
Introduction

Length doubling

Implementation

Results

Conclusion

1

Self-avoiding walks

Rob Bisseling

Mathematical Institute, Utrecht University

Mathematics colloquium, Utrecht
April 19, 2012

Introduction

Length doubling

Implementation

Results

Conclusion

2

Joint work

I Gerard Barkema (Theoretical Physics)

I Raoul Schram (student mathematics/physics)

Introduction

Length doubling

Implementation

Results

Conclusion

3

Contents

Introduction self-avoiding walks

New method: length doubling

Implementation

Results

Conclusion

Introduction

Length doubling

Implementation

Results

Conclusion

4

Curiosity-driven walks

Source: my-new-york.com, nyc-architecture.com

Introduction

Length doubling

Implementation

Results

Conclusion

5

Definition self-avoiding walks

I A self-avoiding walk (SAW) is a walk on a regular lattice
that never returns to a position already visited.

I We start in the origin.

I The length of a walk is the number of steps, N.

Introduction

Length doubling

Implementation

Results

Conclusion

6

A self-avoiding walk of length 0 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

7

A self-avoiding walk of length 1 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

8

A self-avoiding walk of length 2 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

9

A self-avoiding walk of length 3 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

10

A self-avoiding walk of length 4 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

11

A self-avoiding walk of length 5 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

12

A self-avoiding walk of length 6 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

13

A self-avoiding walk of length 7 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

14

A self-avoiding walk of length 8 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

15

A self-avoiding walk of length 9 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

16

A self-avoiding walk of length 10 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

17

A self-avoiding walk of length 11 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

18

A self-avoiding walk of length 12 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

19

A self-avoiding walk of length 13 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

20

A self-avoiding walk of length 14 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

21

A self-avoiding walk of length 15 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

22

A self-avoiding walk of length 16 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

23

A self-avoiding walk of length 17 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

24

A self-avoiding walk of length 18 in 2D

Introduction

Length doubling

Implementation

Results

Conclusion

25

Why are self-avoiding walks useful?

(Roiter and Minko 2007)
Poly(2-vinylpyridine) observed by Atomic Force Microscope.

I The walk models a polymer, a long molecule, based on a
carbon chain C–C–C–C· · ·C.

I A prime motivation is the DNA polymer.

I Self-avoiding because 2 carbon atoms cannot exist
at the same location (the excluded-volume property).

Introduction

Length doubling

Implementation

Results

Conclusion

26

How many self-avoiding walks are there?

I In 2D: Z1 = 4 walks.

Introduction

Length doubling

Implementation

Results

Conclusion

27

How many self-avoiding walks of length 2?

I Z2 = 4× 3 = 12 walks.

Introduction

Length doubling

Implementation

Results

Conclusion

28

How many self-avoiding walks of length 3?

I Z3 = 4× 3× 3 = 36 walks.

Introduction

Length doubling

Implementation

Results

Conclusion

29

How many self-avoiding walks of length 4?

I There are 4× 3× 3× 3 = 108 possible walks, not all
self-avoiding.

I In 8 cases, we return to the origin. So Z4 = 108− 8 = 100.

I Question: can you give an upper bound for Z8?

Introduction

Length doubling

Implementation

Results

Conclusion

30

How many self-avoiding walks of length 8?

I There are 4× 37 = 8748 possible walks, not all
self-avoiding. So Z8 ≤ 8748.

I In general:
2N ≤ ZN ≤ 4× 3N−1.

Introduction

Length doubling

Implementation

Results

Conclusion

31

How many self-avoiding walks of length 8?

I We can concatenate two self-avoiding walks of length 4:

Z8 ≤ Z 2
4 = 10000.

I A sharper upper bound: the first red step cannot be the
reverse of the last black step:

Z8 ≤
3

4
Z 2

4 = 7500.

I Z8 = 5916.

