The many-state partition sum in DNA and RNA
hybridization and its application to microarrays

Matthijs van Dorp

Institute for Theoretical Physics, Utrecht University, Utrecht, and
Mathematics Institute, Utrecht University, Utrecht.

Supervisors:
Prof. G.T. Barkema and Prof. R.H. Bisseling

Revision: July 27, 2009



Contents

1__Introductionl 1
[LI TIntroduction to DNA and RNAl . . . ... ... ... ....... 1
LTI Profeind - - - - v v v vt e e 1

[LI2 DNAstructure . . . ... ... . ... ... ... ..... 2

[1.1.3 Directionality| . . . . . .. ... ... .. L. 4

LILZ _BNAL. . . . 5

[1.1.5_ Protein assembly| . . . . .. ... .. .. ... .. ... 5

[LI6 Protein abundancd . . . . . . ... ... ... 6

I1.2 Microarrays| . . . . . . . . .o 7
[1.2.1  Description of a microarray| . . . . . . . . .. .. ... .. 7

11.2.2 Incarnations. . . . . . . .. ... .. ... .. 7

11.2.3  Measurements using microarrays| . . . . . . . . . . .. .. 8

I1.2.4  Errors in experiments| . . . ... .. ... ... .. 8

|2 Thermodynamics of RNA and DNA hybridization| 10
[2.1 Existing algorithms for hybridization prediction|. . . . . . . . .. 10
2.1.1 arly calculations on Nucleic Acid hybridization| . . . . . 10

P2 The Nearest-Neighbor model] . . . . . . . .. ... ... ..... 11
[2.2.1  Introduction to Nearest-Neighbor thermodynamics| . . . . 11

12.2.2  Explanation of the Nearest-Neighbor modell . . . . . . .. 12

2.2.3  Limitations to the two-state approximation for the parti- |

[ tlon suml. . . . ... . 14
2.3 The extended nearest-neighbor model| . . . . .. ... ... ... 15
23T Extending the two-state approximation for the partition |

[ SUIN « v v e e e e e e e e e e e e e e 15
12.3.2  New parameters in the extended nearest-neighbor model|. 16

[2.3.3  Creating a method to implement the extended nearest- |

| neighbor modell . . . . . . . ... oL L 19
[3 The Rainbow Algorithml 20
BI Tntroductionl. . . . . . . . ... 20
[3.1.1 Example: Matrix-chain multiplication| . . . . . ... ... 20

3.1.2 e problem o an ybridization| . . . . . . . 22

8.2 Straightforward Implementation| . . . . .. ... ... ... ... 24
13.2.1  The single-bond model|. . . . . . .. ... .. ... .... 25

13.2.2  Minimal algorithm for computing the many-state parti- |

[ tlon suml. . . . . ... 26
3.3 The Recursive Rainbow Algorithm| . . . . . ... ... ... ... 30
13.3.1 Listing all possible bows| . . . . . .. ... .. ... .... 31

13.3.2  Functions for the recursive algorithm|. . . . . . . ... .. 32

13.3.3  Inclusion of a Reduction Matrix for more efiiciency| . . . . 34

3.4  The Hybrid Algorithm| . . . . . . ... ... ... ... ... ... 35
[3.4. 17 Combining the recursive and iterative algorithms| . . . . . 37




[4 _Algorithms compared|

[T Algorithm running times|

4.1.1  TImplementations and setup| . . . . . .. ... ... ...
4.1.2 Timings of the algorithms| . . . . . . . . ... ... ...
4.1.3  Preprocessing| . . . . . .. ... . oL

i)

Algorithm analysis| . . . . . .. ... ... ... ... ...

421 Thenumberof Hops| . . . . . .. .. ... . ... ....
4.2.2 The number of irreducible partition sums| . . . . . . . .
4.2.3  The number of array lookups| . . . . .. ... ... ...

38
38
38
40
40
42
42
44
45

46

[F DNA and RNA Thermodynamic parameters|
b.1  Existing Experimental Results| . . . .. ... ... ... .....
5.2 Thermodynamic Parameters for the Extended Model| . . . . . . .
p.2.1  Experimental data] . . . .. .. ... ... .00,
5.2.2  Results using the Rainbow model|. . . . . . ... ... ..
5.3 iscussion of the new parameter set| . . . .. . .. ... .. ...
[5.3.1 RNA/DNA parameters| . .. ................
5.3.2 RNA/RNA parameters| . . ... ..............
|3.3.3 DNA/DNA parameters| . . . .. ... ... ........
5.4 Inclusion of more parameters| . . . . .. .. ... .. ... ....

B41  Motivationl . ... ... ... ..o

[6 The many-state model and microarrays|

6.1

esting the many-state model on microarrays| . . . . . . . . ..

6.1.1 Comparison of the two-state and many-state models| . . .
6.1.2  Thermodynamic parameters for microarrays|. . . . . . .

6.2

The Latin Square dataset| . . . . . .. ... ... ... .....

6.3

[7

Conclusion and summary|

6.2.1 Introduction to the Latin Square experiments . . . . . .

6.2.2 oosing the right probes to use for analysis| . . . . . .
Fitting the many-state model for microarrays| . . . . . . . . ..

6.3.1 Parameters to be fittedl . . . . .. ... ... ... ...
[6.3.2  Testing for overfitting of the data setf. . . . . . .. ...
[6.3.3" Parameter sets for calculations on microarrays| . . . . .

54

57
57
57
58
98
98
99
60
60
60
62

66



Abstract

The assumption that DNA and RNA hybridization can be described by a
two-state model, is unjustified for analysis of microarrays. It is expected that
microarray analysis would benefit from a model which takes into account many
different possible configurations.

In this thesis, we present the tools developed to allow a many-state analysis
of microarrays, and we also report many results obtained in various areas. We
shall develop an algorithm to calculate many-state partition sums for DNA and
RNA using an extended Nearest-neighbor model. Different incarnations of the
algorithm are constructed, each of which computes the same final result, but
in a separate way. Eventually, five different algorithms will be tested for their
performance.

The many-state model is then used to refit the literature parameters for
the nearest-neighbor model. An improvement with respect to currently known
values is found, even though the many-state model is not expected to be very
effective at the short lengths of DNA and RNA strands that are used in the
experiments reported in the literature. Two different sets of parameters are
fitted and compared, and it is found that only a small subset of possible states
is still present in the many-state partition sum, such that our partition sum is
similar to the two-state partition sum.

Finally, the many-state model is used in analysis on microarrays. In spite
of problems with overfitting, a significant improvement is seen with respect to
the two-state model predictions. Parameters discovered for hairpins are similar
to the parameters already found in the literature. Additionally, a parameter
set is derived for microarray analysis. While the limited availability of data
hampers our ability to extract physically relevant parameters, the overall results
indeed confirm that the many-state partition sum performs better at microarray
analysis than the two-state partition sum. This leads to the conclusion that
the many-state partition sum may be expected to improve DNA and RNA
hybridization prediction in general.

Documentation of the programs used to obtain the results in this thesis,
is available as an appendix to this thesis. The source code of the programs,
available under the GNU LGPL license, can be obtained from the author, or al-
ternatively, online from http://www.math.uu.nl/people/bisseling /software.html


http://www.math.uu.nl/people/bisseling/software.html

1 Introduction

1.1 Introduction to DNA and RNA

Since the discovery of the DNA structure by Watson and Crick in 1953, a large
number of applications have been developed based on our knowledge of DNA.
DNA profiles assist in the identification of humans, DNA engineering enables
researchers to do extensive research on pathogens using mice instead of humans,
and many hereditary diseases have been discovered, giving scientists a lead for
developing a cure.

All life that we know, relies on DNA and/or RNA for its existence. As a
life form reproduces, it passes on some of its genetic code, which defines its
offspring. Parts of DNA may carry information on the physical characteristics
of a life form. As the amount of DNA is large, varying combinations of genetic
code cause differences between members of the same species. Other parts may
carry more specific information, which is the same for (almost) all members
of a species. For example, proteins are encoded for in DNA. Humans have
thousands of vital proteins, each of which has its specific tasks and abilities. In
our cells, the proteins are the primary workforce, a diverse and varied population
of specialized molecular machinery.

1.1.1 Proteins

Not all parts of human DNA are relevant at all stages of life. For example,
organ transplantation introduces an organ into a body that uses quite different
DNA, and that is only approximately equal to the organ that originate from the
host’s genetic information. Meanwhile, the DNA code for creating such organs
lies dormant in the cells of the host. More generally, while there are pieces of the
DNA that are frequently used by body cells, these compose only a very small
fraction of all DNA.

DNA cannot do much by itself, being only a long thread of nucleotidesEl,
lying curled up in the nucleus of a cell like a beaded string. Still it is of vital
importance to many processes in the cell. To be more precise, the cell actually
uses the DNA to produce proteins. Many functions in the cell are aided by
proteins, three-dimensional structures composed of thousands of amino acids,
small chemical complexes of which about 20 different types exist. A cell has
factories to assemble proteins, which are called ribosomes. Some are fixed on
a membrane known as the endoplasmic reticulum (ER), located next to the
nucleus of a cell. Free ribosomes also exist, which float freely in the cytoplasm
(cell fluid).

Ribosomes translate a strand of mRNA (messenger RNA) into a string of
amino acids. Every triplet of nucleotides in the DNA corresponds, via the
mRNA, to a certain amino acid. Some are redundant, such that several different
triplets cause the same amino acid to be added to the protein under construction.
The process of creating proteins using an RNA template is known as translation.
The string of amino acids is then folded into a three-dimensional structure. This
may happen by several mechanisms, including automatic folding immediately
following translation. Interestingly, the most powerful distributed computing

INucleotides are small chemical substances that make up DNA. Their purpose and char-
acteristics will be discussed later on.



cluster in the world at this time is Folding@home, which performs calculations
on protein folding. In this thesis, however, the focus is solely on a preceding
section of the protein assembly line - the messenger RNA, which is transcribed
from the DNA and eventually translated to help creating a protein. Therefore,
we will start with an introduction to DNA and RNA structure and mechanics.

Figure 1: The double helix structure of DNA.

1.1.2 DNA structure

In this thesis, we try to develop methods for the analysis of microarrays (to
be defined later), so first of all let us recall the basic properties of DNA. DNA
is an interconnected double helix (a ladder), two strings both circling around
a common central axis in nearly perfect antiphase (see Figure . The strings
consist of sugars and phosphates, and the crossbars of the ladder are formed by
hydrogen bonds between small complexes that are attached to the string. This
will be investigated in greater detail in the remainder of this section.



Specifically, DNA can be regarded as a string-shaped backbone of phosphate-
deoxyribosd’] The backbone is adorned with nucleotides, also called bases. A
base is a small assembly of atoms (carbon, nitrogen, oxygen and hydrogen)
that is connected to the sugar part of the backbone, deozyribose. DNA has four
distinct bases known as adenine (A), cytosine (C), guanine (G) and thymine (T).
DNA consists, in general, of two complementary strings, where ‘complementary’
means that an A base on one string is paired by hydrogen bonds to a T base on
the other string; similarly, C and G are complementary. Such strings are more
commonly called strands.

DNA usually exists only in its helical form, where two fully complementary
strands intertwine in a mutual embrace, such that the whole complex is in
its preferred state, and all hydrogen bonds are found. When two bases are
connected by hydrogen bonds, the pair of bases forming the hydrogen bonds is
called a base pair. These base pairs form the crossbars of the DNA helical-ladder
structure, and are responsible for keeping the two DNA strands together and in
their helical configuration.

The process of two DNA strands forming a double helix by establishing
hydrogen bonds between nucleotides, thus creating base pairs, is commonly
called hybridization. The structure of two strands hybridized to each other is
called a hybrid. The DNA in a cell’s nucleus consists of a few long strings
comprised of millions of base pairs each, and may be considered a single, very
long, double helix. Short pieces of DNA, however, may form a wide variety of
structures. When two strings of DNA are only partially complementary, it is
still possible for the two strands to form a number of base pairs. However, the
pieces of DNA that are not part of a base pair do not form a helix, and such
sections behave more like flexible polymers. To facilitate discussions of such
cases of hybridization, the notion of secondary structure is used.

Secondary structure is the way how DNA twists and bends, but in a rather
abstract sense: the true three-dimensional form of the DNA is generally called
tertiary structure, and the latter is, in general, much harder to determine accu-
rately. The difference is that secondary structure is determined solely by which
nucleotides have engaged in base pair formation, establishing hydrogen bonds.
Secondary structure does not explicitly involve the spatial organization of DNA,
and in this it differs from tertiary structure, which does take into account the
precise way of twisting and bending of DNA.

It has been remarked that in its most well-known form, two DNA strands
form a double helix. This double helix structure is asymmetric in the sense
that although the strands both follow an imaginary cylindrical shape, there is
a minor groove and a major groove separating the two strands, see Figure
Essentially, the strands are not in perfect antiphase, an aspect which is also
shown in Figure[l] Consequently, when looking at a double helix cylinder from
the side, the strands appear as sine-like waves of equal periods, but with a phase
difference, which is not equal to 7. Additionally, the chemical composition of the
backbone is orientation dependent, and DNA is composed of one strand with
one direction and a second strand with opposite direction. Thus, the double
helix, contrary to intuition, is not rotationally symmetric for any rotation ¢

2Deoxyribose is a type of sugar. The backbone of DNA is composed of alternatingly a
phosphate and a sugar residue, hence the name DNA, which stands for deozyribonucleic acid.
Similarly, RNA stands for ribonucleic acid which, when compared to DNA, has one extra
oxygen molecule in each segment.



Figure 2: The DNA helix seen from above, with emphasis on the axial asym-
metry.

around the axis of the cylinder (except for the trivial case where ¢ is a multiple
of 27‘(’)E|

The only symmetry of a DNA helix, therefore, is of a translational type.
Note that this argument also implies that a single strand floating freely still has
a front end and a back end, and when we consider a certain nucleotide at some
position, we may consider an ‘upstream’ and a ‘downstream’ direction, which
are by no means interchangeable. The directional dependence thus cuts down
the number of possible secondary structures, and is used implicitly in much of
the following. Before continuing, we will give a more formal definition and some
conventional terms used to denote directionality.

1.1.3 Directionality

As has been mentioned before, the DNA double helix is direction dependent.
A strand, therefore, has a direction, and the ends are conventionally denoted 3’
and 5 (three prime and five prime), respectively, due to naming conventions of
the sugar ring in the DNA backbone. Consequently, a DNA segment consisting
of a backbone with attached to it the bases A and C may be written 5-A-C-3’
- the 5’-3’ convention arises because the only way to synthesize DNA is in the

3That is to say, the separate strands exchange position. This causes a directional depen-
dence for the backbone, and a 3’ and a 5’ end. The fact that the strands are not interchange-
able, also results in a difference in energy costs for certain sequences, such that if one strand
has nucleotides AG hybridizing to nucleotides TC on the other, the energy cost of this hy-
bridization is not equal to that of nucleotides T'C on the first strand hybridizing to AG on the
second. More on the asymmetry of hybridized DNA will follow later.



