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Partitioning for applications
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Mesh partitioning
Laplacian operator
Bulk synchronous parallel communication cost
Diamond-shaped subdomains
3D partitioning

Matrix partitioning
Parallel sparse matrix–vector multiplication (SpMV)
Visualisation by MondriaanMovie
Hypergraphs
Ordering matrices for faster SpMV
Separated Block Diagonal structure

Where meshes meet matrices

Conclusions and future work
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Motivation: CFD and other applications

I Source: N. Gourdain et al. ‘High performance Parallel
Computing of Flows in Complex Geometries. Part 2:
Applications’ Computational Science and Discovery 2009.
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2D rectangular mesh partitioned over 8 processors

I In many applications, a physical domain can be partitioned
naturally by assigning a contiguous subdomain to every
processor.

I Communication is only needed for exchanging information
across the subdomain boundaries.

I Grid points interact only with a set of immediate
neighbours, to the north, east, south, and west.
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2D Laplacian operator for k × k grid

(1,0)(0,0) (2,0)

(0,1)

(0,2)

0 1 2

3 4 5

6 7 8

Compute

∆i ,j = xi−1,j + xi+1,j + xi ,j+1 + xi ,j−1 − 4xi ,j , for 0 ≤ i , j < k,

where xi ,j denotes e.g. the temperature at grid point (i , j).
By convention, xi ,j = 0 outside the grid.

I xi+1,j − xi ,j approximates the derivative of the temperature
in the i-direction.

I (xi+1,j − xi ,j)− (xi ,j − xi−1,j) = xi−1,j + xi+1,j − 2xi ,j

approximates the second derivative.
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Relation operator–matrix

A =



−4 1 · 1 · · · · ·
1 −4 1 · 1 · · · ·
· 1 −4 · · 1 · · ·
1 · · −4 1 · 1 · ·
· 1 · 1 −4 1 · 1 ·
· · 1 · 1 −4 · · 1
· · · 1 · · −4 1 ·
· · · · 1 · 1 −4 1
· · · · · 1 · 1 −4


u = Av ⇐⇒

∆i ,j = xi−1,j + xi+1,j + xi ,j+1 + xi ,j−1 − 4xi ,j , for 0 ≤ i , j < k.
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Finding a mesh partitioning

I We must assign each grid point to a processor.

I We assign the values xi ,j and ∆i ,j to the owner of grid
point (i , j).

I Each point of the grid has an amount of computation
associated with it determined by the operator.

I Here, an interior point has 5 flops; a border point 4 flops; a
corner point 3 flops.
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Our parallel cost model: BSP

2-relations:

P(0) P(1)

P(2)

P(0)P(0) P(0)P(0) P(1)

P(2)

(a) (b)

I Bulk synchronous parallel (BSP) model by Valiant (1990):
a bridging model for parallel computing

I An h-relation is a communication phase (superstep) in
which every processor sends and receives at most h data
words: h = max{hsend, hrecv}

I T (h) = hg + l , where g is the time per data word
and l the global synchronisation time
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Partition into strips and blocks

(a) (b) (c)

I (a) Partition into strips: long Norwegian borders,

Tcomm, strips = 2kg .

I (b) Boundary corrections improve load balance.

I (c) Partition into square blocks: shorter borders,

Tcomm, squares =
4k
√

p
g (for p > 4).
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Surface-to-volume ratio

I The communication-to-computation ratio for square blocks
is

Tcomm, squares

Tcomp, squares
=

4k/
√

p

5k2/p
g =

4
√

p

5k
g .

I This ratio is often called the surface-to-volume ratio,
because in 3D the surface of a domain represents the
communication with other processors and the volume
represents the amount of computation of a processor.



Outline

Meshes

Laplacian

BSP cost

Diamonds

3D

Matrices

Matrix-vector

Movies

Hypergraphs

SBD

Mesh-Matrix

Conclusions

11

What do we do at scientific workshops?

