Self-avoiding walks

Rob Bisseling

Mathematical Institute, Utrecht University

Mathematics colloquium, Utrecht April 19, 2012

Introduction Length doubling Implementation Results Conclusion

Joint work

Gerard Barkema (Theoretical Physics)

Raoul Schram (student mathematics/physics)

Universiteit Utrecht

ntroduction Length doubling mplementation Results Conclusion

Contents

Introduction self-avoiding walks

New method: length doubling

Implementation

Results

Conclusion

Universiteit Utrecht

ntroduction .ength doubling mplementation Results Conclusion

Curiosity-driven walks

Source: my-new-york.com, nyc-architecture.com

Introduction

Length doubling Implementation Results Conclusion

Definition self-avoiding walks

- ► A self-avoiding walk (SAW) is a walk on a regular lattice that never returns to a position already visited.
- We start in the origin.
- The length of a walk is the number of steps, *N*.

A self-avoiding walk of length 0 in 2D

 \bigcirc \bigcirc 0 0 0 0 0 \cap \bigcirc 0 0 0 00 \cap \cap \bigcirc \cap 0 0 0 0 0 \cap \bigcirc 0 0 0 00 \bigcirc \bigcirc 0 0 00 \bigcirc \bigcirc \bigcirc

Introduction Length doubling Implementation Results Conclusion

A self-avoiding walk of length 1 in 2D

 \bigcirc \bigcirc 0 0 0 0 0 \cap \bigcirc 0 0 0 00 \bigcirc \bigcirc \bigcirc \bigcirc \cap 0 0 0 0 0 \cap \bigcirc 0 0 0 00 \bigcirc \bigcirc 0 0 0 \bigcirc 0 \bigcirc \bigcirc

A self-avoiding walk of length 2 in 2D

0 0 0 0 0 \bigcirc \bigcirc 0 0 0 0 \cap 0 \bigcirc \mathbf{O} Ο 0 0 \bigcirc \bigcirc Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $0 \quad 0 \quad 0$ 0 \cap \bigcirc \bigcirc 0 0 0 00 \bigcirc \bigcirc O \bigcirc \bigcirc \bigcirc \bigcirc \cap

A self-avoiding walk of length 3 in 2D

0 0 0 0 0 \bigcirc \bigcirc 0 0 0 0 \cap \circ \bigcirc Ο 0 0 О О \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 0 \cap \bigcirc 0 0 0 00 \bigcirc \bigcirc 0 0 0 \bigcirc \bigcirc \bigcirc \cap

A self-avoiding walk of length 4 in 2D

0 0 0 0 0 \bigcirc \bigcirc 0 0 0 0 Ο ()Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $0 \quad 0 \quad 0$ \bigcirc \bigcirc 0 \bigcirc 0 0 0 00 \bigcirc \bigcirc 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

A self-avoiding walk of length 5 in 2D

0 0 0 00 \bigcirc \bigcirc Ο Ο 0 \bigcirc \bigcirc Ο 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $0 \quad 0 \quad 0$ 0 \bigcirc \bigcirc \bigcirc 0 0 0 00 \bigcirc \bigcirc O \bigcirc \bigcirc \bigcirc \bigcirc \cap

A self-avoiding walk of length 6 in 2D

0 0 0 00 \bigcirc \bigcirc Ο \bigcirc Ο \bigcirc Ο Ο \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $0 \quad 0 \quad 0$ 0 \bigcirc \bigcirc \bigcirc 0 0 0 00 \bigcirc \bigcirc O \bigcirc Ο \bigcirc \bigcirc \cap

Introduction Length doubling Implementation Results

A self-avoiding walk of length 7 in 2D

0 0 0 0 \cap \bigcirc \bigcirc Ο Ο \bigcirc \bigcirc Ο 0 \cap \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cap \bigcirc Ο 0 \bigcirc \cap \bigcirc \cap 0 0 00 \bigcirc \bigcirc 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \cap

Introduction Length doubling Implementation Results

A self-avoiding walk of length 8 in 2D

0 0 0 0 \cap \bigcirc \bigcirc Ο \bigcirc \bigcirc ()Ο \bigcirc \bigcirc \bigcirc \cap \bigcirc \cap $\bigcirc \bigcirc \bigcirc$ 0 \cap \bigcirc \bigcirc \bigcirc 0 0 00 \bigcirc \bigcirc 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \cap

A self-avoiding walk of length 9 in 2D

Introduction Length doubling Implementation Results Conclusion

A self-avoiding walk of length 10 in 2D

Conclusion

A self-avoiding walk of length 11 in 2D

0 0 0 0 \cap \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cap \bigcirc Ο \bigcirc \bigcirc \cap \bigcirc \cap 0 0 00 \bigcirc \bigcirc 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Introduction Length doubling Implementation Results

Conclusior

A self-avoiding walk of length 12 in 2D

Introduction Length doubling Implementation Results Conclusion

A self-avoiding walk of length 13 in 2D

A self-avoiding walk of length 14 in 2D

A self-avoiding walk of length 15 in 2D

Introduction Length doubling Implementation Results Conclusion

A self-avoiding walk of length 16 in 2D

Introduction Length doubling Implementation Results

A self-avoiding walk of length 17 in 2D

Introduction Length doubling Implementation Results

A self-avoiding walk of length 18 in 2D

Why are self-avoiding walks useful?