5 to 3’ direction (one can only extend DNA by appending nucleotides to the
3’ end). The complementary strand is 5’-G-T-3’, as obviously, the directions of
the two strands making up the double helix are mutually opposite. Thus, the
above described DNA looks like AC/TG where AC is read in the 5-3 direction,
and TG, the complementary part, is read in the 3’-5’ direction. Note that this
is essentially different from TG/AC, which corresponds to 5-T-G-3’ combining
with 5-C-A-3’, which is the exact mirror image of the previously described
structure, and may be briefly denoted as CA/GT. Thus, the directionality, as
caused by the asymmetry in the double helix, results in a set of 10 different
doublets (sets of two neighboring base pairs, e.g. AC/TG is one of the ten
doublets) that are possible in DNA/DNA hybridizationﬁ

1.1.4 RNA

Similar to DNA, though not identical, is RNA. While DNA does not usually
occur in short strands, RNA is usually relatively short (seldom longer than a few
thousand nucleotides) and serves various purposes. Among others, it regulates
protein production in the cell. It differs from DNA in several ways. First,
while DNA is in almost all cases found as a double-stranded molecule in its
well-known helical form, RNA generally occurs single-stranded. As such, it is
not a very stable molecule and may be fragmented more easily than ordinary
DNA. Secondly, the backbone of RNA is different from DNA. The difference is
the presence of a hydroxyl group (OH) at the sugar ring in the RNA backbone,
which in the case of DNA is replaced by H (so the oxygen atom is missing).
Finally, the base complementary to adenine (A) in DNA is thymine (T), but in
RNA thymine does not appear, but is replaced with wuracil (U). Although the
names 'uracil’ and ‘thymine’ do not suggest any similarity, thymine is essentially
methylated uracil — uracil, with respect to thymine, is missing a methyl group
(replacing CH3 with just H).

Although RNA is chemically different from DNA in a few aspects, it shares
many properties with DNA, and RNA and DNA strands may hybridize to each
other.

1.1.5 Protein assembly

One of many uses of RNA is to code for proteins. As stated before, this type
of RNA is known as messenger RNA, often abbreviated to mRNAE| Messenger
RNA is created by a process called transcription. When several tags (markers)
are put on the DNA, it is possible for a copying enzyme, called RNA poly-
merase, to transcribe the DNA into messenger RNA. The messenger RNA then
is released into the cell, and carries the copied information to the ribosome.
The information is split in triplets. Each triplet of nucleotides in RNA (such
a triplet is called a codon) has a special meaning. For example, AUG is a ’start
codon’ while UAG is a ’stop codon’. These tell the ribosomes where to start

4Note that there is still some kind of symmetry, namely, AC/TG is equal to GT/CA,
which both correspond to 5’-A-C-3’ hybridizing to 5-G-T-3’. Thus there are not 16 different
parameters, but only 10 - the number of independent entries in a symmetric matrix.

5The prefix m indicates a different function rather than a different physical structure. The
object under consideration is RNA, as is tRNA (transfer RNA), rRNA (ribosomal RNA), et
cetera. Therefore, throughout this document, the more general word ‘RNA’ will often be used
to refer to mRNA.



and where to stop translating the mRNA into protein. Every triplet between
the start and stop codons codes for amino acids% and the ribosome assembles a
protein using amino acids, since every amino acid is associated to one or several
codons[]] The amino acids are transported to the ribosomes by other RNA
strands, called tRNA (transfer RNA)E| These tRNAs are folded RNA sequences
with the amino acid attached to them, that bind (partially) to the mRNA and
transfer the carried amino acid to the ribosome, which attaches it to the protein
being assembled. At this time, the protein is only a string of amino acids, just
as the mRNA is a one-dimensional object. However, self-organization in the
string of amino acids causes this polymer-like molecule to fold in a special way.
A protein has to be folded in a certain way in order to be able to carry out the
task it is designated to perform.

1.1.6 Protein abundance

An organism controls the amount of protein by regulating mRNA concentra-
tions, and in turn, mRNA concentrations are controlled by markers put on the
cell DNA. These markers allow (or prevent) gene activity. Gene expression,
the extent to which a gene is active, is regulated by many factors. Generally
speaking, when a cell is in need of some protein, it changes some of the markers
on the RNA. Then, the enzyme RNA polymerase copies a part of the DNA of
that cell, creating mRNA, setting off the protein-creation chain. This RNA is
then used by the ribosomes to produce protein, as discussed in the previous
section. RNA strands are continuously being decomposed, such that they are
only present in significant amounts when they are being produced by the cell.
Thus, the presence of proteins in a cell is related to the presence of mRNA in
the cell, and moreover, the presence of mRNA in the cell is an indication of the
proteins the cell is currently trying to have created.

Consequently, when we are interested in cellular processes such as protein
abundance, the amount of mRNA present gives an indication of the current
level and focus of protein production. Many studies and medical therapies
require a good estimate of protein abundance for better understanding of the
current situation and status of the cell. Thus, since mRNA concentrations are
thought to be a very good indicator of protein creation intensity, experiments
are done to determine these mRNA concentrations. As there are thousands of
proteins, probing for only a single type of mRNA is not an efficient way to give an
overview of the various ongoing processes in the cell. Recently, microarrays were
developed to help finding RNA concentrations. These arrays simultaneously

6In fact, this is a simplification, because in fact not all RNA that is copied by the RNA
polymerase, is indeed used for creating proteins. Instead, the initial form of newly copied
RNA is called pre-mRNA and contains non-coding sequences called introns that are not part
of the protein code. These are removed by a process called splicing, resulting in the final
mRNA which consists solely of nucleotides coding for amino acids. It is this final (‘mature’)
mRNA strand that is ultimately used by the ribosomes to create a protein. It is thought that
introns are not entirely without a purpose, but discussing this is far outside the scope of this
writing, and for our discussion they are irrelevant.

"There are 20 different amino acids, and there is a start and a stop codon. Thus, there
are 22 meanings to be assigned, while there are 43 = 64 possible configurations of a codon.
Consequently, some amino acids have multiple representations in terms of RNA nucleotides.
Mathematicians would say that the mapping of the set of RNA triplets into the set of amino
acids and start/stop codons is not injective.

8This shows how RNA serves different purposes in a cell.



measure the concentration of many thousands of different mRNA sequences.

1.2 Microarrays

Many diseases cause a disruption in gene expression levels, causing shortages or
surpluses of certain proteins. These diseases may be diagnosed by measuring
mRNA levels in the cell, and comparing measured concentrations with standard
concentrations. Measuring these RNA concentrations is not an easy task, but
recent improvements in biotechnology have enabled commercial production of
microarrays, a microarray being millions of short fragments of single-stranded
DNA deposited on a chip. This section is devoted to giving an introduction to
microarrays.

1.2.1 Description of a microarray

A microarray typically consists of some substrate (made of glass, plastic, or
silicon quartz) on which specific (single stranded) DNA fragments are deposited.
Different techniques are used to achieve this. The earliest ways of creating such
a biochip, was to dip into a solution of all-identical DNA fragments and deposit
a droplet of the solution on the substrate. The resulting dot of DNA fragments
would be an attractive spot for complementary RNA to bind, so if one would
find a way to measure the amount of RNA on a certain dot, one would have a
good estimation of the amount of RNA available in some sample that is washed
over the dot. Placing several of these dots on a substrate, the biochip known
as microarray was developed. Every dot would correspond to a certain piece
of RNA, and using techniques to make RNA fluorescent, illumination of the
chip with a laser would reveal the concentrations of RNA, measurable as light
intensities. Several complications arise, but this is the general principle behind
microarrays.

1.2.2 Incarnations

There are several forms of microarrays. Besides the ‘dot’ form described above,
there is another notable technique of measuring RNA concentrations, namely to
build short fragments of single-stranded DNA (commonly referred to as oligonu-
cleotides) directly on a substrate by means of photolithography. The fragments
are usually shorter, but the fragments are a lot more accessible because they
are neatly arranged, each on its individual position, rather than an orderless
heap of DNA fragments as with the dot method. Several hundreds of identical
DNA strands are synthesized in a small area, called a feature, whose purpose
is to detect (i.e. measure the concentration of) a certain RNA sequence. In
this report, we are mainly concerned with the second kind of microarray, with
oligonucleotides constructed on the substrate by means of photolithography.
Because of the well-defined properties of this system, it is most suitable for
developing physical-based theories for estimating the relationship between mea-
sured mRNA intensity and actual mRNA concentration.

Several additional modifications are in use to further reduce noise and un-
wanted effects. For instance, the DNA strands are actually not attached directly
to the surface, but instead connected to the surface by a small ‘rope’, to reduce
repulsive effects caused by the substrate. After all, thermal motion of RNA will



cause it to be pushed away from the substrate, which restricts its movement,
which in turn negatively affects its entropy.

1.2.3 Measurements using microarrays

It has been mentioned before that the main purpose of microarrays is, to measure
gene expression levels by means of detecting RNA concentrations, which are
closely related to protein concentrations. To be able to detect RNA that has
hybridized with the complementary DNA on our chip, we must have some way
of ‘seeing’ it. To make RNA visible, it is treated before being washed over our
microarray, slightly modifying the U nucleotides present in the RNA. Then, the
RNA in solution is applied to the microarray, and many of the RNA fragments
(referred to as targets) present in the solution will stick to probes of DNA on
the chip, forming a double-stranded DNA-RNA complex. The remaining RNA
is washed off the chip, and fluorescent markers are attached to the modified
U nucleotides that are present in the RNA that is part of the double-stranded
complex (and thus was not washed away). Finally, a laser beam shines on
the different features resulting in an intensity pattern reflecting the number of
fluorescent markers present on a certain position. From this result, an estimated
concentration of RNA may be derived.

1.2.4 Errors in experiments

There are numerous reasons why the actual use of microarrays is far more com-
plicated than the above description. Here is a list of some known effects:

e The RNA in solution is actually fragmentized first, and various fragments
of all sizes are floating around in the solution, causing unpredictable cross-
hybridization.

e RNA targets have a significant tendency to bind in the wrong place, caus-
ing erroneous measurements of RNA concentrations.

e RNA targets, which are single stranded, may stick to themselves, reducing
the amount of RNA available for probe-target hybridization.

e Furthermore, RNA targets might stick to other (accidentally complemen-
tary) RNA targets, mutually reducing the apparent concentration.

e Some RNA sequences are richer in uracil (U) nucleotides than others, so
they will appear relatively brighter.

e The number of probes is limited, and saturation might occur for very high
concentrations.

e The microarray synthesis is complicated, and the photolithography used is
slightly unreliable. Only about 10 % of all probes reach length 25 without
any errors.

Many of these problems have been circumvented to some extent. For exam-
ple, the concentration of RNA in the solution is low enough to prevent saturation
of probes almost everywhere. The uracil content of RNA sequences is known,
so compensation for different brightnesses is possible.



This leaves two harder problems to solve: to compensate for RNA-RNA hy-
bridization, and to solve for RNA incorrectly attached to a DNA probe that
was intended for a different RNA strand. The latter has been ‘solved’ by in-
troducing the Perfect Match - Mismatch (PM/MM) concept. Every strand of
25 nucleotides perfectly matching a section of RNA, is neighboured by an al-
most identical strand, consisting of exactly the same sequence as the perfect
match except for position 13 (the middle) where the complementary nucleotide
is chosen instead. The reasoning behind this idea is that if something undesir-
able sticks to a PM, it might stick to the MM as well, while the actual target
complementary to the PM will stick to the PM and a lot less to the MM. So,
subtracting the MM intensity from the PM intensity, we should find the actual
RNA concentration. This technique works for most probes, but there seem to
be some subtleties involved yet that remain unsolved, as this does not always
seem to work as intended — it is not unusual that MM intensities exceed the
corresponding PM intensity.

Finally, target-target hybridization remains a difficult effect to estimate.
While self-hybridization (an RNA string sticking to parts of itself) may be esti-
mated, there is little hope for a way to estimate the amount of RNA in solution
that is actually sticking in part to other RNA. As this amount will usually
be roughly the same fraction for a specific sequence of RNA, repeated experi-
ments with known RNA concentrations might yield information which helps to
estimate the error caused in this way, and allow us to correct for this effect.



2 Thermodynamics of RNA and DNA hybridiza-
tion

2.1 Existing algorithms for hybridization prediction

We shall now leave the subject of microarrays for a while, and instead concen-
trate on a better understanding of the concept of hybridization. In the following
sections, we will work towards an algorithm for computing hybridization free
energy. In the past, various algorithms have been devised, for various purposes.
Before we discuss an algorithm for the problem stated in the preceding sections,
let us give an overview of some known algorithms.

2.1.1 Early calculations on Nucleic Acid hybridization

RNA plays many roles in the cell. One of these examples is transfer RNA, which
aids protein assembly by providing amino acids to the ribosome. Transfer RNA
is almost completely self-hybridized. And consequently, it is in a more or less
constant state - its free energy minimum is very low with respect to its no-
hybridization energy, and it is extremely unlikely for such a structure to fall
apart. Transfer RNA is made up of around 100 bases. This is quite a bit
longer than the Affymetrix DNA probe strands, which are only of length 25, or
the RNA targets in Affymetrix experiments, which are 50 nucleotides long on
average.

These numbers, however, are nothing when compared to what some RNA
scientists must cope with. RNA viruses, for instance, are frequently found to
have a length of a few thousand. There are a vast number of different RNA
viruses, and understanding their secondary structure is crucial for understanding
the way these viruses work — just like tRNA would not be able to perform its
duties if it had not folded into the right configuration, a virus depends on its
folding for its survival.

Sequences this long can hybridize to themselves in many different ways.
Moreover, since the virus is able to survive because of its structure, it is likely
that a certain dominant form is present, that is, all viruses of the same type
are expected to have the same three-dimensional shape. This dominant form
is then expected to contain many more base pairs than any other, significantly
different, configuration. Knowing the RNA sequence defining such a virus, the
remaining challenge is to reconstruct the folding manner of the RNA strand.

Problems like these prompted scientists to develop computer routines which
help predict RNA folding. They were not particularly interested in partition
sums or different configurations, as we are, but only in the dominant configu-
ration, the configuration in which a strand of RNA is usually found in nature.
Even so, the problem was hard enough. The first attempts were made at the
end of the 1970s. Only in the 1980s, when computing power improved and
programming became more suited to scientific uses, programs for RNA folding
became popular. See for instance, Ref. [I5], which notes that while computer
programs so far had not been very successful in determining secondary RNA
structure correctly, advancements in both programming and computer technol-
ogy were promising. This article gives an interesting overview of the challenges
of writing algorithms in the early days of computers, when sequences of over a
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thousand nucleotides were troublesome because the order-N x N matrices could
not be stored in the virtual memory.

