Self-avoiding walks

Rob Bisseling

Mathematical Institute, Utrecht University

Mathematics colloquium, Utrecht
April 19, 2012
Joint work

▶ Gerard Barkema (Theoretical Physics)

▶ Raoul Schram (student mathematics/physics)
Introduction self-avoiding walks

New method: length doubling

Implementation

Results

Conclusion
Curiosity-driven walks

Source: my-new-york.com, nyc-architecture.com
Definition self-avoiding walks

- A self-avoiding walk (SAW) is a walk on a regular lattice that never returns to a position already visited.
- We start in the origin.
- The length of a walk is the number of steps, N.
A self-avoiding walk of length 0 in 2D
A self-avoiding walk of length 1 in 2D
A self-avoiding walk of length 2 in 2D
A self-avoiding walk of length 3 in 2D
A self-avoiding walk of length 4 in 2D
A self-avoiding walk of length 5 in 2D
A self-avoiding walk of length 6 in 2D
A self-avoiding walk of length 7 in 2D
A self-avoiding walk of length 8 in 2D
A self-avoiding walk of length 9 in 2D
A self-avoiding walk of length 10 in 2D
A self-avoiding walk of length 11 in 2D
A self-avoiding walk of length 12 in 2D
A self-avoiding walk of length 13 in 2D
A self-avoiding walk of length 14 in 2D
A self-avoiding walk of length 15 in 2D
A self-avoiding walk of length 16 in 2D
A self-avoiding walk of length 17 in 2D
A self-avoiding walk of length 18 in 2D
Why are self-avoiding walks useful?

Poly(2-vinylpyridine) observed by Atomic Force Microscope.

- The walk models a polymer, a long molecule, based on a carbon chain C–C–C–C–C···C.
- A prime motivation is the DNA polymer.
- Self-avoiding because 2 carbon atoms cannot exist at the same location (the excluded-volume property).
How many self-avoiding walks are there?

- In 2D: \(Z_1 = 4 \) walks.
How many self-avoiding walks of length 2?

$Z_2 = 4 \times 3 = 12$ walks.
How many self-avoiding walks of length 3?

$Z_3 = 4 \times 3 \times 3 = 36$ walks.
How many self-avoiding walks of length 4?

- There are $4 \times 3 \times 3 \times 3 = 108$ possible walks, not all self-avoiding.
- In 8 cases, we return to the origin. So $Z_4 = 108 - 8 = 100$.
- Question: can you give an upper bound for Z_8?
How many self-avoiding walks of length 8?

- There are $4 \times 3^7 = 8748$ possible walks, not all self-avoiding. So $Z_8 \leq 8748$.
- In general:

 $2^N \leq Z_N \leq 4 \times 3^{N-1}$.

How many self-avoiding walks of length 8?

- We can concatenate two self-avoiding walks of length 4:
 \[Z_8 \leq Z_4^2 = 10000. \]

- A sharper upper bound: the first red step cannot be the reverse of the last black step:
 \[Z_8 \leq \frac{3}{4}Z_4^2 = 7500. \]

- \(Z_8 = 5916. \)
Recursive 2D SAW algorithm

\textbf{SAW}(i, N)
\quad i = \text{number of steps made, } 0 \leq i \leq N
\quad N = \text{desired length of the walk.}
\quad (x_0, y_0), (x_1, y_1), \ldots, (x_{i-1}, y_{i-1}) \text{ is self-avoiding.}

\textbf{if} \text{ not visited } (x_i, y_i) \text{ then}
\quad \textbf{if} \ i = N \text{ then}
\quad \quad \text{print } "(x_0, y_0), \ldots (x_N, y_N) \text{ is a SAW}"
\quad \textbf{else}
\quad \quad \text{visited}(x_i, y_i) = \text{true};
\quad \quad x_{i+1} = x_i + 1; \quad y_{i+1} = y_i; \quad \text{SAW}(i + 1, N);
\quad \quad x_{i+1} = x_i - 1; \quad y_{i+1} = y_i; \quad \text{SAW}(i + 1, N);
\quad \quad x_{i+1} = x_i; \quad y_{i+1} = y_i + 1; \quad \text{SAW}(i + 1, N);
\quad \quad x_{i+1} = x_i; \quad y_{i+1} = y_i - 1; \quad \text{SAW}(i + 1, N);
\quad \quad \text{visited}(x_i, y_i) = \text{false};
Bound for Z_{M+N}

- A self-avoiding walk of length $M + N$ can be cut into walks of lengths M and N, so

$$Z_{M+N} \leq Z_M \cdot Z_N.$$

- For $M = N$, we get $Z_{2N} \leq (Z_N)^2$.
- So $Z_N \geq (Z_{2N})^{1/2}$ for all N, giving

$$Z_1 \geq (Z_2)^{1/2} \geq (Z_4)^{1/4} \geq (Z_8)^{1/8} \geq \cdots$$
Convergence in 2D

- In the limit case for the 2D square lattice:

\[\lim_{N \to \infty} (Z_N)^{1/N} = \mu \approx 2.638, \text{ so } Z_N \sim \mu^N \]

- \(Z_{71} = 4, 190, 893, 020, 903, 935, 054, 619, 120, 005, 916 \) (Jensen 2004).