Introduction

Length doubling

Implementation

Results

Conclusion

32

Recursive 2D SAW algorithm

SAW(i ,N)
i = number of steps made, 0 ≤ i ≤ N
N = desired length of the walk.
(x0, y0), (x1, y1), . . . , (xi−1, yi−1) is self-avoiding.

if not visited (xi , yi) then
if i = N then

print ”(x0, y0), . . . (xN , yN) is a SAW”
else

visited(xi , yi) = true;
xi+1 = xi + 1; yi+1 = yi ; SAW(i + 1,N);
xi+1 = xi − 1; yi+1 = yi ; SAW(i + 1,N);
xi+1 = xi ; yi+1 = yi + 1; SAW(i + 1,N);
xi+1 = xi ; yi+1 = yi − 1; SAW(i + 1,N);
visited(xi , yi) = false;

Introduction

Length doubling

Implementation

Results

Conclusion

33

Bound for ZM+N

I A self-avoiding walk of length M + N can be cut into walks
of lengths M and N, so

ZM+N ≤ ZM · ZN .

I For M = N, we get Z2N ≤ (ZN)2.

I So ZN ≥ (Z2N)1/2 for all N, giving

Z1 ≥ (Z2)
1/2 ≥ (Z4)

1/4 ≥ (Z8)
1/8 ≥ · · ·

Introduction

Length doubling

Implementation

Results

Conclusion

34

Convergence in 2D

I In the limit case for the 2D square lattice:

lim
N→∞

(ZN)1/N = µ ≈ 2.638, so ZN ∼ µN

I Z71 = 4, 190, 893, 020, 903, 935, 054, 619, 120, 005, 916
(Jensen 2004).

I For 2D hexagonal lattice, µ =
√

2 +
√

2 ≈ 1.848
(Duminil-Copin and Smirnov 2010).

Introduction

Length doubling

Implementation

Results

Conclusion

35

The world is 3D

I Clisby, Liang, Slade (2007):
Z30 = 270, 569, 905, 525, 454, 674, 614

I Nathan Clisby’s animation of a self-avoiding walk of length
N = 1, 048, 575.

http://lattice.complex.unimelb.edu.au/home/sawlarge

Introduction

Length doubling

Implementation

Results

Conclusion

36

Three self-avoiding walks of length 18 in 3D

I Self-avoiding walks of length 18:
red, orange, blue.

I How many pairs of self-avoiding walks can be glued
together to give a self-avoiding walk of length 36?

Introduction

Length doubling

Implementation

Results

Conclusion

37

Counting method based on intersection sets

I Intersections a = (2, 0, 0), b = (2, 3, 1) : red/orange.

I Intersection c = (0,−2, 0) : blue/orange.

I There are 3 pairs of walks v/w with v 6= w .

I There are 3 intersections: remove the corresponding pair.

I Correct for over-removal: red/orange was removed
twice, so 3-3+1 = 1 pair remains, blue/red.

Introduction

Length doubling

Implementation

Results

Conclusion

38

Counting pairs of walks

i

w

v

I Ai = set of pairs of self-avoiding walks (v ,w) of length N
that both pass through lattice point i .

I The lattice points have been numbered (excluding 0).

I The set
⋃n

i=1 Ai contains all pairs that intersect.

Introduction

Length doubling

Implementation

Results

Conclusion

39

Length doubling

I There is a bijection between:
• the self-avoiding walks of length 2N
• the non-intersecting pairs of walks of length N

because we can concatenate two walks.

I So we have:

Z2N = Z 2
N −

∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ .

I We can compute Z2N efficiently by looking only at walks of
length N.

Introduction

Length doubling

Implementation

Results

Conclusion

40

Principle of inclusion–exclusion

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

i

|Ai | −
∑
i<j

|Ai ∩ Aj |+
∑

i<j<k

|Ai ∩ Aj ∩ Ak |+ · · ·

· · ·+ (−1)n+1|A1 ∩ A2 · · · ∩ An|,

A

9

6

5

1 7

C

2
3

B

Introduction

Length doubling

Implementation

Results

Conclusion

41

Length-doubling formula

I We obtain

Z2N = Z 2
N +

∑
S 6=∅

(−1)|S |Z 2
N(S).