As the years went by, algorithms improved, and so did processors and mem-
ory capacities. By 1989, in an article by Jaeger, Turner and Zuker [I6], success
rates had improved greatly. Most of the dominant secondary structures could
then be found by computer programs. This algorithm also uses knowledge about
RNA thermodynamics, such as the sequence dependent nearest-neighbor effect,
which is described in greater detail in the upcoming section |2.2

In the preceding, the primary challenge is to find the optimal folding. It
takes a lot of effort to find it, but one needs to do the calculation only once.
Though intimately related to the folding in our Affymetrix system, there are a
few important differences. Our strands are much shorter, but there are scores of
different short strands, and the thermodynamic behavior varies between strands.
It is to be expected that also suboptimal conﬁgumtionsﬂ contribute significantly
to the associated thermodynamic behavior. After all, while tRNA has probably
evolved to be in a certain state with very high probability, the function of mRNA
does not lie in the strand folding into whatever configuration, and often, there
are several configurations that are close to the energy minimum. Thus, as men-
tioned, it is not sufficient to consider only the state corresponding to minimal
energy, and we should include suboptimal configurations in our calculations.

On the other hand, algorithms developed to calculate thermodynamical char-
acteristics of DNA/RNA hybridization by means of calculating a partition sum,
are often similar to the RNA folding problem — both areas of research are com-
puting possible foldings and their energies, albeit on strands of different lengths.
This similarity property may be seen in the remainder of this chapter, as we
discuss DNA/RNA hybridization algorithms -with folding- in more detail.

2.2 The Nearest-Neighbor model
2.2.1 Introduction to Nearest-Neighbor thermodynamics

Now that we have introduced the necessary biological terms, conventions and
definitions, we will advance towards a physics-based model of RNA/DNA hy-
bridization. Therefore, we shall consider the probe-target DNA-RNA hybridiza-
tion in more detail. We would like to have an accurate theory on the thermody-
namics of this binding. Two effects influence the tendency for a strand of RNA
to bind to a strand of DNA. The first is an entropic effect: rather than being
tied to a spot, RNA would be free-floating. Thus, a penalty must be paid to let
the RNA attach to the DNA. This penalty increases the free energy. However,
if the RNA is strongly sticking to the DNA, by means of hydrogen bonding,
this state is energetically favorable, and might therefore nevertheless be the
preferred one. This is determined by the effective binding energy or effective
hybridization free energy of the RNA strand to the DNA probe. Naturally, the
RNA concentration also influences the probability to find RNA hybridized to
DNA. Since quite a lot of mRNA strands are floating around, we will describe
hybridization probabilities for the DNA probes. We may write the partition

9The use of the word suboptimal reflects that a certain state is not the most probable state.
It turns out that frequently, a significant portion of mRNA is not folded in the most probable
way. This can be understood by computing the partition sum, which may or may not be
dominated by a single state. More discussion on partition sums will follow in due time.
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sum for a single DNA probe as follows,
Z =1+ CRNAeiﬁAG7 (1)

where we introduced the mRNA concentration cgrna, the inverse temperature
s=1/ RTH and the effective binding energy AG. Note that the second term
is the Boltzmann weight for the hybridized state. The partition sum serves as
a normalization when we wish to calculate the fraction of the DNA probes that
will find an RNA partner,

crnae PRY
1+ CRNAe_BAG ’

Phybr = (2)
and this result immediately shows why this is expected to be a good approach to
the microarray analysis. We have just established a direct relationship between
the concentration of RNA and the probability for DNA to have RNA attached to
it! Consequently, if we just put a certain number of DNA probes on a microarray,
and manage to somehow find out the fraction of DNA probes with RNA on them,
and the effective binding energy, we could find the desired concentration crna .
In a nutshell, this summarizes why we are interested in finding a physics-based
theory to be used in microarray analysis.

The amount of RNA on a microarray can be measured experimentally, within
reasonable error margins. There are, however, a number of problems that com-
plicate things. As discussed before, DNA probes might attract RNA that is
partially complementary. Furthermore, RNA in solution (‘free’ RNA) might
hybridize to other free RNA. These are effects we will not discuss here. What
we will focus on, is the following problem: What is this ‘effective binding en-
ergy’, and how can we estimate it accurately? Is it possible to do better than
the methods currently in use?

We will see that we can incorporate self-hybridization (RNA sticking to
itself and/or DNA sticking to itself), and also count thermodynamic states that
do not occupy the energetically most favourable stateB This will be done
by using a model known as the Nearest-Neighbor model. In fact, we are not
really extending the nearest-neighbor model itself, but rather we are improving
the way it is currently used to predict RNA/DNA hybridization probabilities.
Namely, to compute the partition sum more precisely.

2.2.2 Explanation of the Nearest-Neighbor model

The first thing to do is to compute the energy gain when RNA and DNA hy-
bridize. Naively, it is reasonable to assume that we can write this hybridization
free energy as a sum over the nucleotides the strand is composed of. After all,
C-G and A-T (or A-U) connections may exist, but that is all that can influence
the free energy. Perhaps we can find two or three parameters that describe the

10This differs from the most commonly used definition of 3, 1/kgT, by Avogadro’s constant.
This choice was made because AG has units kcal K~! mol~!, and obviously, the quantity
in the exponent must be dimensionless. Thus, Avogadro’s constant was merged into the
definition of 3 for ease of notation.

1 There are many different ‘bound states’ possible, since RNA might stick only partially
to a DNA probe in many different ways. This is an entropic effect which alters the effective
binding energy.
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strength of the connection formed by the hydrogen bonds involved, and thus
derive the total hybridization free energy of the DNA/RNA connection.

This idea is basically correct, but it omits one important effect. Because of
the helical form of the RNA-DNA duplex, nucleotides feel not only their part-
ner on the other strand, but also their adjacent neighbor on the same strand.
This contribution turns out to be essential for an accurate description of duplex
formation. Thus, we will not consider just single bonds, but pairs of bonds.
The pair of pairs will be called a base pair doublet from now on — a doublet
which consists of two neighboring nucleotides, which have formed base pairs
with another two neighboring nucleotides complementary to the first two nu-
cleotides. As each base pair doublet has its own free energy parameter, we end
up with 16 possible nearest-neighbor (NN) pairSB This means that every base
pair is used twice, except for the first and the last base pair, which are used
only once. The resulting correction factors may be absorbed into the helix ini-
tiation parameter, AGinitE Note that we needed such an initiation parameter,
anyways, as a certain (entropic) barrier must be overcome to bring DNA and
RNA together and start hybridization. Now considering a duplex where DNA
and RNA are complementary and have all their nucleotides connected to each
other, it is straightforward to compute the free energy differences between this
fully hybridized state and the free state, namely,

AGNN = AGinie + Y AGy 1, (3)

K2

where I; € {A,C,G, T} is the nucleotide at position i, and AGy,;,,, is the
stacking free energy parameter for the pair of nucleotides at 4,7+ 1. For example,
suppose that I; = A and [;41 = C, then AGac is the free energy parameter for
the DNA A-C doublet connecting to a RNA G-U doublet. As remarked beforeE
DNA has directional dependence, and thus this parameter is not the same as
the C-A parameter.

The AG parameter computed in eq. , by means of a sum over the nearest-
neighbor pairs of the fully hybridized state, may be used in equations and
. This two-state hybridization approximation for the partition sum is the ap-
proximation currently used in most computations on nucleic acid hybridization.

However, the nearest-neighbor model is also suited for a more advanced
calculation of the partition sum — many of the omitted states may still be
included using the nearest-neighbor model. The only reason not to do so, is to
keep calculations simple and reduce computation times. It is straightforward,
however, to estimate the hybridization free energy for such states using the
nearest-neighbor model. In these cases, not all nucleotides on a strand have
engaged in a base pair, and the sum in eq. runs only over a subset of all

12There are no symmetries in RNA/DNA hybridization, because DNA and RNA backbones
are different and the only symmetry in DNA/DNA hybridization as pointed out in is
spoiled. Therefore, we really have 16 different parameters. It is thus NOT true that, for
example, AG = GA, or AG = TC or AG = CT, for RNA/DNA duplexes — again, RNA and
DNA are chemically different, and the difference goes beyond the difference between thymine
(T) and uracil (U).

131t is also possible to introduce an additional parameter into the model to distinguish C-G
and A-T initiation, but we will not go into further detail yet.

14See section m
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possible pairs,
AGNN = AGinie + Y AGy 1, (4)

pairs

By means of this simple generalization, more states can be incorporated into
the partition sum, leading to a many-state partition sum. In practice, however,
we have to add a few parameters to the nearest-neighbor model to compensate
for effects that show up in this type of hybridization. They will be introduced
in section

In calculations on RNA-RNA hybridization, it was found that duplexes with
terminal AU pairs were less stable than those with terminal CG pairs. In some
cases, it might therefore be beneficial to distinguish between different initiation
energies, and assign a penalty to a duplex for every terminal AU pair it has.
The difference arises because C-G base pairs have formed three hydrogen bonds,
while A-U (and A-T') pairs have formed only two hydrogen bonds. Consequently,
AU pairs are weaker and a penalty may be introduced to anticipate a lower AG
for strands with such ends. This model is sometimes referred to as the INN-HB
model, an Improved Nearest-Neighbor model which takes into account Hydrogen
Bond effects. For example, Ref. [27] uses a parameter for terminal A-U pairs in
their computation of nearest-neighbor parameters for RNA/RNA hybridization.

2.2.3 Limitations to the two-state approximation for the partition
sum

We have mentioned before that the two-state approximation may be insufficient
for certain fields of research, because its range of validity is limited. In this
section, we shall argue why it is desirable to improve this two-state model.

Analysis based on the previous nearest-neighbor model, or incarnations of
the model with a slightly different choice (such as the INN-HB model) is seen in
various fields of biochemistry. As the approach works best for shorter sequences,
mainly short sequences have been used in the derivation of the parameters (Xia,
Santalucia, Sugimoto). However, long strands of smgle—stmndeﬂ RNA are
known to twist and fold, and they may hybridize to themselves. Such effects
are negligible when considering short sequences of up to 10 or so base pairs.
For longer sequences, however, hairpin formation contributes to the effective
binding energy, as RNA folding to itself is effectively removed from the ‘pool’ of
available RNA - only a fraction of RNA is not hybridized, and able to hybridize
with DNA. Similarly, DNA might self-hybridize. For microarrays, where DNA
strands have length 25 and RNA strands have an average length of 50, these
effects likely have a major impact on the actual amount of available RNA, and
thus on the estimated effective hybridization free energy.

This is a deviation from the original NN model, which assumes only two
states (DNA and RNA are either free, or hybridized). And there is yet another
category of states that remain unaccounted for: the states where DNA and
RNA are only partially hybridized. Partial hybridization means that not all of
the DNA and RNA are connected via hydrogen bonds, and some pieces are not
connected. This is a different state than the two mentioned before, but such
a state obviously is not preferable at first. Thermodynamical theory dictates

15When DNA or RNA is in a double-helix structure, it is called double-stranded. When this
is not the case, it is considered single-stranded.
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however, that every possible state may be attained. Even if the weight of such
a state in the partition sum is much smaller, if enough such states are possible,
all these states together they will alter the partition sum significantly, and the
probability for hybridization may be strongly aﬁectedm

In other words, it is dangerous to neglect all the partially hybridized states,
as is done in the two-state model, even though each state is individually less
favorable than the fully hybridized state. We have likely underestimated the
part of the partition sum which corresponds to the hybridized state.

Moreover, the two-state model does not allow any self-hybridization, or par-
tial hybridization, and it thus assumes that single-stranded DNA or RNA has
only the trivial partition sum Z = 1 - there is no state except for the free
one. However, it is well-known that DNA and RNA strands may form hairpins,
and parameters from hairpins computed from experimental data by Antao and
Tinoco [3] show that some hairpins are quite stable. Penalties for hairpin for-
mations are dependent on the nucleotides forming the hairpin loop, with some
penalties reported as low as AGp, = 1.0 kcal/mol. This shows that even rel-
atively short sequences are susceptible to hairpin formation. The assumption
Z =1 is poor at the very least, and may be expected to introduce a large error
in the estimation of the hybridization probability.

2.3 The extended nearest-neighbor model
2.3.1 Extending the two-state approximation for the partition sum

These limitations to the standard NN model call for an improvement. Prefer-
ably, we would include all possible configurations that our system can attain.
Unfortunately, even by a simple calculation, we may find that the number of
configurations is huge beyond measure.

Estimation of the number of configurations

Let us derive a simple lower bound for the number of possible config-
urations. Consider a strand of length N = 200. Since for the sake of
this counting argument, it is not relevant to consider a complicated
sequence, consider a sequence of the form ATATAT ... ATATAT.
We throw away the bulk of the states by limiting ourselves to the
case where any of the 100 AT doublets binds to another AT doublet
somewhere on the strand (note that this indeed limits our options
severely). For now, let us assume infinite flexibility and stretchabil-
ity of the DNA. Restricting ourselves to the case where everything
is hybridized, we can already find up to 99 - 97 - ... - 1 > 249 . 49!
distinct ways in which we can pairwise combine the AT doublets.
Thus, even for a simple argument using only a small subcategory
of states, we see that the number of possible states by its very na-
ture scales as the factorial of the length N or variants thereof. For
the similar problem of matrix-chain multiplication, as discussed in
Section [3.1.1] it is fairly easy to see that naive approaches require
N! operations to be performed. Of course, DNA is not infinitely

16The penalty for breaking a base pair does not depend on the length of the strand, but
the number of configurations with only one base pair missing, is linearly proportional to the
strand length. It follows that the fully hybridized state becomes increasingly less important
as the length of the strand increases.
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flexible and stretchable, but it is not hard to extend an argument of
this type to one that does not suffer from this limitation. In fact, an
example will be given later on, when we are discussing an algorithm
for computing partition sums.

These millions of possibilities are challenging to compute already, but as
a microarray may have half a million different probes, tremendous calculation
times would result when we were to find results for a complete microarray. If
we are to improve the NN model, we must find some way of dealing with this
mountain of possible configurations.

Figure 3: When a strand of DNA bends around and hybridizes to itself, a hairpin
is formed.

2.3.2 New parameters in the extended nearest-neighbor model

Though we essentially hope to use the nearest-neighbor model in computing the
hybridization free energy, we have to extend it in various ways to allow its full
potential to be deployed.

Hairpin parameters. One of the most important effects we hope to cover in
our efforts, is that of self-hybridization. In order for a strand to hybridize to
itself, it must form a loop that is called a hairpin. Figure [3]shows an example
of a hairpin.

This twisting of RNA or DNA and subsequent re-initiation costs some en-
ergy. This energy penalty depends on the strand type (DNA or RNA), the nu-
cleotides forming the hairpin (those that are not connected) and the nucleotides
closing the hairpin (the first base pair near the hairpin, which closes the loop).