(Roiter and Minko 2007)

Poly(2-vinylpyridine) observed by Atomic Force Microscope.

- ► The walk models a polymer, a long molecule, based on a carbon chain C-C-C-C···C.
- A prime motivation is the DNA polymer.
- Self-avoiding because 2 carbon atoms cannot exist at the same location (the excluded-volume property)

Introduction Length doublin

mplementation

Results

Conclusion

How many self-avoiding walks are there?

• In 2D: $Z_1 = 4$ walks.

Universiteit Utrecht

How many self-avoiding walks of length 2?

•
$$Z_2 = 4 \times 3 = 12$$
 walks.

Universiteit Utrecht

How many self-avoiding walks of length 3?

•
$$Z_3 = 4 \times 3 \times 3 = 36$$
 walks.

Universiteit Utrecht

How many self-avoiding walks of length 4?

Introduction Length doubling Implementation Results Conclusion

- There are 4 × 3 × 3 × 3 = 108 possible walks, not all self-avoiding.
- ▶ In 8 cases, we return to the origin. So $Z_4 = 108 8 = 100$.
- Question: can you give an upper bound for Z_8 ?

How many self-avoiding walks of length 8?

- ► There are 4 × 3⁷ = 8748 possible walks, not all self-avoiding. So Z₈ ≤ 8748.
- ► In general:

$$2^N \leq Z_N \leq 4 \times 3^{N-1}.$$

Introduction Length doubling Implementation Results Conclusion

How many self-avoiding walks of length 8?

► We can concatenate two self-avoiding walks of length 4:

 $Z_8 \leq Z_4^2 = 10000.$

A sharper upper bound: the first red step cannot be the reverse of the last black step:

$$Z_8 \leq rac{3}{4}Z_4^2 = 7500.$$

Universiteit Utrecht

- ► *Z*₈ = 5916.
- ・ロト・日本・日本・日本・日本・今日を

Recursive 2D SAW algorithm

SAW(i, N)i = number of steps made, 0 < i < NN = desired length of the walk. $(x_0, y_0), (x_1, y_1), \dots, (x_{i-1}, y_{i-1})$ is self-avoiding. if not visited (x_i, y_i) then if i = N then print " $(x_0, v_0), \dots (x_N, v_N)$ is a SAW" else visited $(x_i, y_i) =$ true; $x_{i+1} = x_i + 1;$ $y_{i+1} = y_i;$ SAW(i+1, N); $x_{i+1} = x_i - 1;$ $y_{i+1} = y_i;$ SAW(i + 1, N); $x_{i+1} = x_i;$ $y_{i+1} = y_i + 1;$ SAW(i + 1, N); $x_{i+1} = x_i;$ $y_{i+1} = y_i - 1;$ SAW(i + 1, N);visited $(x_i, y_i) =$ false:

mplementation Results Conclusion

Bound for Z_{M+N}

► A self-avoiding walk of length M + N can be cut into walks of lengths M and N, so

$$Z_{M+N} \leq Z_M \cdot Z_N.$$

• For
$$M = N$$
, we get $Z_{2N} \leq (Z_N)^2$.

• So
$$Z_N \ge (Z_{2N})^{1/2}$$
 for all N, giving

$$Z_1 \geq (Z_2)^{1/2} \geq (Z_4)^{1/4} \geq (Z_8)^{1/8} \geq \cdots$$

Introduction

ength doubling mplementation Results Conclusion

Convergence in 2D

In the limit case for the 2D square lattice:

$$\lim_{N\to\infty} (Z_N)^{1/N} = \mu \approx 2.638, \qquad \text{so } Z_N \sim \mu^N$$

- Z₇₁ = 4, 190, 893, 020, 903, 935, 054, 619, 120, 005, 916 (Jensen 2004).
- ► For 2D hexagonal lattice, $\mu = \sqrt{2 + \sqrt{2}} \approx 1.848$ (Duminil-Copin and Smirnov 2010).

- Clisby, Liang, Slade (2007):
 Z₃₀ = 270, 569, 905, 525, 454, 674, 614
- Nathan Clisby's animation of a self-avoiding walk of length N = 1,048,575.