- For 2D hexagonal lattice, \(\mu = \sqrt{2 + \sqrt{2}} \approx 1.848 \) (Duminil-Copin and Smirnov 2010).
The world is 3D

- Clisby, Liang, Slade (2007):
 \[Z_{30} = 270, 569, 905, 525, 454, 674, 614 \]
- Nathan Clisby’s animation of a self-avoiding walk of length \(N = 1,048,575 \).
Three self-avoiding walks of length 18 in 3D

- Self-avoiding walks of length 18: red, orange, blue.
- How many pairs of self-avoiding walks can be glued together to give a self-avoiding walk of length 36?
Counting method based on intersection sets

- Intersections $a = (2, 0, 0), b = (2, 3, 1)$: red/orange.
- Intersection $c = (0, -2, 0)$: blue/orange.
- There are 3 pairs of walks v/w with $v \neq w$.
- There are 3 intersections: remove the corresponding pair.
- Correct for over-removal: red/orange was removed twice, so $3-3+1 = 1$ pair remains, blue/red.
Counting pairs of walks

- $A_i =$ set of pairs of self-avoiding walks (v, w) of length N that both pass through lattice point i.
- The lattice points have been numbered (excluding 0).
- The set $\bigcup_{i=1}^{n} A_i$ contains all pairs that intersect.
Length doubling

- There is a bijection between:
 - the self-avoiding walks of length $2N$
 - the non-intersecting pairs of walks of length N
 because we can concatenate two walks.

- So we have:

 $$Z_{2N} = Z_N^2 - \left| \bigcup_i A_i \right| .$$

- We can compute Z_{2N} efficiently by looking only at walks of length N.
Principle of inclusion–exclusion

\[
\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i} |A_i| - \sum_{i<j} |A_i \cap A_j| + \sum_{i<j<k} |A_i \cap A_j \cap A_k| + \cdots + (-1)^{n+1} |A_1 \cap A_2 \cdots \cap A_n|,
\]
Length-doubling formula

We obtain

\[Z_{2N} = Z_N^2 + \sum_{S \neq \emptyset} (-1)^{|S|} Z_N^2(S). \]

\[Z_N(S) \] is the number of self-avoiding walks of length \(N \) that pass through a subset \(S \) of lattice sites.
Computational complexity

- To compute $Z_N(S)$, we create all walks of length N.
- For each walk, we create all 2^N subsets of its N lattice sites and add 1 to their counter in a global data structure.
- Overall complexity

$$O(2^N \cdot Z_N) = O(2^N \mu^N) = O((2\mu)^N).$$

Much less than $O(\mu^{2N}) = O((\mu^2)^N)$, provided $\mu > 2$.
- 3D cubic lattice: $\mu = 4.68$, for $2N = 36$ savings of factor $(\mu/2)^{18} \approx 4.4 \times 10^6$.

Tree data structure

- Walk \(\{1, 7, 12, 49\} \) is stored along a path in the tree, where 1 is a child of the root and 49 is a leaf.
- The tree is defoliated, one layer of nodes with the same site number at a time.
- A layer \(s \) can be included so that \(s \in S \), or excluded.
- Good site numbering (by increasing distance from 0) gives narrower trees.
Exploiting 48-fold symmetry of cubic lattice

- 8 reflections, such as \((x, y, z) \rightarrow (-x, y, z)\).
- 6 rotations, such as \((x, y, z) \rightarrow (y, z, x)\).
- Hence symmetry group of 48 operations.
- We use this through the numbering of the lattice.
- All \(\leq 48\) symmetrically equivalent lattice points get site numbers in the same range \([48t, 48t + 47]\).
- Hence, \(s \equiv s' \iff \lfloor s/48 \rfloor = \lfloor s'/48 \rfloor\).
Split the computations

- Split computations for sets S into two:
 1. Sets $S = \{s_1, \ldots, s_k\}$ with $s_1 < s_2 < \cdots < s_k$, where $s_i \not\equiv s_k$ for all $i < k$.
 2. All other sets, i.e., those with at least one $s_i \equiv s_k$, where $i < k$.

- Case 1: only one highest site s_k from each equivalence class needs to be handled, saving a factor of up to 48.
- We choose s_k with $48|s_k$: no equivalent $s_i < s_k$ in its walk, so no need to check equivalences.
- Case 2: fewer walks, since walk must pass through at least one other equivalent of the highest site.
National supercomputer Huygens named after Christiaan Huygens (1629–1695).