16



This gives rise to many dozens of possible variables, related to nucleotide type
and content, hairpin length, and more. Because limited experimental data is
available, it was decided not to fit all possible hairpin penalties, but instead
introduce only two parameters. It is hoped that two parameters will be enough
to cover the rough behavior of hairpin formation, and finding many different pa-
rameters for hairpins will not be covered here. The two parameters introduced
are one for DNA and one for RNA hairpins, respectively.

It is suggested in Ref. [3] that only hairpins of about four nucleotides occur
frequently in nature. Furthermore, exploratory fitting indeed confirmed that
the best agreement with experimental results is found when hairpins are re-
quired to consist of at least 4 nucleotides. Hence, any hairpin smaller than 4
nucleotides is not allowed, and a hairpin with at least 4 nucleotides is assigned
the corresponding hairpin parameter as a free energy penalty.

Bulge parameters. In most cases of self-hybridization, there are several
stretches of hybridized strand, separated by nucleotides that could not hybridize.
After all, nucleotides are matching only by accident in cases of self-hybridization.
The strand which has not hybridized, will have to be bent and twisted in order
to accommodate the double helix forming on either side. Thus, it is not suffi-
cient to simply sum up the base pair doublet contributions to the free energy,
and then add the hairpin penalty - we also have to include a bulge parameter to
account for this type of hybridization. Unfortunately, there are many possible
bulge parameters, all depending on the scale of the bulge, the nucleotides form-
ing the bulge, et cetera. For simplicity, only three distinct bulge parameters are
used, one each for DNA/DNA, RNA/DNA and RNA/RNA bulge formation.

Initiation parameters and terminal A-T or A-U parameters. We have already
reported the use of parameters for terminal A-U pairs in section 2.2.2] In the
case at hand, we will use three parameters for DNA/DNA, RNA/DNA and
RNA/RNA terminal pairs. One could argue that there are essentially four
distinct types of initiation for DNA/DNA and eight for RNA/DNA - after all
the 3’ strand may have either A,C,G or T as its first nucleotide in the case
of DNA/DNA hybridization. However, again we do not want to have to fit all
parameters, and we restrict ourselves to the few that seem to be most important.

Internal A-U or A-T parameters. We have mentioned a parameter to differ-
entiate between A-T initiation base pairs and C-G initiation base pairs. Both
receive the same initiation parameter at first, but in the case of a terminal A-T
pair an additional penalty is included. We extend this effect to the bulge case,
and use an additional parameter for A-T initiation at a bulge or hairpin. An-
other parameter might be used for hairpins with a closing A-T base pair. It is
possible that this parameter turns out to have a value close to the parameter
for a terminal A-T base pair, but there is no clear physical reason to believe the
parameters should be identical.

Dangling end parameters. Research has been done towards the effect of loose
ends at initiation. For example, Ref. [6] reports that dangling ends appear
to stabilize the hybridized strands, increasing the likeliness for hybridization.
This effect was also included in our model by introducing a separate initiation
parameter for initiation that had either one or two remaining loose ends.
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Figure 4: Two-dimensional representation of two strands that are fully hy-
bridized to each other.

Figure 5: This representation of hybridization has given rise to the term rain-
bow diagram. The above diagram corresponds to two strands that are fully
hybridized to each other, as in Figure[4]



2.3.3 Creating a method to implement the extended nearest-neighbor
model

To work with our new model, we need to introduce a few new concepts. In
the following, we will introduce and use the concept of rainbow diagrams. For
a partially hybridized duplex of RNA and DNA, suppose we draw two parallel
lines representing DNA and RNA, and connect these with lines representing
the hydrogen bonds of the base pair (see Figure [4f). Now if we ‘open up’ this
diagram by pulling apart one end of the duplex, we arrive at the two strands
in line, which may be seen as a single large strand composed of both DNA and
RNA, where the crossing lines have become ‘rainbows’ joining the two strands
(as shown in Figure . In a similar way, we can account for self-hybridization
states (or equivalently, states with hairpins), by ‘unfolding’ the strand while
keeping the connections intact, made visible by bows. Note that we never have
to draw intersecting rainbows. This may seem a somewhat odd approach at
this time, but the algorithm to estimate the effective hybridization free energy
is easier to understand when related to the picture described here.
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3 The Rainbow Algorithm

3.1 Introduction

With the concept of rainbow diagrams as introduced at the end of the preced-
ing section, we are now able to begin the development of our algorithms. In
the following, we will build towards an algorithm which incorporates as many
different states as possible.

3.1.1 Example: Matrix-chain multiplication

Before we treat the Rainbow algorithm, let us first consider another problem,
which will turn out to be related to the problem we wish to consider. This
example is taken from Ref. [7].

Consider a chain of matrices, {A1, ..., A,}. If we wish to compute the prod-
uct A1 As ... A,, there are many possible ways to do this. For example, because
matrix multiplication is associative, the equation A;(A2As) = (A1A43)As holds.
If the matrices involved are not square matrices, the computational cost may be
different for diffent choices of parenthesizationﬂ For example, if A; isap X q
matrix, As is a ¢ X r matrix and As is a r X s matrix, the computational cost is
either qrs+ pgs or pgr 4 prs operations. Depending on the sizes of the matrices,
one method might involve fewer multiplications than the other.

An interesting question is, what is the optimal parenthesization for a given
matrix chain? Knowing the answer would definitely decrease the time required
to complete the calculation with respect to the naive approach of just carrying
out the multiplications from left to right. The interested reader is referred to
the original in [7], meanwhile, we will not focus on the precise solution of the
problem, but primarily on a few interesting properties of this problem, and the
techniques required for finding a solution.

To find the solution, we will use the concept of an optimal product. An
optimal product is a product such that the computational cost involved in com-
puting the product, is minimized. Often, a certain optimal parenthesization
specifying how to carry out the multiplications, is unique - one solution is bet-
ter than all others. Of course, it need not be unique, for example a series of
square matrices will not have a unique optimal solution.

Suppose now that we have already found the optimal product for every
subchain of at most m — 1 matrices. That means that we suppose that we have
found the optimal order for every chain {A;, A1, Aiyo,..., A} for 1 <i <
7 < n with the additional restriction that j —¢ 4+ 1 < m — 1, because the chain
length is at most m — 1. Then it is fairly easy to determine the optimal product
for every chain of length m, by the following procedure.

A chain of length m can be divided into two chains by splitting the chain at
any of m — 1 locations. The computational cost involved in solving the chain
of length m easily follows from the product of those two subchains, which can
simply be regarded as single matrices. For each of the m — 1 locations, a certain
total cost will be found, and we can select the choice with the lowest cost as the
choice for the optimal product for our chain of length m.

17 A parenthesization, obviously, is a possible configuration of parentheses, which define the
order in which the matrix multiplications are to be carried out.
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All that remains is to convince ourselves that the resulting product indeed
is the optimal product for the chain, as by our definition, an optimal product is
characterized by having the lowest computational cost of all possible parenthe-
sizations. In fact, this is a rather immediate consequence of the method we have
described. Any parenthesization can at some point be split in sub-products, this
is the point of placing parentheses in the first place. Thus, the optimal split-
ting we have just found, is among the m — 1 possible splitting locations, and
we can construct any parenthesization (and in particular, the optimal product)
from parenthesizations on subchains. Recursively applying this argument in-
deed confirms that we can construct an optimal product for a chain of length
m by considering m — 1 products of chains that are of length at most m — 1.

Moreover, the number of operations is proportional to the cube of the chain
length n. This computation time is possible only because of our observation
that an optimal parenthesization is composed of a product of several smaller
chains, each of which has an optimal parenthesization. The most naive approach
requires (n — 1)! options to be checkedH while a better approach considering a
certain configuration only once, still requires about n-2™ multiplications, as there
are 2™ possible configurations. This means that the number of multiplications
still grows exponentially as a function of the chain length, a very undesirable
property indeed. Most advanced encryption we know today, is unbreakable
primarily because only exponential prime decomposition algorithms are known
— in other words, this encryption is based on our inability to efficiently factor
integers. In the case of matrix-chain multiplication, however, we can show that
polynomial algorithms (in our case, order-n® algorithms) are possible.

Now let us consider the computation cost involved. At first sight, the recur-
sive algorithm seems to behave exponentially, as the original approach did. We
still have to check (n—1)! places to cut, and in every case we must determine the
optimal sub-product. However, there is one important difference. A closer look
tells that we are doing a lot of unnecessary work - many of the sub-products
are the same! Therefore, we must find a way to store obtained results, so that
when we need to find the optimal parenthesization of a sub-product, we only
need to look up the result. This leads to order n®. First of all, there are at most
n?/2 subproductﬂ that we would need to compute. And, to optimize a certain
sub-product, we need at most n multiplications of optimal sub-products. Thus,
storage of results prevents a lot of redundant computations.

Apart from a recursive technique, we might also go bottom-up and just find
all n(n—1)/2 subproducts. Both techniques are of order n3. The fact that both
recursive and iterative algorithms are possible in this type of problem, will play
a major role when we discuss algorithms for DNA and RNA hybridization.

The fact that the optimal configuration must factorize into smaller optimal
configurations, and hence, only optimal configurations are important, is crucial
in the reduction of the number of configurations we have to consider. We will
soon see that our Rainbow algorithm, extending the Nearest-Neighbor model,
behaves similarly, and benefits from a very similar observation.

18Such an approach would be as follows: There are n — 1 positions to do a multiplication,
then on the resulting chain there are n — 2 possible positions to choose from, et cetera. This
approach is similar to the counting argument given in Section |2.3.1] which also leads to a
factorial.

198ub-products are of the form A;Aiqy ... Aj for some 1 < i < j < n, so there are actually

n(n—1)
2

only possible choices.
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3.1.2 The problem of DNA and RNA hybridization

We have noted before that the number of possible configurations in RNA and
DNA hybridization is rather huge. We will construct an algorithm that is based
on an observation similar to that in the preceding example for matrix-chain
multiplication.

Figure 6: A single rainbow. The nearest-neighbor model requires that we con-
sider not individual base pairs, but doublets of base pairs.

The key property that will allow an order-n? algorithm, is that we are going
to split the partition sum into two independent parts at any given base pair,
see Figure @ﬂ This means that the set of all possible configurations that have
a connection at the given point, may be written in terms of the configurations
to the left and to the right of that point, which are independent of each other.
Note that this is an approximation, and it is known to be false in general. It is
expected to be a good approximation for strands that are short enough. What
exactly we mean by ‘short enough’ will be made more precise at a later time.

Factorization of the partition sum

Consider a single strand of length n. Consider a pair 4,j of nu-
cleotides 1 <4 < j < n such that ¢ and j are complementary (a base
pair may form). Consider the set S; ; of all configurations with a
base pair between base ¢ and base j. Then, we assume that no state
in S;; has any base pairs that connect a nucleotide k in the interval
(i,7) to a nucleotide k' outside the interval (i,7), for all i,j and for
all k, K.

By our assumption, base pairs cannot cross our rainbow, and it is impossible
for anything in the interval (4, j) to have any interaction with the outside world,
see Figure [l Consequently, we can write the partition sum for all states in the
set S; ; as the product of the free energy contribution for the connection, times
the partition sum of possible configurations on the left side, times the partition
sum of possible configurations on the right side. Any partition sum may now be
calculated recursively, using products of smaller partition sums. We shall refer

20Obviously, it is also allowed to split at a group of base pairs, and because of the nearest-
neighbor model we shall in fact consider doublets of base pairs.
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CATCCCCATGCCCATCCOCCTCAGATGGC

Figure 7: An example of a state of self-hybridization. Note how there are no
intersecting rainbows. To keep the illustration simple, jo = 2 was used as the
minimum hairpin size.

to partition sums on intervals as partial partition sums, or occasionally simply
as partition sums when there is no ambiguity.

It is easy to see that even with this restriction, there are a lot of states
left. Even under our assumptions, there are still too many states to allow a
straightforward sum in polynomial time over all states.

A lower bound for the possible number of allowed configu-
rations

Let us find a lower bound for the number of configurations that are
allowed under the current restrictions. First, take a strand of 200
nucleotides, of the form ATATAT ... AT AT AT. This leaves 100 AT
doublets that may be connected by a rainbow, as long as none of the
rainbows intersect. Consider now the doublets 1-10 and the doublets
91-100. There are 10? different ways of creating a single rainbow (a
base pair doublet) that connects one of the first 10 doublets to one
of the last 10 doublets.

We do the same for the doublets 11-20 and the doublets 81-90, such
that there are 102 - 10?2 ways of forming two bows, one between dou-
blets 1-10 and 91-100, and another one between doublets 11-20 and
81-90. Proceeding in this manner, we find (102)% different config-
urations. This corresponds to a very small subset of all possible
diagrams. Nevertheless, for general n, we find that the number of
diagrams for an ATATAT ... AT AT AT strand is bounded from be-
low by n2vV™, This emphasizes the necessity of an algorithm which
incorporates our independence assumption, cutting down the num-
ber of operations required to order-n>.

We now recognize that this method of splitting the partition sum in two
parts by creating a connection between two (pairs of) nucleotides resembles the
problem of placing parentheses, as described in the preceding section. Though
there are some differences, there is a major similarity, since in both cases we cut
up some chain (strand) into smaller pieces, and in both cases, the computation
cost is proportional to only the cube of the length of the chain (strand), because
there are only n? different subchains (partial partition sums) and each subchain

23



(partial partition sum) is calculated using at most n operations, and involving
strictly smaller subchains (partial partition sums).

Additionally, in both cases, we need to store results for each subchain (partial
partition sum), so that we can use the stored results in future iterations (we
will need to store the optimal parenthesization of the subchain, and the value
of the partial partition sum, respectively).

A difference, and major complication, however, is to consider connections
formed by two nucleotides rather than one, as demanded by the properties of
the nearest-neighbor model. We will have to adjust this algorithm to properly
deal with this difference.

These observations give rise to the following rough sketch for an algorithm.
Suppose that we have some strand of n DNA and RNA nucleotides, and we
want to incorporate all configurations - self-hybridization and partial DNA-RNA
hybridization. Then we could start computing the smallest partial partition
sums; there should be about n of those. Then we compute the next level, of
partial partition sums that are 1 nucleotide ‘longer’. This should take at most
n? productsﬂ and in general it will be much less. Doing this for increasing
length, we find that indeed we have developed an algorithm of order n3, as
intended. This scaling behavior allows analysis of microarray data, because it
leads to quick computations of partition sums.

3.2 Straightforward Implementation

Now, the above loose sketch must be converted to an algorithm, based on which
computer implementations may be written. Thus, let us consider a fixed strand
of DNA. Denote this strand as {s;}, 0 < ¢ < n — 1, with n the length of
the strand, such that s; is the nucleotide at position i. We will require that
a rainbow between two RNA doublets or two DNA doublets has a minimum
size, as bending DNA or RNA has limits of its own. In the end, we will adapt
our algorithm to reflect this physical property, and others found in DNA/RNA
folding, but as the extra parameters are merely a complication, we will start out
without them, including only the core elements of the algorithm at first, and
then add the special effects later. The first version of our algorithm will thus
assume that hairpin formation is not associated with any energy penalty.