Three self-avoiding walks of length 18 in 3D

- Self-avoiding walks of length 18: red, orange, blue.
- How many pairs of self-avoiding walks can be glued together to give a self-avoiding walk of length 36?

Universiteit Utrecht

Introduction Length doubling Implementation Results Conclusion

Counting method based on intersection sets

Introduction Length doubling Implementation Results Conclusion

- ▶ Intersections a = (2, 0, 0), b = (2, 3, 1) : red/orange.
- Intersection c = (0, -2, 0) : blue/orange.
- There are 3 pairs of walks v/w with $v \neq w$.
- There are 3 intersections: remove the corresponding pair.
- Correct for over-removal: red/orange was removed twice, so 3-3+1 = 1 pair remains, blue/red.

Counting pairs of walks

Introduction Length doubling Implementation Results Conclusion

- A_i = set of pairs of self-avoiding walks (v, w) of length N that both pass through lattice point i.
- ▶ The lattice points have been numbered (excluding 0).
- The set $\bigcup_{i=1}^{n} A_i$ contains all pairs that intersect.

Length doubling

- There is a bijection between:
 - the self-avoiding walks of length 2N
 - the non-intersecting pairs of walks of length N

because we can concatenate two walks.

So we have:

$$Z_{2N}=Z_N^2-\left|\bigcup_iA_i\right|.$$

We can compute Z_{2N} efficiently by looking only at walks of length N.

Principle of inclusion-exclusion

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| + \cdots \right|_{\text{Imple}}$$

$$\cdots + (-1)^{n+1} |A_{1} \cap A_{2} \cdots \cap A_{n}|,$$

ength doubling mplementation Results Conclusion

Length-doubling formula

We obtain

$$Z_{2N} = Z_N^2 + \sum_{S \neq \emptyset} (-1)^{|S|} Z_N^2(S).$$

► Z_N(S) is the number of self-avoiding walks of length N that pass through a subset S of lattice sites.

Computational complexity

- To compute $Z_N(S)$, we create all walks of length N.
- For each walk, we create all 2^N subsets of its N lattice sites and add 1 to their counter in a global data structure.
- Overall complexity

$$\mathcal{O}(2^N \cdot Z_N) = \mathcal{O}(2^N \mu^N) = \mathcal{O}((2\mu)^N).$$

Much less than $\mathcal{O}(\mu^{2N}) = \mathcal{O}((\mu^2)^N)$, provided $\mu > 2$.

▶ 3D cubic lattice: $\mu = 4.68$, for 2N = 36 savings of factor $(\mu/2)^{18} \approx 4.4 \times 10^6$.

Length doubling

unter in a global data s

Tree data structure

- Walk {1,7,12,49} is stored along a path in the tree, where 1 is a child of the root and 49 is a leaf.
- The tree is defoliated, one layer of nodes with the same site number at a time.
- A layer s can be included so that $s \in S$, or excluded.
- Good site numbering (by increasing distance from 0) gives narrower trees.

Universiteit Utrecht

Introduction Length doubling Implementation Results Conclusion

Exploiting 48-fold symmetry of cubic lattice

- ▶ 8 reflections, such as $(x, y, z) \rightarrow (-x, y, z)$.
- 6 rotations, such as $(x, y, z) \rightarrow (y, z, x)$.
- ► Hence symmetry group of 48 operations.
- We use this through the numbering of the lattice.
- ► All ≤ 48 symmetrically equivalent lattice points get site numbers in the same range [48t, 48t + 47].
- Hence, $s \equiv s' \Leftrightarrow \lfloor s/48 \rfloor = \lfloor s'/48 \rfloor$.

Split the computations

Split computations for sets S into two:

- 1. Sets $S = \{s_1, \ldots, s_k\}$ with $s_1 < s_2 < \cdots < s_k$, where $s_i \not\equiv s_k$ for all i < k.
- 2. All other sets, i.e., those with at least one $s_i \equiv s_k$, where i < k.
- Case 1: only one highest site s_k from each equivalence class needs to be handled, saving a factor of up to 48.
- ▶ We choose s_k with 48|s_k: no equivalent s_i < s_k in its walk, so no need to check equivalences.
- Case 2: fewer walks, since walk must pass through at least one other equivalent of the highest site.

Introduction Length doubling Implementation Results Conclusion

National supercomputer

Introduction Length doubling Implementation Results Conclusion

- National supercomputer Huygens named after Christiaan Huygens (1629–1695).
- Located at SARA in Amsterdam.
- ▶ It has 3456 cores, with 2 cores per processor.
- Each core has a clock speed of 4.7 GHz.

