676 0.75 0.59 0.76 0.28
citationCite 268,495 1,156,647 0.64 0.89 0.68 0.32
coPapersDBLP 540,486 15,245,729 0.64 6.43 0.67 2.28
coPapersCite 434,102 16,036,720 0.75 6.49 0.77 2.27

mod = modularity, t = time in s, CU = CUDA

Outline

Matching

Introduction

Greedy

Parallelisable

BSP algorithm

GPU algorithm

Clustering

Introduction

Sequential

Results

Conclusion

47

Conclusions

I BSP is extremely suitable for parallel graph computations:
• no worries about communication because we buffer

messages until the next synchronisation;
• no send-receive pairs, but one-sided put or get operations;
• BSP cost model gives synchronisation frequency;
• correctness proof of algorithm becomes simpler;
• no deadlock possible.

I Matching can be the basis for clustering, as demonstrated
for GPUs and multicore CPUs.

I We clustered Asia’s road network with 12M vertices and
12.7M edges in 2.7 seconds on a GPU.

	Outline
	Graph Matching
	Introduction
	Greedy
	Parallelisable
	BSP algorithm
	GPU algorithm
	Results

	Clustering
	Introduction
	Sequential
	GPU algorithm
	Results

	Conclusion

