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Mondriaan sparse matrix partitioning
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4-way partitioning of

High resolution

matrix impcol_b Resu

Composition with red,
yellow, blue, and black
Piet Mondriaan, 1921

» Mondriaan is an open-source software package for sparse
matrix partitioning.

» Version 1.0, May 2002. Version 4.2.1, August 2019. %ﬁ% Universiteit Utrecht
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Tomography setup

» One projection from the point source to a detector.

» 7 X-rays penetrating the object.

High resolution



Flexible CT scanner at CWI| Amsterdam
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Modern art object in the scanner

» Nel Haringa and Fred Olijve: Homage to De Stijl, 2004.
Acrylic and perspex.
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One projection of the art object

Bipartitioning
High
Resul
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Helical cone beam

X-rays

/ \
/ \ Bipartitionin
/ \ High resolution
/ \
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» Scanner and detector move in a circle around the object.

» Object (or scanner) moves along the rotation axis. 3@77%2
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Acquisition geometries and their application field

v

Helical cone beam: medical imaging, rock samples

v

Parallel beam: electron microscopy, synchrotrons

» Laminography: inspection of flat objects

v

Tomosynthesis: mammography, airport security screening
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Solving a sparse linear system

\\-—"gs-\,______\ 4 projections
”"—-‘-"Iﬁ;:ﬁ:ig::?; 5 x 5 detector pixels
I ""ﬁfﬁjﬁ: 5 x 5 x 5 object voxels N
v
e v m =100, n = 125 o
A LI e 1394 nonzeros ‘
n—1 It S
bi=> apg, 0<i<m
JZO Bipartitionin

High
Resull

> ajj is the weight of ray / in voxel j,

» X; is the density of voxel j,

» b; is the detector measurement for ray /.

» Not every ray hits every voxel: the system is sparse.

Universiteit Utrecht
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» Usually m < n: the system is underdetermined. A
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Simultaneous lterative Reconstruction Technique

» SIRT repeatedly multiplies the sparse matrices A and AT Sparse i
with a vector until convergence.

» For low resolutions, A is small and it can be stored.

» However, for a high resolution of 40003 = 64 x 109 voxels,
A has 256 x 1012 nonzeros, so we have Petabytes of data.

» For large problem sizes, implementations are matrix-free:
A is too big to store, and too big to partition by a
combinatorial method.

» We can regenerate the matrix easily row by row.
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Parallel sparse matrix—vector multiplication u := Av

Exact (S)
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Optimal bipartitioning by MondriaanOpt

7 X 7 matrix bl_ss
nz(A)=15 V=3

MondriaanOpt
» Benchmark p = 2 because heuristic partitioners are often
based on recursive bipartitioning.
» Problem p = 2 is easier to solve than p > 2.
» Load balance criterion is
nz(A .
nz(A;j) < (1+¢) [ é )w , i=0,1,
where € € [0,1) is the allowed load imbalance fraction.
[@ D. M. Pelt and R. H. Bisseling, “An exact algorithm for ) g}% Universiteit Utrecht

sparse matrix bipartitioning”, JPDC 85 (2015) pp. 79-90.

15



Branch-and-bound method

Evening — the red tree
Piet Mondriaan, 1908

MondriaanOpt
MP

Results

» Construct a ternary tree representing all possible solutions
» Every node in the tree has 3 branches, representing a
choice for a matrix row or column:
e completely assigned to processor P(0)

 completely assigned to processor P(1)
e cut: assigned to processors P(0) and P(1)

» The tree is pruned by using lower bounds on the
communication volume or number of nonzeros %§‘ Universiteit Utrecht
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Packing bound on communication volume

01 - - -

oo |y

» Columns 3, 4, 5 have been partially assigned to P(0).
» They can only be completely assigned to P(0) or cut.

» For perfect load balance (¢ = 0), we can pack at most 2
more red nonzeros into P(0).

» Thus we have to cut column 3, and one more column,
giving 2 communications.