In general, it appears that loops in self-hybridization (hairpins) do not form
unless the loop consists of at least four nucleotides, so this is about the minimum
rainbow size one would expect. In the following, let us denote the minimum
rainbow size (the number of unconnected nucleotides making up a hairpin) by
Jo- We initialize all partial partition sums of lengths smaller than jy + 4 to
IE and we will then increment the length j by 1 every time, and calculate
the values of all partial partition sums of length j. We shall denote the partial
partition sum of length j starting at position i by p;, jﬁ Note that this partition
sum, therefore, ends at the position ¢ + j — 1, not at ¢ + j. This partition sum

21The number of (partial) partition sums to be found, times the length j of the partition
sum. This leads to (j — 1)(n — j) operations, which is bounded from above by n2, in fact even

2
n®/4.

22The minimum rainbow size jg is usually 4, such that all partial partition sums of lengths
up to jo — 1 = 3 are initialized to 1.

23Recall that we have already introduced the concept of a partial partition sum in Section

EL3
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contains at least all states that are also covered in the partition sum of length
7 —1, which is assumed known as its length is smaller than j, so we will initialize
at p; j = pij—1. LThis already covers many of the configurations that are required
in p; ;. However, at this time we are missing all configurations that make use
of the nucleotide at position i + j — 1. Our algorithm will have to find these
configurations and include them in the partial partition sum in an efficient way.

Figure 8: A strand may fold and hybridize to itself. The partition sum should
contain a contribution for each possible state.

3.2.1 The single-bond model

To start out with a concise example that features only the most elementary
aspects of our algorithm, let us first consider a single-bond model, rather than
a double-bond (doublet-based) model such as the nearest neighbor model. In
other words, we only consider individual base pairing, and a rainbow may form
between A and T, or between C and G. Let us fix j and i, without loss of
generality. Any rainbow that may be drawn connecting any two of the first
j — 1 places, is included in the partition sum p;;_1, so we do not need to
consider those if we initialize properly:

Pij = Pij—1 (5)

Additionally, there may be rainbows connecting to the last (jth) position,
and those are not yet included in our p; ;, so we must still add those. It should
be remarked that in our notation, the partition sum from some position i+ k to
the final position (i 4+ j — 1) is denoted as p;1y,j—x. Thus, to find the partition
sum p; ;, we can write:

Pij = Pij—1
for k=0 toj—jo—2
if Si+k = C(Si+j_1)
Dij = Pij T Dik* Pitk+l,j—k—2"€

ﬁAGsHk
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Here, C(s;) is a function which takes the complement, such that C(s;) is
the nucleotide complementary to s;. The exponent in the last line is the energy
contribution due to the rainbow that connects nucleotides ¢ + k and i + j — 1,
which also depends on the AG,,, parameter for the hybridization free energy
of a nucleotide of the type that is found at position i + k.

Note that for low k, we may encounter terms like p;y; 1 if jo is very smallFE]
Furthermore, when we encounter a partial partition sum that is too small to
sustain any rainbows (that is, shorter than length 2), it should be taken as
having a value of 1: the only thermodynamic state possible for such a strand
is the one without any connections, whose contribution to the partition sum is
el = 1.

All in all, this is a most elementary order-n® algorithm. From this point
on, we shall be trying to extend and improve this algorithm, adding more and
more flexibility and detail step by step in order to create a model that is able
to predict RNA/DNA hybridization efficiently.

./-

k=9 nucleotides

- L ~
. e . e AN
i i+k  i+k+1 iH-1 i+

j-k-3=13 nucleotides >

A

j+1=26 nucleotides

Figure 9: An example of the nearest neighbor model. Two neighboring nu-
cleotides somewhere on the strand, are connected to the rightmost pair of nu-
cleotides.

3.2.2 Minimal algorithm for computing the many-state partition
sum

Now that we have this result, we should try to extend it towards an algorithm
that does not work with a rainbow between just one nucleotide and another, but
rather a rainbow that describes a connection between a pair of nucleotides some-
where along the strand, and another pair somewhere else. This would make the
algorithm one that is compatible with nearest-neighbor model assumptions and
restrictions. The most straightforward generalization, which is still incorrect,
yields:

24For the case jo = 0 (which physically is not very relevant), we see that for the largest k
in a loop (namely k = j — jo — 1, Pitk+1,j—k—2 reads as p;4j —1. If it is desired that this is
possible, this case must be taken special care of.
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function p; ; Version 1 (Missing some configurations)
Pij = Pij—1
for k=0 toj—4—j
if Si+k = C(S,H_j_l) and Si+k+1 = O(Si+j_2)
Dij = Dij T Dik " Ditk2j—k—da € = itk fidy=2
return
We have now incorporated the two-base length of a connection, and improved
AG in a particular way to represent a base pair doublet. Unfortunately, this
algorithm is incorrect, for the following reason. The problem lies with the inner
partial partition sum, the partial partition sum that resides inside the rainbow
we considerF_gl This partition sum should contain, among others, configurations
that include a rainbow connecting the i+k+1, i+k+2 bases to the i+7—3,i+j—2
bases. This is the largest possible rainbow in the partition sum p; ; that does not
use the first nucleotide of the substrand (the nucleotide at position i+ k) or the
last nucleotide of the substrand (at position i+j—1). Configurations of this type
obviously do not contribute to the partial partition sum p;; 42, j—k—4 since they
concern nucleotides outside the scope of that partition sum. Unfortunately, this
means that a certain type of configurations is excluded from our calculations:

Figure 10: An illustration of missing configurations in Version 1 of function
p;,;- The long vertical lines indicate base pairs, and the red squares represent
base pair doublets. The upper configuration is included in our calculations,
as it should. However, none of the four used nucleotides can be reused in our
recursive function, and the lower configuration is discarded even though it is a
valid configuration for the nearest-neighbor model.

Configurations missing in the inner partial partition sum

Suppose there is a configuration which has a triplet of nucleotides at
1,i+1,i+2 and another triplet of nucleotides i+j—3,i+j—2,i+j—1
for some j > 5 such that the triplets are complementary. This situ-
ation corresponds to the lower half of Figure Consider the state
s which has no base pairs, except for the three base pairs formed by

25In the algorithm we just described, the inner partition sum is given by Ditkt2,j—k—4-
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hybridizing the two triplets. Then, although by the nearest-neighbor
model this state should be included in the partition sum, this state
fails to be included in the partition sum that would be calculated by
using Version 1 to calculate p; ;, and this method can not be used
to obtain results for p; ;.

This is a major problem when considering complementary DNA and RNA
strands. We just cannot hope to calculate correctly any state that has more
than 2 consecutive base pairs, as the nearest-neighbor model is not compatible
with this algorithm.

The first attempt to fix this, would be to include also the contribution from
the rainbow between ¢ + k,i +k+ 1 and i + j — 2,74 4+ j — 1. However, if we
allow the entire partial partition sum p;yx41,;—k—2 to be included, we are using
nucleotides twice, and that is also not something we want.

Figure 11: An example of an illegal configuration that arises when we try to
allow configurations such as the lower configuration in Figure When we
allow the rightmost pair of nucleotides of a base pair doublet to take part in
another base pair doublet, we risk using a nucleotide in two different base pairs,
which is forbidden.

Illegal configurations in the inner partial partition sum
We might try to repair our algorithm by using p;4r41,j—x—2 instead
of pitr42,j—k—4 as the partial partition sum corresponding to the
configurations that may form inside the rainbow. However, consider
a rainbow contained in p;;r41,j—k—2 that connects to the first nu-
cleotide of the partial strand, but not to the last. Then the first
nucleotide is involved in two distinct base pairs, a configuration that
is not allowed by the nearest-neighbor model. See Figure [11] for an
example of such an illegal configuration.

We have seen two incorrect approaches, one which incorrectly discards con-
figurations that are perfectly allowed by the nearest-neighbor model, and one
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which creates illegal configurations. We see that while we have to allow nu-
cleotides to take part in two distinct base pair doublets, there have to be some
restrictions to make sure that the nucleotide has only one partner with which
it forms a base pair. This means that only a certain subset of the configura-
tions in p;41,;—2 should be used. It thus turns out that we cannot compute p; ;
using only order-n operations on smaller partial partition sums, because the
inner partial partition sum cannot be written as a simple combination of partial
partition sums.

We can not fix the inner partial partition sum

There is no way to compute a partial partition sum solely from other,
smaller, partial partition sums. This follows because we cannot ex-
clude the innermost base pair of a rainbow (see how Version 1 failed),
but we cannot include it either, as our attempt to do so, has failed
as well. It is thus not clear how to incorporate the innermost base
pair into the inner partial partition sum.

Fortunately, not everything is lost, and we can solve the problem as follows.
We have to keep track of where the rainbows are, and distinguish between
partition sums which have a rainbow between their extremes (endpoints), and
partition sums that do not. We can then use those two partition sums at
different intervals, and combine them. The partial partition sums with a start-
end bow (a rainbow that connects the first nucleotides, ¢ and i + 1, to the last
nucleotides, ¢ + j — 2 and i+ j — 1) will be called p; ;, and from now on p; ; will
refer to a partial partition sum of all configurations on the substrand (i,i+j—1),
with the limitation that start-end bows are not allowed. The partial partition
sum of all configurations possible on the substrand is thus given by p; ; + pi ;.
The altered version of the algorithm, for the new p; ;, is then given by

function p; ; Version 2 (Minimal extended NN model)
Pij = Pij—1
for k=0 toj—jo—4
if Si+k = 0(81‘4_]‘_1) and Sit+k+1 = O(SH_J'_Q)
if k#£0
Pij = Dij + Wik +Dik) - (Pitkr2j—k—a + Dithi1,j-k—2) €
else

—BAG

. . —BAGs, sy
Dij = Pij + Pik - Pitk+2,j—k—a + Pitk+1,j—k—2) "€ PAGeispsirs—2

As before, if the substrand length j is too small (smaller than the length
jo + 4 of the smallest nontrivial partial partition sum possible), the program
must treat it as a special case and enter 1 instead of the array value, which
may not be initialized for too low values. In bad cases, the second argument
might even be negative, leading to segmentation faults, so some care is required
when this algorithm is used in a computer program. Additionally, the reason
for choosing for AGs, ., s, ;_, is as follows. The first index corresponds to the
outer base pair, and the second index corresponds to the inner base pair. How-
ever, we also must distinguish between DNA/DNA, RNA/DNA and RNA/RNA
hybridization. Thus, the first index corresponds to the strand type (DNA or
RNA) of the left end of the rainbow, and the second index corresponds to the
strand type at the right end of the rainbow. Thus, there are 64 parameters
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associated to AGy, ;| s;.,_», since s; € dA,dC,dG,dT,rA,rC,rG,rU. For ex-
ample, AGq4c v would correspond to DNA C'A forming a base pair doublet with
RNA UG. In the manner specified, AGy, ., s;,,_, contains all the information
necessary to determine the parameter corresponding to the nearest-neighbor
doublet formed.

CATCOGCCATOCCCATCOGCTGOGAGATGGCC

Figure 12: One of many configurations that contribute to the partition sum.
Note how the introduction of p is required in order to allow all configurations
from the nearest neighbor model to appear in the partition sum.

The parameters for bulges, hairpins, terminal A-T and internal terminal A-T
effectsFE] are not covered in this algorithm. However, these parameters may be
incorporated into the algorithm in a straightforward manner and adding them
would degrade the comprehensibility of the algorithms because of all the special
cases required, so this will only be discussed at a later time, and not be included
into the pseudocode for the algorithms.

The above algorithm confirms that there is indeed an order-n® algorithm
to calculate the partition sum of all available partially-hybridized states, even
though the actual number of different configurations is order n!. We have trans-
lated our observation, on how partition sums may be split up, into an algorithm
that may be implemented in a computer program. In the following, we will
delve into possible improvements and extensions of this algorithm, and discuss
the possible consequences of the choices we make.

3.3 The Recursive Rainbow Algorithm

The above algorithm is, indeed, an order n? algorithm which does exactly what
we need. However, it would be interesting to see if there is any room for im-
provement. For instance, our algorithm must perform the same check (whether
or not a rainbow exists between i + k,i +k+ 1 and ¢ +j — 2,1+ j — 1) very
often, while in most cases such a rainbow will not exist. Statistically speaking,
for a random strand the probability of two randomly chosen base pairs to be
complementary is fairly small. Perhaps we can find a way to save ourselves this
effort.

Furthermore, many of the partition sums calculated, are not necessary to find
the result for the complete partition sum, so perhaps we can avoid treating them
at all. These considerations suggest that we should develop a more sophisticated

26Recall that we have introduced internal A-T pairs in Section as the bulge or hairpin
equivalent of a terminal A-T pair.



algorithm, which does not work bottom-up (filling a table of n x n values of
(i,7) entirely) but instead performs the computation recursively, such that it
only calculates something when the result is required to find the final answer.

3.3.1 Listing all possible bows

First of all, we must find an alternative to checking which rainbows are possible.
If we perform order-n?® calculations, in the preceding algorithm, we also have to
check n? times whether a rainbow is allowed.

A rainbow may be formed only when two nucleotides are complementary
to two others. But this is a rare event! Generally speaking, assuming that
the DNA sequence is random, the odds for a valid connection are only %6.
It thus seems beneficial to start off by creating a list of possible bows. This
list can then be used to determine possible bows quickly. This replaces the
expensive procedure of finding bows inside the main loop of the algorithm by
straightforwardly carrying out checks.

One method is as follows. For each i, let us make a list of all k’s such that
the nucleotides s; and sy, are complementary, as well as the nucleotides s;41 and
sk—1. The most direct way for this would be an order-n? algorithm listing those
k’s. The resulting list would be quite large in system memory, an undesirable
result.

Fortunately, another method is possible, which requires less memory. This
involves a list of nucleotides that is sorted by its base pair type. We will skip
further specifications of the n?-type, as we shall not be using this method.

Avoidance of n2-type lists is preferable especially for the longer sequences.
We have to make only two passes to create two lists. Thus, we could remember
a position in a list of candidates positions, and we would only have to save
each position only once (rather than once for every position corresponding to a
complementary doublet). Each base pair doublet type can have its own list (note
that when considering complements, RNA and DNA do not need to be treated
individually) such that we may create 16 lists (of total length n, as each position
occurs only once and only in one of the 16 lists). Subsequently we can make
another pass and make a list of starting points — positions of the first matching
(complementary) doublet to the left. The starting points will help us find the
first complementary pair, and from that point onwards we only need to iterate
through the list (backwards)@ The idea behind this setup will become clear
in the recursive algorithm that will be given in the following section. Creating
these two lists is not a very complicated matter, so the pseudocode is omitted
here.