I ZN(S) is the number of self-avoiding walks of length N
that pass through a subset S of lattice sites.

Introduction

Length doubling

Implementation

Results

Conclusion

42

Computational complexity

I To compute ZN(S), we create all walks of length N.

I For each walk, we create all 2N subsets of its N lattice
sites and add 1 to their counter in a global data structure.

I Overall complexity

O(2N · ZN) = O(2NµN) = O((2µ)N).

Much less than O(µ2N) = O((µ2)N), provided µ > 2.

I 3D cubic lattice: µ = 4.68, for 2N = 36 savings of factor
(µ/2)18 ≈ 4.4× 106.

Introduction

Length doubling

Implementation

Results

Conclusion

43

Tree data structure

I Walk {1, 7, 12, 49} is stored along a path in the tree, where
1 is a child of the root and 49 is a leaf.

I The tree is defoliated, one layer of nodes with the same
site number at a time.

I A layer s can be included so that s ∈ S , or excluded.

I Good site numbering (by increasing distance from 0)
gives narrower trees.

Introduction

Length doubling

Implementation

Results

Conclusion

44

Exploiting 48-fold symmetry of cubic lattice

I 8 reflections, such as (x , y , z) → (−x , y , z).

I 6 rotations, such as (x , y , z) → (y , z , x).

I Hence symmetry group of 48 operations.

I We use this through the numbering of the lattice.

I All ≤ 48 symmetrically equivalent lattice points get site
numbers in the same range [48t, 48t + 47].

I Hence, s ≡ s ′ ⇔ bs/48c = bs ′/48c.

Introduction

Length doubling

Implementation

Results

Conclusion

45

Split the computations

I Split computations for sets S into two:

1. Sets S = {s1, . . . , sk} with s1 < s2 < · · · < sk ,
where si 6≡sk for all i < k.

2. All other sets, i.e., those with at least one si ≡ sk ,
where i < k.

I Case 1: only one highest site sk from each equivalence
class needs to be handled, saving a factor of up to 48.

I We choose sk with 48|sk : no equivalent si < sk in its walk,
so no need to check equivalences.

I Case 2: fewer walks, since walk must pass through at least
one other equivalent of the highest site.

Introduction

Length doubling

Implementation

Results

Conclusion

46

National supercomputer

I National supercomputer Huygens named after Christiaan
Huygens (1629–1695).

I Located at SARA in Amsterdam.

I It has 3456 cores, with 2 cores per processor.

I Each core has a clock speed of 4.7 GHz.

Introduction

Length doubling

Implementation

Results

Conclusion

47

Computing time

I Total computing speed 60 Teraflop/s = 60× 1012

floating-point operations per second. Total electricity
consumption 552 kW (excluding cooling).

I We used up to 192 cores, during 10 days, in total 50,000
CPU hours in Oct/Nov 2010.

I Estimated electricity bill: 5000 euro.

Introduction

Length doubling

Implementation

Results

Conclusion

48

Parallelisation

Z2N = Z 2
N +

∑
S 6=∅

(−1)|S |Z 2
N(S).

I We can split the work by size of the set S , computing one
correction term for each size |S |.

I We can also split by the highest site sk occurring in a set S .

I Or a larger subset T ⊂ S that must occur.

I We used separate jobs, communicating with sockets, thus
masquerading as a parallel program (and preventing some
I/O as well).

I Fault tolerance is important, so various checks of results.