. . N
» We call the resulting lower bound a packing bound. §n% Universiteit Utrecht
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From sparse matrix to bipartite graph

— 1 — Row 0 Col O

- Row 1 @ i1
0

Row 2 Col 2

Row 2 has been assigned to part 0 and column 1 to part 1.

@ T. E. Knigge and R. H. Bisseling, “An improved exact
algorithm and an NP-completeness proof for sparse matrix
bipartitioning”, submitted.

WS
https://github.com/TimonKnigge/matrix-partitioner
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https://github.com/TimonKnigge/matrix-partitioner

Flow bound on communication

— 1 c Row 0 Col 0

Row 1

@ i1

Row 2 Col 2

Along the path from row 2 to column 1, at least one row or
column must be cut. We can model the problem with multiple
paths as a maximum-flow problem.
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Test set of 1602 SuiteSparse matrices

100%

50%

Solution %

0 20000 40000 60000 80000 100
Nonzeros
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Results

T T T T
10° 10! 102 10° 104
Runtime (s)

» Top: solution % of MondriaanOpt and MP within 24 hours

CPU-time as a function of nz.

» Bottom: solution % as a function of the runtime. i,

S U S Universiteit Utrecht

» MP solved 839 matrices, each within 24 hours. N
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Sparse matrix cage6 from DNA electrophoresis
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93 x 93, nz =785

» The smallest matrix that could not be solved within 1 day;

it needed 3 days.

» Communication volume V = 38.
» 397 red, 316 blue, and 72

a load imbalance of only 1%.

(free) nonzeros.
» The yellow nonzeros can be painted blue to give
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Medium-grain partitioning method
o

AC

» m X n matrix A is split by a simple method into
A= A"+ A

» (m—+ n) x (m+ n) matrix B is formed and partitioned by
column using a 1D method

o[ 4

@ D. M. Pelt and R. H. Bisseling, “A medium-grain method for i o
fast 2D bipartitioning of sparse matrices”, Proc. IPDPS 2014, %ﬂ§ Universiteit Utrecht

pp. 529-539. 2



From A to B: the medium-grain method
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If r; < cj, the nonzero goes to the row part A", otherwise to the
column part A°. PN
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1D column partitioning of B vyields a
2D partitioning of A

-

4-— Medium-grain

B A

Communication volume V =4 _
NS
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Chicken-or-egg problem: which one was first?

» To partition the matrix A, we first form a matrix B.
» To form a matrix B, we need a partitioning of A.

» That's why we start with a simple partitioning.
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lterative refinement: repeated partitioning
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A=A"+ A° B
Iterative refinement is combinatorial, not numerical.
. _ . . ‘“W'
It uses Kernighan—Lin refinement, 1 level. §U’}/) Universiteit Uteecht
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Result for matrix from Graph Drawing contest 1997
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47 x 47 matrix gd97 b, nz(A) = 264

Medium-grain method achieves optimal V =11

Communication volume of 1D partitioning of B =
volume of corresponding 2D partitioning of A
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Performance plot comparing volume to optimal

[T/ ]

100%

Solution %

50% - -
—— Mondriaan FG
—— Mondriaan FG+IR
—— Mondriaan MG
—— PaToH FG

—— PaToH FG+IR Results
—— PaToH MG

1 2 3 4 5 6
Optimality ratio

IR = iterative refinement

v

» FG = fine-grain partitioning
» MG = medium-grain partitioning (including IR)
PaToH = combination of Mondriaan sparse matrix Y

=Uu %‘ Universiteit Utrecht

partitioner and PaToH hypergraph bipartitioner L
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Geometric average of runtime and optimality ratio

Partitioner Method Runtime (in ms) Optimality ratio

Mondriaan FG 515 1.63
FG+IR 53.9 1.53
MG+IR 29.9 1.46

Mondriaan+PaToH FG 13.9 1.19
FG+IR 15.2 1.16
MG+IR 9.2 1.10 ..

» Optimality ratio is ratio of communication volume and
optimal volume computed by MP.

» Based on 839 matrices with nz < 100, 000.