Participants of HLPP 2001, International Workshop on
High-Level Parallel Programming, Orléans, France, June 2001,
studying Château de Blois.
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The high-level object of our study
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Blocks are nice, but diamonds . . .

c

r = 3

I Digital diamond, or closed l1-sphere, defined by

Br (c0, c1) = {(i , j) ∈ Z2 : |i − c0|+ |j − c1| ≤ r},

for integer radius r ≥ 0 and centre c = (c0, c1) ∈ Z2.

I Br (c) is the set of points with Manhattan distance
≤ r to the central point c.
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Points of a diamond

c

r = 3

I The number of points of Br (c) is

1 + 3 + 5 + · · ·+ (2r − 1) + (2r + 1) + (2r − 1) + · · ·+ 1

= 2r2 + 2r + 1.

I The number of neighbouring points is 4r + 4.

I This is also the number of ghost cells needed in a parallel
grid computation.
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Diamonds are forever

I For a k × k grid and p processors, we have

k2 = p(2r2 + 2r + 1) ≈ 2pr2.

I Just on the basis of 4r + 4 receives from neighbour points,
we have

Tcomm, diamonds

Tcomp, diamonds
=

4r + 4

5(2r2 + 2r + 1)
g ≈ 2

5r
g ≈ 2

√
2p

5k
g .

I Compare with value
4
√

p
5k g for square blocks:

factor
√

2 less.

I This gain was caused by reuse of data: the value at a grid
point is used twice but sent only once.

I Also
√

2 less memory for ghost cells.
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Alhambra: tile the whole space

(2001)



Outline

Meshes

Laplacian

BSP cost

Diamonds

3D

Matrices

Matrix-vector

Movies

Hypergraphs

SBD

Mesh-Matrix

Conclusions

17

Tile the whole sky with diamonds

a

b

r = 3

Diamond centres at c = λa + µb, λ, µ ∈ Z,
where a = (r , r + 1) and b = (−r − 1, r).
Good method for an infinite grid.
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Practical method for finite grids

c

r = 3

I Discard one layer of points from the north-eastern and
south-eastern border of the diamond.

I For r = 3, the number of points decreases from 25 to 18.
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12× 12 computational grid: periodic partitioning

8 processors

I Total computation: 672 flops. Avg 84. Max 90.

I Communication: 104 values. Avg 13. Max 14.

I Total time: 90 + 14g = 90 + 14 · 10 = 230 (ignoring 2l).

I 8 rectangular blocks of size 6× 3 blocks:
time is 87 + 15 · 10 = 237.
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12× 12 computational grid: Mondriaan partitioning

8 processors

I Partitioning obtained by translating into a sparse matrix.
This treats the structured grid as unstructured.

I Total computation: 672 flops. Avg 84. Max 91. (allowed
imbalance ε = 10%.)

I Communication: 85 values. Avg 10.525. Max 16.

I Total time: 91 + 16g = 91 + 16 · 10 = 251.
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12× 12 computational grid: challenge

8 processors

I Find a better solution than can be obtained manually,
using ideas from both solutions shown. Current best
known solution is 199 (Bas den Heijer 2006).
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Three dimensions

I If a processor has a cubic block of N = k3/p points,

about 6k2

p2/3 = 6N2/3 are boundary points. In 2D, only

4N1/2.

I If a processor has a 10× 10× 10 block, 488 points are on
the boundary. About half!

I Thus, communication is important in 3D.

I Based on the surface-to-volume ratio of a 3D digital
diamond, we can aim for a reduction by a factor√

3 ≈ 1.73 in communication cost.

I The prime application of diamond-shaped distributions will
most likely be in 3D.
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Basic cell for 3D

I Basic cell: grid points in a truncated octahedron.

I For load balancing, take care with the boundaries.

I What You See, Is What You Get (WYSIWYG):
4 hexagons and 3 squares visible at the front are included.
Also 12 edges, 6 vertices.