Finally, it should be remarked that as this part of the algorithm is not of
order n3, it is probably worth the effort of creating these two lists. We will call
the type-sorted list K, because it is an ordered array of k candidates. The list of

2TWe iterate backwards through the list of k candidates because we consider rainbows
between i +k,i+k+1and i+ j— 2,74 j — 1. It is then easiest to start with rainbows whose
left doublet is close to i 4+ j, and then decrement the position. Note that our list of partner
pairs is necessarily a global list, as it is to be used for many different choices of i and j. It is
thus impossible to iterate through the list of k candidates in the forward direction, because
there would be no way to tell where to start the iterations — if we were to keep a list of
starting points for forward iteration, we must note that the starting position would depend
on both i and j and any such n2-behavior is undesired. Summarizing, the only efficient way
of iterating is backwards, and thus that is how we shall do it.
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starting points will simply be referred to as left, because the positions referred
to, correspond to the nearest complementary doublet to the left of the position.
Finally, because we have to know where the 16 sub-lists begin and end, we keep
a list of length 16 with the positions of the first doublet of each doublet type,
and we call this list first.

While the conventions may seem confusing at first sight, the application and
use of these structures in the algorithm in the next section should make more
clear how they are useful.

3.3.2 Functions for the recursive algorithm

Now that we have a list of k’s, we are ready to start working on our desired
recursive algorithm. Our eventual goal is to develop a function that takes a
DNA or RNA strand as its argument, and that returns the value of the (self-
hybridization) partition sum. Our next step is to build a function which calcu-
lates the partition sum, calling itself in a recursive manner. Because we need
both p; ; and p; ;, we will need two recursive functions.

In the calculations, we will also use the parameters for the nearest-neighbor
model. They reflect the strength of the bond between the DNA and RNA,
and thus are the elements used to construct the partition sum. Owing to the
algorithm we use, we have to use the exponent e PACGsiik it for the en-
ergy contribution of a rainbow. We do not wish to calculate this many times,

so we will carry along the exponentiated values, denoted by gs,,,,
—BAG,
e

Sitj—2 T
i+k*i+i-2 having calculated them only once. We only have to do multi-
plications then, and we do not have to perform many expensive exponentiations
inside the algorithm.

Furthermore, we intend to recycle previously derived results. So, we will
have to store them somewhere. For this purpose, we build a matrix, M; ;, of
partition sums from starting position ¢, and of length j. M; ; will be initialized
at 0. Then, if we need the partition sum p; ;, we will look at M; ;. If M; ; =0,
we have not yet calculated the partition sum. If M; ; > 0, we have already got
the partition sum, and there is no need to calculate it again. Note also that the
partition sum always evaluates to a value of 1 or more, such that no ambiguities
exist.

Additionally, as noted in the preceding (more intuitive) algorithm in section
we need both a matrix for partition sums with a bow connecting the
extremal positions, and a matrix for partition sums that may have any bow
except for the one between the first and last position. The matrix for the bows
will be denoted M, ;. This matrix will be given a 0 for combinations of i and j
that do not correspond to a valid bow, and 1 otherwise@

It is actually fairly easy to fill this matrix with zeroes first, and then do
an order-n? run for all n starting points through the K array (of length n) to
determine all possible rainbows, setting some of the entries to 1. If we would
not do this, we would have to determine at a later stadium whether a start-end
bow was possible, and this checking is something we are trying to avoid. Thus

28Note that entries in Mi,j correspond to partition sums with forced start-end bows, and for
most combinations of 4 and 7 no start-end bow is possible, and thus the entry in this matrix
should be zero. For the few cases where a start-end bow will exist, we will put a 1 such that
we see immediately that we need to compute something when we come across it.
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it is important that we mark the entries in some way, such that we do not have
to do any checking anymore while running the recursive algorithm.

In the following, type(r) refers to the type of the doublet at positions r, 741,
while cotype(r) refers to the complementary type. Note how we have adopted
the convention to denote a doublet by the position of the left nucleotide.

Using the variables and arrays introduced above, we are now able to give
the following pseudocode for the function p; ;:

function p; ; Version 3 (Minimal extended NN model in recursive form)
if j <3 returnl
if M, ; #0
return M, ;
sum = p; -1+ Pij-1
t = cotype(i +j — 2)
index = left(i +j — 2)
while index > first(t) and K (index) > i
k = K (index) — i
sum = sum + (D + Di k) * Ditk,j—k
index = index — 1
M; ; = sum /* store sum, since this is the
return sum first time it was computed */

A lot happened here. We first had to initialize. We chose to initialize from
the left end, p; ; = p; j—1, such that we would be looking for rainbows ending
at the nucleotide doublet ¢ +j — 2,7+ j — 1. Then we would iterate through the
list of k£ candidates until either we found a candidate to the left of the leftmost
nucleotide of our substrand () or until we exhausted the list of candidates, such
that no more complementary doublets existed to the left of i+ j. For every such
rainbow, we found the contribution to the partition sum to be

(Pisk + Disk) * Ptk j—k- (6)

This is a simplification of the formula in Version 2, where we have used that

Githyitj—2 * (Dith2,j—k—a + Pitht1,j—k—2) = Dith,j—k- (7)

In the algorithm, we use a lot of function calls, and we start the function by
checking if we have already computed a value. In programming practice, it is
often preferable to check whether a call is required, and only make the call if
that is indeed necessary |

After the initialization procedure, all relevant rainbows were added to the
sum. As we have prepared a list of such bows, we only have to walk through the
list until we either receive a position beyond i (such that it is not part of the
substrand), or exhaust the part of the list which relates to the base pair doublet
type currently under consideration. The value discovered for p; ; is then stored
in M; ; for future use.

After all these considerations, we still have to describe the function for p; ;
that sofar has been used in p; ; but remains undefined at this time. The function
for p; ; turns out to be a lot less complicated than the function for p; ;, and the

29Function calls supposedly slow down computations, and should be avoided if possible.
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computational effort is not of order n3. In fact, we can find the required value
fairly straightforwardly, though it depends on both p and p.

function p; ; (used for p; ; Version 3)
if j <3 return0
if Miu’ =0 return 0
if ]\;[” > 1 return ]\;[”
Mi,j = Gijitj—2 * (Pi+2,j—4 + Pit1,j-2)
return M, ;

Note how, in the above function, we exploit the fact that we have initialized
the M matrix in a particular way, such that 0 entries are found when no bow
exists, and 1 entries are found when a bow exists but the corresponding partition
sum p; ; has not been calculated yet. When such a partial partition sum is
calculated, it is stored in M , and the next time we run p;; for this choice of
i and j we can use the value we found the last time, a value which must be
strictly greater than 1@

These algorithms make up a quite efficient method to determine the partition
sum of this system, and thus are helpful in finding the effective self-hybridization
energy. The extension to DNA-RNA hybridization is straightforward from here:
it is sufficient to tape the DNA and RNA strands together (though, due to
directionality, some care is required) and consider the partition sum for the
whole, combined strand.

3.3.3 Inclusion of a Reduction Matrix for more efficiency

One more remark should be made on the current structure of our algorithm.
Many partition sums (in particular, partition sums for shorter strands) are iden-
tical to the partition sum for a smaller strand contained in itself. That is to say,
if a strand’s rightmost doublet cannot form a rainbow to any doublet on the
substrand, it might as well be omitted from the calculations, and it need not be
calculated at all. Such a strand is said to be reducible, and we may create a re-
duction matrix R which redirects calculations for reducible strands to the related
irreducible ones. This does not really alter the algorithm, but instead reduces
the number of times a function is called. For example, a substrand ATAT AT AT
would have the same partition sum as the substrand ATATATATC and the
latter substrand would be reducible. A possible setup for the reduction matrix
would be as follows. We use the notation (é,4+ j — 1) to refer to the substrand
composed of the nucleotides ¢ through i + j — 1. The notation thus denotes the
first and last nucleotide of a substrand, and may be thought of as some kind of
interval notation.

301t need not be greater than 1, in fact, when there are AGsi+k7Si+]’—2 parameters that are
nonpositive (which would cause the exponent to decrease below 1). If this is the case, another
convention would have to be adopted, but the current choice is good enough for illustrating

the technique used.
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Entry at R; ; Meaning

-3 A rainbow (a base pair doublet) may form be-
tween positions (i,7+ 1) and i +j— 2,4+ 5 —1
(such that all four together form a base pair
doublet).

-2 No rainbow may form between the nucleotide
doublets (4,7 4+ 1) and (i +j —2,i+j — 1), but
both the first and the last nucleotide may take
part in some rainbow contained in the substrand
(i,7+ j — 1), so the substrand is irreducible.

-1 No rainbows are possible on the substrand (7, i+
j—1).

{#/,i’ +j" —1} The substrand is reducible and its partition sum
is equal to the partition sum of the irreducible
substrand (¢/,4" + 7/ — 1), which is contained in
(i,1+37—1).

Under these conventions, when we need a certain p; ; we may look in the
reduction matrix what we should do. If R;; is smaller than —1 we will have
to call p; ;. However, if R; ; = —1 we know that p; ; = 1, and if R;; points to
some {i’,i’ + j' — 1} we can call p; ;» instead.

To give an example, the reduction matrix for the symmetric strand

ATGGCGATCXXXXGATCGCCAT

(the X’s are used in gluing the strands together) will be given below, using
a slightly different coding system to give a visual idea of the structure of the
reduction matrix. The (anti)symmetry of the strand will also give rise to some
symmetry in the reduction matrix.

In the following, B = —3 (start-end rainbows), x = —2 (irreducible), . = —1
(trivial), and < corresponds to a reducible substrand. On the horizontal axis
we have put the substrand length j, while the vertical axis corresponds to the
leftmost nucleotide of the substrand, . Both ¢ and j start at zero in the lower
left corner. The upper triangle corresponds to invalid substrands since i + j
exceeds the strand length of n = 22 for these values of i and j.

3.4 The Hybrid Algorithm

The techniques developed above for the recursive algorithm, can also be adjusted
for use in iterative algorithms. This leads to a hybrid kind of algorithm, which
works iteratively but uses the tables and lists from the recursive algorithm
for more efficient computations. Thus, the computations are performed in an
iterative way, starting out at the small j and then calculating larger j. However,
our reasoning is more like that seen in the recursive algorithm, as we hope to
be able to tell in advance what computations are truly necessary.

In this section, we will give an example of a hybrid algorithm, an algorithm
that makes use of the best of two worlds. The hybrid algorithm performs exactly
the same calculations as the recursive algorithm, but the order in which the
calculations are performed is iterative, which motivates the use of the word
hybrid algorithm. Eventually, in the next chapter [4] we shall compare various
algorithms to determine their performance under different circumstances.
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Table 1: An example of a Reduction Matrix. 4,j pairs corresponding to a
rainbow ¢, +1 — i+ 7 — 2,4+ j — 1 are denoted by a B. Pairs corresponding to
irreducible partial partition sums are marked with an x, while reducible partial
partition sums are marked with a <. Finally, partial partition sums that are
trivially 1 are denoted by a period. Note that the upper triangle corresponds
to partial partition sums p; ; for which ¢ + j — 1, the end of the substrand, is
outside of the strand, such that these combinations of i, j are not used.
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3.4.1 Combining the recursive and iterative algorithms

The techniques outlined in the discussion of the recursive algorithm, may also
be applied to a non-recursive algorithm which is more along the lines of the
basic algorithm from the end of Section [3.:2.2] The list of k’s may also be
incorporated into the iterative algorithm, like the reduction matrix. In fact, the
only difference with respect to the basic algorithm is that more thought is given
to the question what calculations are really necessary, and consequently what
calculations may be omitted. The implementation is thus straightforward: the
loop over all k is replaced by a loop over k’s in the list of k’s. Furthermore,
not all partition sums are calculated, because the reduction matrix contains
information on what partition sums are required for the final result.

The pseudocode for the hybrid algorithm is given below. The code covers all
relevant combinations of ¢ and j, while the loop over j should be the outermost
loop. In the following, we have renamed the M, ; and M, ; arrays by p; ; and
Di,;, respectively. p; ; should be initialized at 1 for all j < jo +4. p; ; should be
initialized at 0 everywhere. The total partition sum for the strand is given by
Po,n + ﬁO,n-

Hybrid Algorithm (Minimal extended NN model in hybrid form)
for j=jo+4ton—1 /* strand length is n,
fori=0ton—j—1 positions are 0,...,n — 1 */
if R ; =-1
pij =1
else if R, ; = {¢, '}
bij = Pir 5
else
sum = p; 1+ DPij-1
t = cotype(i +j — 2)
index = left(i +j — 2)
while index > first(t) and K (index) > 1
k = K (index) — i
sum = sum + (i k + Dik) * Ditk,j—k
indexr = index — 1
Di,j; = sum
if R, ; =—-3 /* Calculate p; ; if necessary */
Dij = Gijitj—2 * (Pit2,j—a + Pit1,5-2)

The reason that this algorithm is considered interesting, is that it is recursive
without doing any function calls whatsoever. Or, alternatively, it is iterative,
but in a smart way such that no checks need to be performed and no unnecessary
computations are carried out.
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4 Algorithms compared

Having introduced and described various possible algorithms, we would like to
examine implementations for each algorithm and find out how they perform,
compared to each other, and see how the algorithms differ. Additionally, we
would like to see what approach performs best: to write a recursive algorithm,
or to try to mix recursive elements into the basic algorithm to arrive at a more
advanced hybrid algorithm. Or, perhaps, to keep things simple and straightfor-
ward and skip the complications.

4.1 Algorithm running times
4.1.1 Implementations and setup

Because the creation of a reduction matrix costs quite a bit of time, and also
because the use of the reduction matrix is more difficult, the recursive and hybrid
algorithms were tested both with and without making use of the reduction
matrix. To this end, the algorithms have been compared by a series of test runs
for a multitude of DNA strandsg Five different algorithms were considered:
The basic (iterative) algorithm (sec.

The recursive algorithm, using only the list of k’s (sec.

The hybrid algorithm, using the list of k’s (sec.

The recursive algorithm, (2) while also using a reduction matrix

The hybrid algorithm, (3) while also using a reduction matrix

Fr o =

Furthermore, as some algorithms require other preliminary calculations than
others, a number of preprocessing steps was examine

6. Creating the list of k’s Used by: 2,3,4,5
7. Creating a list of starting points in the list of k’s  Used by: 2,3,4,5
8. Initializing matrices to zero Used by: 2,34
9. Creating the reduction matrix Used by: 4,5

Random DNA was created using a Mersenne Twister-based random number
generator [I9]. The length varied from 4 nucleotides for the shortest strand,
to a little less than 800 for the longest. These limits were chosen because no
rainbows can form in strands consisting of less than 4 nucleotides, and because
model limitations cause a practical limit of about a hundred nucleotides, beyond
which effects like kissing hairpins and pseudoknots become important, and our
model falls short of physical reality. Nonetheless, we also investigated higher
lengths as this might prove interesting to people who want to build algorithms
based on the algorithms described here.