@ U. V. Catalyiirek and C. Aykanat, “A Fine-Grain Hypergraph Model
for 2D Decomposition of Sparse Matrices”, Proc. Irregular 200;_@;%
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Geometric bipartitioning of a voxel block V

Y e

Bipartitioning

» 2D: line sweep along each coordinate. (3D: plane sweep.)
» Sort the points of entrance ((J) and exit (x) of a ray.

» Cut as few rays as possible. Keep the work load balanced
(based on line densities).
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Theorem on greedy p-way recursive bipartitioning

Theorem ‘

Let V =Yy U...UV,_1 be a block partitioning. Then, for any
acquisition geometry, the communication volume V satisfies: !
V(Vo, Vi, Voo1) = V(Vo, Vi, oo, VoroUVpo1)+V(Vp_2, Vp1).

Medium-grain
Iterative refinement
Resu

» Same theorem as with sparse matrix partitioning for
para||e| SpMV Bipartition"\i\:gﬁ

High
Resull

@ J. W. Buurlage, R. H. Bisseling, K. J. Batenburg, “A geometric
partitioning method for distributed tomographic reconstruction”,
Parallel Computing 81 (2019) pp. 104-121.
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Communication volume:
geometric vs. combinatorial partitioning

geometric (voxels) combinatorial (Mondriaan)

p Slab GRCB 1D col 1D row 2D MG
16 111,248 111,207 108,741 139,216 101,402
32 233,095 216,620 210,330 292,833 188,294
64 | 3,928,222 2,505,646 | 2,604,930 3,987,888 2,210,671

64> voxels, 64 projections. Narrow cone angle. com:
Slab = standard geometric partitioning into slabs gl
GRCB = geometric recursive coordinate bisection

MG = medium-grain with iterative refinement

Partitioning voxels (1D col) has 35% lower communication

volume than partitioning rays (1D row). Ay

= B = Universiteit Utrecht
2D MG is 15% better than GRCB, but not practical. 7
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Partitioning for helical cone beam, 64 processors

—— DOttOM

front
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Partitioning for helical cone beam, 256 processors

72 (N § Universiteit Utrecht
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Partitionings for various acquisition geometries
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GRCB.mp4
Media File (video/mp4)


Projection-based partitioning for high resolution

Introduction
Xerays
Spa

Exact (S)
MondriaanOpt
MP

Results

Heuristic (M)

» For a given split of the object volume, the total area of

. . . . Geometric (L)
overlapping shadows gives the communication volume. Biparttioning
» Fast overlap computations are based on geometric Resuls
N Conclusion and
algorlthms' outlook (XL)
@ J. W. Buurlage, R. H. Bisseling, W. J. Palenstijn, K. J. Batenburg, “A
projection-based data partitioning method for distributed tomographic
reconstructlon”., Proc. SIAM P.P 2020, pp. 58-68. § n%. Rt
Talk by Jan-Willem Buurlage in CP7, Feb. 13, 3.45 PM. LN
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Scalability on 32 GPUs
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GoB, (ASTRA-MPI)

0.0
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» 20483 voxels, 1024 projections. Time of 3 iterations.

» ASTRA toolbox: state-of-the-art, slab partitioning, only for
circular cone beam (CCB). MPI for communication.

» Pleiades extension of ASTRA: projection-based
partitioning, for any acquisition geometry.
BSP/C++ library Bulk for communication.
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Reconstructed art object Homage to De Stijl

A slab of the reconstruction. Thanks to: Sophia Coban.

%TL § Universiteit Utrecht
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Conclusion and outlook

» We presented a method for exact matrix bipartitioning that
solved 839 out of 2833 SuiteSparse matrices optimally.

» The best heuristic partitioner, a combination
Mondriaan+PaToH, is within 10% of optimal for p = 2.

» Targeting p > 2, we still want to improve the bipartitioner:
for p = 256, a factor of (1.10)® ~ 2.14 from optimal.

» We presented a geometric method for partitioning the
object space of a flexible CT scanner.

» The method can handle XL problems in a real production  conclusion and
i tlook (XL
environment. outlook (XL)
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Thank you!
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Conclusion and
outlook (XL)
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