I Gain factor of 1.68 achieved for p = 2q3.
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Comparing partitioning methods in 2D and 3D

Grid p Rectangular Mondriaan Diamond

1024× 1024 2 1024 1024 2046
4 1024 1240 2048
8 1280 1378 1026

16 1024 1044 1024
32 768 766 514
64 512 548 512

128 384 395 258

64× 64× 64 16 4096 2836 2402
128 1024 829 626

Communication cost (in g) for a Laplacian operation on a grid.
Mondriaan with ε = 10%.
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Parallel sparse matrix–vector multiplication u := Av

A sparse m × n matrix, u dense m-vector, v dense n-vector

ui :=
n−1∑
j=0

aijvj

1

22

2 3

5
5

9

1
3

4

6
5

8

4

6

41 3

1

9 2

64

9
1

u

v

A p = 2

4 supersteps: communicate, compute, communicate, compute
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Divide evenly over 4 processors


pi_localbest_p4_none.avi
Media File (video/avi)
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Matrix prime60

I Mondriaan block partitioning of 60× 60 matrix prime60
with 462 nonzeros, for p = 4

I aij 6= 0 ⇐⇒ i |j or j |i (1 ≤ i , j ≤ 60)
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Avoid communication completely, if you can

All nonzeros in a row or column have the same colour.


chess.avi
Media File (video/avi)
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Permute the matrix rows/columns

First the green rows/columns, then the blue ones.


chess_sbd.avi
Media File (video/avi)
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Combinatorial problem: sparse matrix partitioning

Problem: Split the set of nonzeros A of the matrix into p
subsets, A0,A1, . . . ,Ap−1, minimising the communication
volume V (A0,A1, . . . ,Ap−1) under the load imbalance
constraint

nz(Ai ) ≤
nz(A)

p
(1 + ε), 0 ≤ i < p.
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The hypergraph connection

0

4

2

1

3

6

8

5

7

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors, black and white
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1D matrix partitioning using hypergraphs

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

I Hypergraph H = (V,N ) ⇒ exact communication volume
in sparse matrix–vector multiplication.

I Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets, subsets of V):

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},
n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.
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(λ− 1)-metric for hypergraph partitioning

I 138× 138 symmetric matrix bcsstk22, nz = 696, p = 8
I Reordered to Bordered Block Diagonal (BBD) form
I Split of row i over λi processors causes

a communication volume of λi − 1 data words


bcsstk22_BBDsympart_p8.avi
Media File (video/avi)
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Cut-net metric for hypergraph partitioning

I Row split has unit cost, irrespective of λi


bcsstk22_BBDsympart_p8_cutnet.avi
Media File (video/avi)
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Mondriaan 2D matrix partitioning

I p = 4, ε = 0.2, global non-permuted view


impcol_b_p4.avi
Media File (video/avi)
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Fine-grain 2D matrix partitioning

I Each individual nonzero is a vertex in the hypergraph,
Çatalyürek and Aykanat, 2001.


impcol_b_p4_fine.avi
Media File (video/avi)
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Mondriaan 2.0, Released July 14, 2008

I New algorithms for vector partitioning.

I Much faster, by a factor of 10 compared to version 1.0.

I 10% better quality of the matrix partitioning.

I Inclusion of fine-grain partitioning method

I Inclusion of hybrid between original Mondriaan and
fine-grain methods.

I Can also handle p 6= 2q.
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Matrix lns3937 (Navier–Stokes, fluid flow)

Splitting the 3937× 3937 sparse matrix lns3937
into 5 parts.


lns_3937_hybrid_p5_SBD.avi
Media File (video/avi)
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Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ε)
input: p = number of processors, p = 2q

ε = allowed load imbalance, ε > 0.
output:p-way partitioning of A with imbalance ≤ ε.

if p > 1 then
q := log2 p;
(Ar

0,A
r
1) := h(A, row, ε/q); hypergraph splitting

(Ac
0,A

c
1) := h(A, col, ε/q);

(Af
0,A

f
1) := h(A,fine, ε/q);

(A0,A1) := best of (Ar
0,A

r
1), (Ac

0,A
c
1), (Af

0,A
f
1);

maxnz := nz(A)
p (1 + ε);

ε0 := maxnz
nz(A0)

· p
2 − 1; MatrixPartition(A0, p/2, ε0);

ε1 := maxnz
nz(A1)

· p
2 − 1; MatrixPartition(A1, p/2, ε1);

else output A;
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Mondriaan version 1 vs. 3 (Preliminary)