All results were obtained using an AMD Opteron 848 CPU running at 2.2
GHz, and using 4 GB of RAM.
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Figure 13: Comparison between the iterative, recursive and hybrid algorithms
for randomly generated DNA strands. For each length n, 32 strands were gen-
erated and tested. The average time ¢ required for the computations (in ns) was
divided by n?, where n is the strand length.

3.0
— [terative
2.5/ = Recursive
- Recursive with reduction
7 20f = Hybrid
¢ = Hybrid with reduction
_ _Ine<l 1.5
s
n3[ ]
1.0t
0.5
10 20 50 100 200 500 1000
n —

Figure 14: Comparison between the iterative, recursive and hybrid algorithms
for ‘symmetric’ DNA strands. Motivated by the fact that microarrays require
hybridization of two complementary strands of DNA, we generated random
strands, then glued these together with their own complement, as would be
done for microarray calculations. Once again, the image was scaled by dividing
by n?.
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4.1.2 Timings of the algorithms

Besides testing the algorithm on randomly generated DNA strands, we also in-
vestigated the performance of this algorithm when used to perform calculations
on symmetric DNA. That is to say, for example in microarrays, we are primarily
interested in the algorithm’s performance when applied to two complementary
strands. As an antisymmetric strand is not quite a random strand, it was not
at all obvious whether the different algorithms would respond differently. Such
a difference, however, is not found, as can be seen from Figures [I3] and and
there appears to be little difference between the two types of strands as far as
our algorithms are concerned.

There is, however, a distinctive difference between the types of algorithms.
First, Figures and show that the improved iterative algorithms achieve
the best performance. For the smaller strands, the use of a reduction matrix
appears to cut down computation time substantially. However, for the longest
strands there is no gain, and perhaps even a slight decrease in performance,
when the reduction matrix is used in the calculations.

4.1.3 Preprocessing

While the improved algorithms do indeed speed up calculations, a few extra
steps have become necessary, too. Because those are not intimately related to
the algorithms, they have been treated separately. Furthermore, if the algorithm
is run multiple times, but with different energy parameters (which will turn out
to be useful in due time), these steps do not need to be repeated, and thus
they are not really a part of the algorithm, but rather a part of its implemen-
tation. For many applications, however, they need to be carried out for every
strand used as input by the algorithm, however, and it is important to know
their contribution to the computation time, relative to that of the algorithms
themselves.

The creation of the list of partner doublets and the list of starting points is
linearly proportional to the strand length n, as the lists are both of length n.
This is shown in Figure [I5] The matrix initialization and reduction matrix, as
shown in Figureare both of size n? and their creation times are thus expected
to be proportional to n2.

A few jumps become obvious. Apparently, at certain points, caching effects
cause sudden increases in computation time. Other than that, it is confirmed
that, in line with our cxpcctationsﬁ the matrix initialization and reduction
matrix creation are of order m?, and creating the list of k’s and the list of
starting points are of order n.

Figure shows that the preprocessing steps are only important for very
short lengths, n < 10, and marginally important for 10 < n < 30, depending
on the chosen algorithm. Beyond this length, the effort required to complete all

31For the algorithm comparison, it doesn’t matter if RNA nucleotides are omitted, we are
primarily interested in the efficiency, which is not expected to depend on the strand type.

32The hybrid algorithm without reduction matrix (3) must initialize M, but when the
reduction matrix is present (5), we can also check whether R; ; = —3 and we do not need to
initialize anything.

33The matrices contain n2 entries, and the lists contain n entries, so if filling them is
anything near efficient, we would only expect a constant parameter to show up next to the
n? or n, respectively.

2
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Figure 15: Creation time required for the list of k’s. The linear dependence on
n is made clear by dividing by n. These arrays are required for all algorithms
except the iterative algorithm.
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Figure 16: Time required to initialize the arrays for result storage, and the time
it took to create a reduction matrix. Note that these preprocessing steps are
not required for all algorithms. The results were divided by n? to emphasize
deviations from perfect n2-proportionality.
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Figure 17: In this figure, the preprocessing steps have been drawn as thin lines
through the algorithm performance graph, Figure [I3] All graphs have been
divided by n3.

preprocessing steps quickly becomes less than 10 % of the total time, and the
effect is negligible. That is to say, in comparing algorithms, we can conveniently
ignore the preprocessing costs for n > 30. For calculations on microarrays of
length 25, which involve calculating partition sums of length 50 for RNA/DNA
hybrids, the iterative algorithm with reduction matrix is found to be the most
efficient one.

4.2 Algorithm analysis

A different way to assess algorithms, is to count some core elements of the
algorithms. For example, one might count the number of times that two floats
are multiplied, or the number of function calls, or the number of different arcs
on a strand. In this section, we seek to give a clear analysis of the difference
between the algorithms, in terms of such counts.

4.2.1 The number of flops

A good way to estimate the computational load of a program, is to compute
the number of flops, floating-point operations. As there are different possible
definitions of the word flop, we shall define it in this context as a multiplication
between two numbers in double precision. In fact, such multiplications do not
show up often, they are only used when products of partial partition sums are
computed, and when any p is calculated. The results are given in Figure
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Figure 18: The number of flops for random strands, both for the iterative and
the recursive/hybrid algorithm, divided by n®. The number of flops is the same
with and without reduction matrix, because in both cases the number of prod-
ucts taken between partition sums is minimal. Moreover, there is no difference
between flop counts for the recursive and the hybrid algorithm, because they
perform the same multiplications, only in a different order.

43



4.2.2 The number of irreducible partition sums

—  Number of calls saved by Reduction Matrix
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—  Number of irreducible partition sums
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Figure 19: The number of arcs, and the number of irreducible partition sums
(also including the number of arcs). The results were divided by n? to illus-
trate how the counts converge towards large-n limit values. Furthermore, for
comparison purposes the effect of the reduction matrix is also included, to show
which portion of the irreducible partition sums may profit from the use of the
reduction matrix.

Figure [19] displays a few of the most interesting statistics. The number of

rainbows is seen to be proportional to g—; This may be well understood: in

a strand of length n, there are about %2 possible rainbows, but because of
the nature of the rainbows, the probability for any combination of two pairs
of nucleotides to be complementary is only (i)Q. The number of irreducible

partition sums is also of order n2. Naturally, there are at most about %2 different
partition sums, and for long strands, few are reducible. However, likely because
of our reduction matrix, the curve approaches %2 only for large n. At n = 50,
only a fraction 1/5 of the maximum number needs to be computed.

Also included is the work done by the reduction matrix. It follows that at
certain lengths, up to 20 % of the function calls may be saved by the reduction
matrix. Although this may not seem a lot when compared to the difference
between the recursive algorithm and the iterative algorithm, a 20 % better
performance is still noteworthy, and indeed a significant improvement is seen
for short strands in Figure [I3] Furthermore, the reduction matrix is known
to improve the algorithm in more ways than reducing partition sums for the
hybrid algorithm, where it is used to determine whether a rainbow exists. This
is indeed seen in Figure too, as the inclusion of a reduction matrix improves
the performance for the hybrid algorithm up to about n = 100.
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4.2.3 The number of array lookups

Another parameter of interest is the number of array lookups and writes, pre-
sented in Figure 20} The intensity of retrieving data from memory or cache,
and storing results, is also an indication of algorithm performance. We see that
the iterative algorithm does not need as many lookups for short strands (while
the other algorithms use k lists, the reduction matrix, et cetera, which requires
many lookups), but that the number of lookups is high at long lengths. This
is likely caused due to excessive checking of possible bows, which we have re-
paired in the other algorithms by introducing a list of possible partner pairs.
The prevention of all these checks is a likely cause for the significantly better
performance of the recursive and hybrid algorithms with respect to the iterative

algorithm.
m—= [ookups (recursive/hybrid)
3.0 = Lookups (iterative)
2.5
1 2.0
#lookups
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n
1.0
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0.0 : : : : : : :
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Figure 20: The number of flops for random strands, both for the iterative and
the recursive/hybrid algorithm. The number of flops is the same with and
without reduction matrix, because in both cases the number of products taken
between partition sums is minimal. Moreover, there is no difference between
flop counts for the recursive and the hybrid algorithm, because they perform
the same multiplications, only in a different order. We thus see that for small n,
the iterative algorithm needs the fewest lookups, while the recursive and hybrid
algorithms are more efficient for larger n. Fewer lookups in general means
easier caching, and the reduced number of lookups might be responsible for the
improved performance of the recursive and hybrid algorithms with respect to
the iterative algorithm at large n.
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5 DNA and RNA Thermodynamic parameters

In our calculations on microarrays, the parameters for the binding energy be-
tween nearest-neighbor pairs of DNA and RNA are crucial. These parameters
may seem well-known, but in fact uncertainties are large. In addition, the pa-
rameters were derived using the two-state approximation for the partition sum,
and we would like to derive a new set of parameters using the many-state model
that we have developed. In deriving this set, we will put our freshly made
algorithms to the test.

5.1 Existing Experimental Results

In the 1990s, a number of groups have performed experiments to determine the
parameters involved in DNA and RNA thermodynamics [21], 24, 27]. These
groups all used the procedure known as UV melting to determine the values of
AG(i, j).

‘UV melting’” works as follows. One considers a single strand, and its com-
plement. First, one produces a solution of these DNA and/or RNA strands.
This solution consists of a range of chemicals, most notably salt. It is known
that such a solution becomes less transparent to UV radiation when the frac-
tion of duplexes (hybridized strands) decreases. This is known to occur when
the temperature increases. Since the rest of the solution does not change its
translucency as temperature changes, this offers an opportunity to establish a
relation between the temperature, and the fraction of strands that is part of a
duplex.

Aside from the temperature dependence, the fraction of hybridized strands
is also dependent on the salt concentration, and on the strand concentration. At
constant salt concentrations, repeated experiments at different concentrations
will thus yield different melting curves. From these curves, the point where
exactly half of all strands are part of a duplex can be discerned. The corre-
sponding temperature is known as the melting temperature. A plot of these
melting temperatures versus the logarithm of the concentration may then be
used to determine values for AS and AH, the entropy and enthalpy, respec-
tively. Note that these represent values that correspond to a certain strand of
known configuration.

From the values of AS and AH, we derive the value for AG by the thermo-
dynamic relation

AG = AH — TAS. (8)

In this manner, one can determine AG parameters for any strand at any
temperature. As was discussed before, when these parameters are assumed
known, for any duplex, the value of AG may be predicted. Thus, once a sig-
nificant amount (typically about a hundred) of strands has been examined, a
set of parameters can be determined@ The most commonly used method is
to perform a least-squares fit: try different sets of parameters, and find which
choice of parameters yields the lowest sum of square deviations.

340bviously, the number of data points (i.e. the number of strands) should be large com-
pared to the number of parameters.
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5.2 Thermodynamic Parameters for the Extended Model

The current parameters used in the nearest-neighbor model have been derived
from experimental results for AG parameters at 37 °C. However, these param-
eters were derived using the two-state model. Thus, it would be particularly
interesting to rederive the parameters for our model, as we are using a many-
state model that likely needs different parameters. Thus, in the following we will
refit the parameters for the nearest-neighbor model, based on the experimen-
tal data used for melting experiments of small hybrids in solution. This is the
same experimental data that has been used to determine the values currently
known in the literature [I} 24, 27]. However, we have now used the previously
described algorithm to compute new values for AG, such that we generate a set
of parameters that is well suited to our model.

This refitting is a first application of our improved model. The resulting
refitted values for the parameters in the nearest-neighbor model are presented
in Tables 2] and 3] together with the total squared deviation between experiment
and the prediction obtained with the nearest-neighbor model. Since our model
avoids a poorly justified assumption in the existing two-state nearest-neighbor
model, a better agreement with experimental values is anticipated.

Because now hairpins are allowed as well, the parameter set for DNA/RNA
hybridization also depends on the parameters for RNA/RNA and DNA/DNA
hybridization. Thus, the parameters were fitted simultaneously, minimizing the
total square deviation over all available experimental results combined. Hairpin
loops are assumed to contain at least four consecutive nucleotides that are not
part of a base pair. A fixed parameter was used, such that for any hairpin,
regardless of its configuration or size, the same penalty is added.

5.2.1 Experimental data

To redetermine the parameters, experimental data for AG were required. The
experimental results used by Allawi [1], Xia [27] and Sugimoto [24] for DNA/DNA,
RNA/RNA and RNA/DNA respectively, were used in the analysis. Note in
particular that these values are from experiments, so they do not contain the
assumptions from the INN-HB model with its two-state approximation for the
partition sum. The experimental results are thus model-independent and may
be used to derive a new parameter set.

Because of the small length of the strands, self-hybridization is likely a
minor contribution and hairpin formation is minimal. However, it cannot be
completely neglected, especially for the self-complementary DNA/DNA and
RNA/RNA strands. Thus, using the algorithm described in the previous chap-
ter, a fit was made for the stacking free energy (thermodynamic) (AG) pa-
rameters, also called in our extended model, for RNA/RNA, DNA/DNA, and
DNA/RNA. Fits were made for all three because RNA/RNA and RNA/DNA
parameters are required in order to perform calculations with self-hybridization.

5.2.2 Results using the Rainbow model

A few additions to the set of parameters are required, because some new situ-
ations arise in our Rainbow model. Because of partial unzipping, O-type loops
may form. After a few test runs, it was decided not to include a free energy
penalty to a partial unzipping, because the parameter was small and unreliable,
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taking values both below and above zero in different setups. However, an in-
ternal AU parameter (similar to the terminal AU parameter introduced earlier,
but now corresponding to AU pairs at the location of unzipping) was used, and
turned out to be a significant improvement to the model. Furthermore, hairpins
were only allowed whenever there were at least 4 nucleotides contained in the
loop. A penalty was assigned to any hairpin spanning four or more nucleotides,
for both DNA-DNA and RNA/RNA loops.

The addition of these parameters strains the limited pool of experimental
data used to derive the original parameter sets. The addition of the terminal
AU/AT and internal AU/AT to the RNA/DNA set, for example, increases the
number of parameters to 19, while only 64 data points are available. However,
while more verification using larger data sets is desirable, adding these two extra
parameters cuts the total square error down from 6.3 to 5.3. This was considered
sufficiently significant for inclusion in the model.