Introduction

Length doubling

Implementation

Results

Conclusion

49

Number of self-avoiding walks in 3D

N ZN Year Author
1 6
2 30
3 150
4 726
5 3 534
6 16 926 1947 Orr, Univ. Glasgow
7 81 390
8 387 966
9 1 853 886 1959 Fisher, Sykes, King’s College London
10 8 809 878
11 41 934 150
12 198 842 742
13 943 974 510
14 4 468 911 678
15 21 175 146 054
16 100 121 875 974
17 473 730 252 102
18 2 237 723 684 094

Introduction

Length doubling

Implementation

Results

Conclusion

50

Number of self-avoiding walks in 3D

N ZN Year Author
19 10 576 033 219 614
20 49 917 327 838 734 1987 Guttmann, Univ. Melbourne
21 235 710 090 502 158 1989 Guttmann
22 1 111 781 983 442 406
23 5 245 988 215 191 414 1992 MacDonald et al, Nova Scotia
24 24 730 180 885 580 790
25 116 618 841 700 433 358
26 549 493 796 867 100 942 2000 MacDonald et al
27 2 589 874 864 863 200 574
28 12 198 184 788 179 866 902
29 57 466 913 094 951 837 030
30 270 569 905 525 454 674 614 2007 Clisby, Liang, Slade, Univ Melbourne
31 1 274 191 064 726 416 905 966
32 5 997 359 460 809 616 886 494
33 28 233 744 272 563 685 150 118
34 132 853 629 626 823 234 210 582
35 625 248 129 452 557 974 777 990
36 2 941 370 856 334 701 726 560 670 2011 Schram, Barkema, Bisseling

Introduction

Length doubling

Implementation

Results

Conclusion

51

Publication

J.S
tat.M

ech.
(2011)

P
06019

ournal of Statistical Mechanics:J Theory and Experiment

Exact enumeration of self-avoiding
walks

R D Schram1,2, G T Barkema1 and R H Bisseling2

1 Institute for Theoretical Physics, Utrecht University, PO Box 80195,
3508 TD Utrecht, The Netherlands
2 Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht,
The Netherlands
E-mail: raouldschram@gmail.com, g.t.barkema@uu.nl and R.H.Bisseling@uu.nl

Received 12 April 2011
Accepted 9 June 2011
Published 27 June 2011

Online at stacks.iop.org/JSTAT/2011/P06019
doi:10.1088/1742-5468/2011/06/P06019

Abstract. A prototypical problem on which techniques for exact enumeration
are tested and compared is the enumeration of self-avoiding walks. Here, we show
an advance in the methodology of enumeration, making the process thousands or
millions of times faster. This allowed us to enumerate self-avoiding walks on the
simple cubic lattice up to a length of 36 steps.

Keywords: loop models and polymers, critical exponents and amplitudes
(theory), exact results

c©2011 IOP Publishing Ltd and SISSA 1742-5468/11/P06019+8$33.00

Introduction

Length doubling

Implementation

Results

Conclusion

52

Possible appplication

I Biopolymers like DNA, proteins are the fundaments of life.

I Polymers are of great industrial importance: plastics
(DSM), synthetic fibres (Akzo).

I Insight into polymer behaviour:
• viscosity
• mean squared distance

PN/ZN ∼ N2ν .

The value ν ≈ 0.588 can be computed with the simplest
possible lattice model, SAWs on a cubic lattice.

Introduction

Length doubling

Implementation

Results

Conclusion

53

Conclusion and outlook

I Our new enumeration method, length doubling, reduces
the asymptotic complexity of counting self-avoiding walks
from 4.68N to 3.06N .

I We improved the current world record from 30 to 36 steps,
using symmetry, parallel computing, and a special lattice
numbering scheme.

I Length doubling can be used for all kinds of problems:
• body-centred cubic lattice
• 4D hypercubic lattice
• self-avoiding polygons

I Software package Sawdoubler to be released soon.

Introduction

Length doubling

Implementation

Results

Conclusion

54

Thanks

Thank you!

	Introduction self-avoiding walks
	New method: length doubling
	Implementation
	Results
	Conclusion