Name p v1.0 v3.0

dfl001 4 1484 1404
16 3713 3631
64 6224 6071

cre b 4 1872 1437
16 4698 4144
64 9214 9011

tbdmatlab 4 10857 10041
16 28041 25117
64 52467 50116

nug30 4 55924 47984
16 126255 110433
64 212303 194083

tbdlinux 4 30667 29764
16 73240 68132
64 146771 139720

Mondriaan split strategy: v1 localbest, v3 hybrid, ε = 0.03.
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Mondriaan 3.0 coming soon

I Ordering of matrices to SBD and BBD structure: cut rows
are placed in the middle, and at the end, respectively.

I Visualisation through Matlab interface, MondriaanPlot,
and MondriaanMovie

I Library-callable, so you can link it to your own program

I Hypergraph metrics: λ− 1 for parallelism, and cut-net for
other applications

I Interface to PaToH hypergraph partitioner
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Separated block-diagonal (SBD) structure

I SBD structure is obtained by recursively partitioning the
columns of a sparse matrix, each time moving the cut
(mixed) rows to the middle. Columns are permuted
accordingly.

I The cut rows are sparse and serve as a gentle cache
transition between accesses to two different vector parts.

I Mondriaan is used in one-dimensional mode, splitting only
in the column direction.
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Partition the columns till the end, p = n = 59

I The recursive, fractal-like nature makes the ordering
method work, irrespective of the actual cache
characteristics (e.g. sizes of L1, L2, L3 cache).

I The ordering is cache-oblivious.


impcol_b_p59_1dcol2.avi
Media File (video/avi)
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Wall clock timings of SpMV on Huygens
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Splitting into 1–20 parts

I Experiments on 1 core of the dual-core 4.7 GHz Power6+
processor of the Dutch national supercomputer Huygens.

I 64 kB L1 cache, 4 MB L2, 32 MB L3.

I Test matrices: 1. stanford; 2. stanford berkeley;
3. wikipedia-20051105; 4. cage14
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Screenshot of Matlab interface

I Matrix rhpentium, split over 30 processors
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Where meshes meet matrices

I Unstructured grid and its sparse matrix

I Source: N. Gourdain et al. ‘High performance Parallel
Computing of Flows in Complex Geometries. Part 1:
Methods’ Computational Science and Discovery 2009.
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Apply Mondriaan matrix partitioning

I Use Mondriaan in 1D mode, not in full 2D mode.

I Advantage: no need to change data structure, while still
giving almost the same communication volume (for FEM
matrices).

I Advantage: hypergraph partitioning leads to less ghost
cells, and less communication, especially in 3D.
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Apply Mondriaan matrix partitioning

I Advantage: Mondriaan is open-source, can be changed by
yourself or by us for your needs, and is an ongoing research
project with much attention for software engineering.

I Disadvantage: hypergraph partioner Mondriaan itself takes
more time and memory than graph partitioners (such as
Scotch or Metis).
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Conclusions on regular meshes

I To achieve a good partitioning with a low
surface-to-volume ratio, all dimensions must be cut.
For regular grids in 2D, this gives square subdomains; in
3D, cubic.

I In 2D, an even better method is to use digital diamonds.
This basic cell tiles a rectangular domain in a
straightforward manner. Best performance is obtained for
p = 2q2.

I In 3D, the best method is to use truncated octahedra with
WYSIWYG tie breaking at the boundaries.
Best performance is obtained for p = 2q3.
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Conclusions on irregular meshes

I For unstructured grids, the same gains can be obtained by
using hypergraph partitioning, which minimises the exact
amount of communication and number of ghost cells.

I Using graph partitioning and the edge-cut metric will lead
to
√

3 more communication and ghost memory usage.
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Current/future work

I Mondriaan 3.0, to be released soon, contains improved
methods for sparse matrix partitioning, which can also be
used to partition meshes.

I We are working on a converter for reading meshes directly,
translating them to matrices, partitioning them, and
writing the result back as a mesh.

I We hope to be able to build a Mondriaan hypergraph
partitioning option into AVBP.
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