- Located at SARA in Amsterdam.
- It has 3456 cores, with 2 cores per processor.
- Each core has a clock speed of 4.7 GHz.
Computing time

- Total computing speed 60 Teraflop/s = 60×10^{12} floating-point operations per second. Total electricity consumption 552 kW (excluding cooling).
- We used up to 192 cores, during 10 days, in total 50,000 CPU hours in Oct/Nov 2010.
- Estimated electricity bill: 5000 euro.
Parallelisation

\[Z_{2N} = Z_N^2 + \sum_{S \neq \emptyset} (-1)^{|S|} Z_N^2(S). \]

- We can split the work by size of the set \(S \), computing one correction term for each size \(|S|\).
- We can also split by the highest site \(s_k \) occurring in a set \(S \).
- Or a larger subset \(T \subset S \) that must occur.
- We used separate jobs, communicating with sockets, thus masquerading as a parallel program (and preventing some I/O as well).
- Fault tolerance is important, so various checks of results.
Number of self-avoiding walks in 3D

<table>
<thead>
<tr>
<th>N</th>
<th>Z_N</th>
<th>Year</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16926</td>
<td>1947</td>
<td>Orr, Univ. Glasgow</td>
</tr>
<tr>
<td>7</td>
<td>81390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>387966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1853886</td>
<td>1959</td>
<td>Fisher, Sykes, King’s College London</td>
</tr>
<tr>
<td>10</td>
<td>8809878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>41934150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>198842742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>943974510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4468911678</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21175146054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>100121875974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>473730252102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2237723684094</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of self-avoiding walks in 3D

<table>
<thead>
<tr>
<th>N</th>
<th>Z_N</th>
<th>Year</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>10,576,033,219,614</td>
<td>1987</td>
<td>Guttmann, Univ. Melbourne</td>
</tr>
<tr>
<td>20</td>
<td>49,917,327,838,734</td>
<td>1989</td>
<td>Guttmann</td>
</tr>
<tr>
<td>21</td>
<td>235,710,090,502,158</td>
<td>1987</td>
<td>Guttmann</td>
</tr>
<tr>
<td>22</td>
<td>1,111,781,983,442,406</td>
<td>1992</td>
<td>MacDonald et al, Nova Scotia</td>
</tr>
<tr>
<td>23</td>
<td>5,245,988,215,191,414</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>24</td>
<td>24,730,180,885,580,790</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>25</td>
<td>116,618,841,700,433,358</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>26</td>
<td>549,493,796,867,100,942</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>27</td>
<td>2,589,874,864,863,200,574</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>28</td>
<td>12,198,184,788,179,866,902</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>29</td>
<td>57,466,913,094,951,837,030</td>
<td>2000</td>
<td>MacDonald et al</td>
</tr>
<tr>
<td>30</td>
<td>270,569,905,525,454,674,614</td>
<td>2007</td>
<td>Clisby, Liang, Slade, Univ Melbourne</td>
</tr>
<tr>
<td>31</td>
<td>1,274,191,064,726,416,905,966</td>
<td>2007</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
<tr>
<td>32</td>
<td>5,997,359,460,809,616,886,494</td>
<td>2007</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
<tr>
<td>33</td>
<td>28,233,744,272,563,685,150,118</td>
<td>2007</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
<tr>
<td>34</td>
<td>132,853,629,626,823,234,210,582</td>
<td>2007</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
<tr>
<td>35</td>
<td>625,248,129,452,557,974,777,990</td>
<td>2007</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
<tr>
<td>36</td>
<td>2,941,370,856,334,701,726,560,670</td>
<td>2011</td>
<td>Schram, Barkema, Bisseling</td>
</tr>
</tbody>
</table>
Exact enumeration of self-avoiding walks

R D Schram1,2, G T Barkema1 and R H Bisseling2

1 Institute for Theoretical Physics, Utrecht University, PO Box 80195, 3508 TD Utrecht, The Netherlands
2 Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht, The Netherlands
E-mail: rauldschram@gmail.com, g.t.barkema@uu.nl and R.H.Bisseling@uu.nl

Received 12 April 2011
Accepted 9 June 2011
Published 27 June 2011

Online at stacks.iop.org/JSTAT/2011/P06019
doi:10.1088/1742-5468/2011/06/P06019

Abstract. A prototypical problem on which techniques for exact enumeration are tested and compared is the enumeration of self-avoiding walks. Here, we show an advance in the methodology of enumeration, making the process thousands or millions of times faster. This allowed us to enumerate self-avoiding walks on the simple cubic lattice up to a length of 36 steps.

Keywords: loop models and polymers, critical exponents and amplitudes (theory), exact results
Possible application

- Biopolymers like DNA, proteins are the **fundaments** of life.
- Polymers are of great **industrial importance**: plastics (DSM), synthetic fibres (Akzo).
- Insight into polymer behaviour:
 - viscosity
 - mean squared distance

\[P_N/Z_N \sim N^{2\nu}. \]

The value \(\nu \approx 0.588 \) can be computed with the simplest possible lattice model, SAWs on a cubic lattice.
Conclusion and outlook

- Our new enumeration method, length doubling, reduces the asymptotic complexity of counting self-avoiding walks from 4.68^N to 3.06^N.
- We improved the current world record from 30 to 36 steps, using symmetry, parallel computing, and a special lattice numbering scheme.
- Length doubling can be used for all kinds of problems:
 - body-centred cubic lattice
 - 4D hypercubic lattice
 - self-avoiding polygons
- Software package Sawdoubler to be released soon.
Thanks

Thank you!