Computing time

- Total computing speed 60 Teraflop/s = 60 × 10¹² floating-point operations per second. Total electricity consumption 552 kW (excluding cooling).
- We used up to 192 cores, during 10 days, in total 50,000 CPU hours in Oct/Nov 2010.
- Estimated electricity bill: 5000 euro.

Parallelisation

$$Z_{2N} = Z_N^2 + \sum_{S \neq \emptyset} (-1)^{|S|} Z_N^2(S).$$

- ► We can split the work by size of the set S, computing one correction term for each size |S|.
- ▶ We can also split by the highest site *s_k* occurring in a set *S*.
- Or a larger subset $T \subset S$ that must occur.
- We used separate jobs, communicating with sockets, thus masquerading as a parallel program (and preventing some I/O as well).
- Fault tolerance is important, so various checks of results.

Introduction Length doubling Implementation Results Conclusion

Number of self-avoiding walks in 3D

Ν	Z_N	Year Author	
1	6		-
2	30		Introduction
3	150		Length doubling
4	726		Implementation
5	3 5 3 4		Populto
6	16 926	1947 Orr, Univ. Glasgow	Results
7	81 390	-	Conclusion
8	387 966		
9	1 853 886	1959 Fisher, Sykes, King's College London	
10	8 809 878		
11	41 934 150		
12	198 842 742		
13	943 974 510		
14	4 468 911 678		
15	21 175 146 054		
16	100 121 875 974		
17	473 730 252 102		
18	2237723684094		Universiteit Utrecht

Number of self-avoiding walks in 3D

Ν	Z_N	Year Author
19	10 576 033 219 614	
20	49 917 327 838 734	1987 Guttmann, Univ. Melbourneaction
21	235 710 090 502 158	1989 Guttmann Length doubling
22	1111781983442406	
23	5245988215191414	1992 MacDonald et al, Nova Scotia
24	24 730 180 885 580 790	Conducion
25	116618841700433358	Conclusion
26	549 493 796 867 100 942	2000 MacDonald et al
27	2589874864863200574	
28	12198184788179866902	
29	57 466 913 094 951 837 030	
30	270 569 905 525 454 674 614	2007 Clisby, Liang, Slade, Univ Melbourn
31	1274191064726416905966	
32	5 997 359 460 809 616 886 494	
33	28 233 744 272 563 685 150 118	
34	132853629626823234210582	
35	625 248 129 452 557 974 777 990	
36	2941370856334701726560670	2011 Schram, Barke Bissennger Utrecht

Publication

• • • • • • • • • • • • •

ournal of Statistical Mechanics: Theory and Experiment An OP and SISSA journa

Exact enumeration of self-avoiding walks

R D Schram^{1,2}, G T Barkema¹ and R H Bisseling²

¹ Institute for Theoretical Physics, Utrecht University, PO Box 80195, 3508 TD Utrecht, The Netherlands ² Mathematical Institute, Utrecht University, PO Box 80010, 3508 TA Utrecht, The Netherlands E-mail: raouldschram@gmail.com, g.t.barkema@uu.nl and R.H.Bisseling@uu.nl

Received 12 April 2011 Accepted 9 June 2011 Published 27 June 2011

Online at stacks.jop.org/JSTAT/2011/P06019 doi:10.1088/1742-5468/2011/06/P06019

Abstract. A prototypical problem on which techniques for exact enumeration are tested and compared is the enumeration of self-avoiding walks. Here, we show an advance in the methodology of enumeration, making the process thousands or millions of times faster. This allowed us to enumerate self-avoiding walks on the simple cubic lattice up to a length of 36 steps.

Keywords: loop models and polymers, critical exponents and amplitudes (theory), exact results

Universiteit Utrecht

Results

51

Possible appplication

- Biopolymers like DNA, proteins are the fundaments of life.
- Polymers are of great industrial importance: plastics (DSM), synthetic fibres (Akzo).
- Insight into polymer behaviour:
 - viscosity
 - mean squared distance

$$P_N/Z_N \sim N^{2\nu}.$$

The value $\nu\approx$ 0.588 can be computed with the simplest possible lattice model, SAWs on a cubic lattice.

Introduction Length doubling Implementation Results Conclusion

Conclusion and outlook

- Our new enumeration method, length doubling, reduces the asymptotic complexity of counting self-avoiding walks from 4.68^N to 3.06^N.
- We improved the current world record from 30 to 36 steps, using symmetry, parallel computing, and a special lattice numbering scheme.
- Length doubling can be used for all kinds of problems:
 - body-centred cubic lattice
 - 4D hypercubic lattice
 - self-avoiding polygons
- ► Software package Sawdoubler to be released soon.

Introduction Length doubling Implementation Results Conclusion

Thanks

Thank you!

Universiteit Utrecht

Introduction Length doubling Implementation Results Conclusion