For the fit of RNA/RNA parameters, 90 sequences were available. Fur-
thermore, there were 108 DNA/DNA sequences, and 64 RNA/DNA sequences.
Because the RNA/DNA sequences may also form hairpins, which in turn need
the DNA/DNA and RNA/RNA parameters, it was chosen to fit all parameters
simultaneously.

parameters  [27] many-state | parameters [l many-state
AA/UU  -0.93 0.86 AA/TT -1.00 0.88
AU/UA -1.10 -1.04 AT/TA -0.88 -0.64
UA/AU -1.33 -1.27 TA/AT -0.58 -0.62
CU/GA -2.08 -2.04 CT/GA -1.28 -1.14
CA/GU -2.11 -2.05 CA/GT -1.45 -1.58
GU/CA -2.24 -2.25 GT/CA -1.44 -1.35
GA/CU -2.35 -2.39 GA/CT -1.30 -1.42
CG/GC -2.36 -2.28 CG/GC -2.17 -2.16
GG/CC -3.26 -3.23 GG/CC -1.84 -1.81
GC/CG -342 -3.45 GC/CG -2.24 -2.26
AGinie  4.09 4.16 AGinit 1.82 2.27
termAU  0.45 0.45 termAT  0.05 0.09
intAU - 0.78 int AT - 0.68
hairpin - 4.54 hairpin - 9.80
Error  9.40 8.32 Error 14.86 17.00

Table 2: The nearest-neighbor model thermodynamic parameters for AG(a,b)
for RNA/RNA (left) and DNA/DNA (right), for the two-state models from
the literature, and for our many-state model. ¢ To aid partial hybridization, a
parameter was introduced for terminal A-T and A-U pairs, similar to the usual
terminal A-T penalty, but now for partial unzipping inside the hybrid. See
Section
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doublet type  [24]  [I0] this work

AA/TT -1.00 -0.95 -0.78
AC/TG -2.10 -1.76 -0.91
AG/TC -1.80 -1.54 -0.59
AU/TA -0.90 -0.71 -0.51
CA/GT -0.90 -1.25 -2.12
CC/GG -2.10 -1.92 -1.88
CG/GC -1.70 -1.78 -1.77
CU/GA -0.90 -1.07 -1.73
GA/CT -1.30 -1.82 -2.76
GC/CG  -2.70 -2.62 -2.66
GG/CC -2.90 -2.64 -2.63
GU/CA -1.10 -1.36 -2.27
UA/AT -0.60 -0.75 -0.86
UC/AG -1.50 -1.28 -0.39
UG/AC -1.60 -1.37 -0.58
UU/AA  -0.20 -0.34 +0.09
AGinit 3.10 2.90 3.25
termAU - - -0.79
intAU - - 0.98
Error 1526 7.12 5.26

Table 3: Thermodynamic parameters AG, ,+1 in kcal/mol for DNA/RNA.
The parameters of [I0] are based on the experimental data in [24], using a
different fitting procedure.
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5.3 Discussion of the new parameter set
5.3.1 RNA/DNA parameters

It is surprising to see that the fit for RNA/DNA hybridization actually converged
to a parameter set where terminal AU pairs are given a negative free energy
contribution - this would mean that A - U (or T - A) pairs are actually stronger
than C - G pairs. As C - G pairs have three hydrogen bonds while A - U pairs
have only two, this is unexpected, and there is no obvious reason for this. It is
quite possible that this is not a physical effect, but instead an artifact of fitting
many parameters on relatively few data points.

The parameters for pairs which have A’s and T’s have decreased significantly.
As a larger termAU parameter and smaller parameters for pairs containing A, T
or U nucleotides tend to compensate each other, large deviations in parameters
are possible with only small changes in the predicted hybridization free energy
for a given pair of DNA and RNA strands. Consequently, the parameters must
be regarded with caution. On the other hand, this effect is encountered in every
fit, and this also means that literature values may be far from the true values.

Our model and parameters predict hybridization free energies which are
closer to experimental values, and the total square error decreased by 66 %
(with respect to [24]) and 26 % (with respect to [I0]), respectively. Thus, our
many-state model, making use of this new set of parameters, is expected to be
able to predict hybridization probabilities much more accurately.

5.3.2 RNA/RNA parameters

The changes in the parameters for RNA/RNA are not very significant. The total
square error decreased by 11 %, but it is hard to tell how much of this effect is
due to the additional two parameters. If the hairpin parameter would be very
small, no hairpin formation would be possible. However, at its current value,
some of the hairpins still contribute significantly to a strand’s self-hybridization
partition sum, and it seems that hairpin formation is possible even at these
lengths.

5.3.3 DNA/DNA parameters

The many-state model failed to improve results for DNA/DNA parameters.
The most likely cause is the small size of the strands, which reduces the effect
of partial hybridization and self-hybridization. It is expected that for longer
strands, the many-state model will still yield a better prediction. This will
require new experiments, however, as to our knowledge no extensive data sets
on DNA/DNA hybridization are available. It should be noted that the average
deviation between prediction and experiment is rather large, in other words the
total square error is 17.00 for 108 sequences used to fit 14 parameters. Fitting
17 parameters on 64 sequences, the total square error for RNA/DNA was only
5.26. Thus, it appears that for reasons unknown, DNA/DNA hybridization free
energies are relatively hard to predict.
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5.4 Inclusion of more parameters
5.4.1 Motivation

In the above fit, there were no special contributions for bulges and dangling
ends, to keep the number of parameters low. This choice was made because
adding bulge and dangling end parameters hardly affected the total square error.
However, inclusion of these extra parameters in the fit turns out to cause a
significant shift in some parameters, even if it does not significantly improve the
quality of the fit. Thus, including the extra parameters and doing another fit is
a good way to determine which parameters are reliable, and which parameters
are unreliable. After all, adding a parameter will never make the fit worse, and
in general will improve the fit.

Because of this, the fitting was done again with the most complete parameter
set possible - including dangling ends, bulges, hairpins, internal and terminal
AT pairs, et cetera. It is expected that this procedure gives a good indication
of parameter stability.

Finally, another important reason for performing this fit is that we will
also use bulge and dangling end parameters when performing calculations on
microarrays. In order to be able to fully compare these parameters to the ones
used for microarray analysis, it is interesting to do a complete fit.

5.4.2 Comparison between the two parameter sets

The minimal fit, as described in Section deviates significantly from litera-
ture values, while still being characterized by a lower square error. It is tempting
to conclude that the literature values are therefore unreliable, but such a con-
clusion is certainly not justified by the results of this section, as we shall see
that the two-state model is not defeated yet.

The results for the extended fit, which has had parameters for bulges and
dangling ends added with respect to the minimal fit, are shown in Tables [f] and
Bl

In Table |4} we see a striking similarity between the parameters of Gray [10]
and the parameters from the extended fit. However, the parameters from the
minimal fit are quite different from either of these parameter sets. This is, of
course, not a coincidence: the bulge parameters have diverged to very negative
values, and bulge effects are almost forbidden. However, without bulge effects,
there is no partial unzipping, and as the hairpins also suffer a large penalty,
the remaining many-state model is little different from the two-state model.
It is rather surprising that, while it seems we have hardly changed anything,
we still have managed to cut down the total square error from 7.12 to 5.79,
an improvement of 19 %. Apparently, the fact that there still is the option
for partial unzipping at the ends of a hybrid (because dangling ends are still
allowed, as are terminal A-T pairs) remains an improvement with respect to the
two-state model.

The move towards two-state model properties is also seen clearly in Table
First of all, it must be noted that the total square error for DNA/DNA
hybridization, which was notable for being larger for the minimal fit, is now
almost equal to the total square error found by Allawi et al [I], being only
2.6 % larger. A remarkable difference is the difference in the parameters for
initiation and terminal A-T pairs.
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doublet type minimal extended  [I0]

AA/TT -0.78 -0.73  -0.95
AC/TG -0.91 -1.74  -1.76
AG/TC -0.59 -1.44 -1.54
AU/TA -0.51 -0.50 -0.71
CA/GT -2.12 -1.30 -1.25
CC/GG -1.88 -1.88 -1.92
CG/GC -1.77 -1.79 -1.78
CU/GA -1.73 -0.80 -1.07
GA/CT -2.76 -1.89 -1.82
GC/CG -2.66 -2.74  -2.62
GG/CC -2.63 -2.64 -2.64
GU/CA -2.27 -1.33  -1.36
UA/AT -0.86 -1.03  -0.75
UC/AG -0.39 -1.43  -1.28
UG/AC -0.58 -1.52  -1.37
UU/AA +0.09 +0.06 -0.34
AGipnit 3.25 3.13  2.90
termAU -0.79¢ -0.03 -
intAU 0.98 -0.83¢ -
bulge - 7.63 -
dangling end - 2.57 -
Error 5.26 5.79 T7.12

Table 4: Comparison of RNA /DNA thermodynamic parameters for the minimal
fit, as described in Section[5.2.2} and the extended fit, which also has parameters
for bulges and dangling ends. For comparison, the results by Gray [10] have also
been included. It is remarkable how the extended model resembles the results
by Gray much more closely than the minimal model does. *The minus sign is
remarkable, as this suggests that this type of A-U pairs is more stable than C-G
pairs.
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parameters minimal extended | parameters minimal extended [217
AA/UU -0.86 -0.87 AA/TT -0.88 -0.98  -1.00
AU/UA -1.04 -1.03 AT/TA -0.64 -0.91  -0.88
UA/AU -1.27 -1.24 TA/AT -0.62 -0.52  -0.58
CU/GA -2.04 -2.04 CT/GA -1.14 -1.23 -1.28
CA/GU -2.05 -2.02 CA/GT -1.58 -1.46  -1.45
GU/CA -2.25 -2.22 GT/CA -1.35 -1.48  -1.44
GA/CU -2.39 -2.36 GA/CT -1.42 -1.37  -1.30
CG/GC -2.28 -2.26 CG/GC -2.16 -2.15  -2.17
GG/CC -3.23 -3.21 GG/CC -1.81 -1.83 -1.84
GC/CG -3.45 -3.42 GC/CG -2.26 -2.29 224

AGinit 4.16 4.03 AGhnit 2.27 241  1.82
termAU 0.45 0.65 termAT 0.09 0.37  0.05
intAU 0.78 0.44 intAT 0.68 1.23 -
hairpin 4.54 9.89 hairpin 9.80 13.57 -
bulge - 7.70 bulge - 7.82 -
dangling - 1.91 dangling - 0.77 -
Error 8.32 7.95 Error 17.00 15.25 14.86

Table 5: Comparison of RNA/RNA and DNA/DNA thermodynamic parameters
for the minimal fit and the extended fit. The three sets for RNA/RNA are rather
similar, so the results by [27] were not presented here again. For DNA/DNA,
the parameter set from the minimal fit is again somewhat different from the
literature set and the set derived from the extended fit, so it is included for
comparison. The only additions were bulges and dangling ends.
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The shift in RNA/DNA parameters is also remarkable because it shows that
the literature square error ) can be improved both with and without allowance
of bulge formation. The total square error for RNA/DNA has increased some-
what in the extended model. This might seem odd - a degraded performance
following the addition of new parameters - but this is likely a result of hairpins
no longer being allowed. Moreover, the total square error for RNA/DNA was
so low already, that the difference between 5.79 and 5.26 is smaller than some
of the individual square errors.

On the other hand, we have improved the total square error for RNA/RNA
hybridization some more, such that the improvement for the total square error
here becomes 15 %.

The most notable effects of extending the fit are the disappearance of con-
figurations with internal unzipping and hairpins. Apparently, by insisting that
bulges should exist with no energy penalty (as was assumed in the minimal fit),
RNA hairpins were made possible, at an energy penalty of 4.54. Nonetheless,
the hairpins are gone in the extended fit, as the energy penalty of about —10
kcal/mol is so high that no configuration with a hairpin can contribute signifi-
cantly to the partition sum. The same is true for the bulges - even though they
have not diverged to —oo, they play no meaningful role at energy penalties of
around 8 kcal/mol. Because there are no bulges, the internal A-T parameters
have also become obsolete, and although they are presented in the tables for
completeness, they cannot be expected to have any physical meaning.

These considerations do however increase our confidence that our model
should be an improvement of the two-state model. The similarity between our
results and those known for the two-state model, are an indication that the extra
parameters are meaningful, as they do decrease the square error, but they do not
shift the parameters in the original model much. Even though we have not yet
managed to establish the importance of self-hybridization or internal unzipping,
the current improvements seem to imply that including more configurations in
the partition sum is worth some effort.

5.4.3 Values for AH and AS

In order to provide a complete overview of thermodynamic parameters, the
extended fit was repeated a number of times to also generate the corresponding
results for AH and AS. More precisely, a range of temperatures was covered
in the fit, where for each temperature, the AG value for each parameter was
fitted. The AS and AH values can be derived from a linear fit to those values,
as AS is the slope and AH the cutoff value at zero temperature of the fitted
line.

A fit has been made for the temperatures T = 27,29,31,...,47°C. This
leads to 11 complete sets of parameters, such that each parameter has a certain
value of AG at each temperature. This allows us to also determine AS and AH
for each parameter, by performing a linear fit through these eleven data points.

The values for the bulges have become extremely small, and their corre-
sponding values for AH and AS are of no significance. The values of AH and
AS for the internal A-T and the hairpins, are somewhat unreliable, but unlike
the bulges they do seem to have a serious effect on the fit. Finally, the effects
of dangling ends appeared to be all but discarded by the fit, as the correspond-
ing parameters were rather small. However, the parameters for DNA/DNA
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and RNA/DNA both seem to have at least some effect, since DNA/DNA has
only a dangling end penalty of 0.77 at 37°C, and RNA/DNA has a dangling
end penalty of 2.57 but an internal A-T bonus of -0.83, such that a penalty of
only 1.74 is taken into account for a configuration which has a single unzipping.
Whether this is a physically relevant point remains questionable, it is still well
possible that there are simply too many parameters on too few data points, such
that some parameters do not correspond to physical effects.

The only bulge formation in the current data set, is by internal unzipping of
a perfect hybrid (a hybrid formed by hybridization of two mutually complemen-
tary strands), but these effects are likely also contained in the nearest-neighbor
pair parameters. To estimate bulges, and the internal A-T parameters that also
depend on bulges, it would be better to have hybridization of pieces of DNA
and/or RNA that are not perfectly complementary. However, this type of hy-
bridization is scarcely present on short strands such as the ones we currently use
in our fitting, and it is thus not very surprising that the parameters fluctuate
wildly. It is likely that the actual improvement of the fit is only due to the
fact that the extra parameters allow the exclusion of certain states, and is not
because the parameters are physically relevant.

AH [27] AH (this work) AS [27] AS (this work)

doublet type  (kcal/mol) (kcal/mol)  (cal mol~* K—1)  (cal mol=! K1)
AA/UU -6.82 -7.30 -19.0 -20.7
AU/UA -9.38 -9.57 -26.7 -27.6
UA/AU -7.69 -7.47 -20.5 -20.1
CU/GA -10.48 -9.87 -27.1 -25.3
CA/GU -10.44 -9.79 -26.9 -25.1
GU/CA -11.40 -11.62 -29.5 -30.3
GA/CU -12.44 -12.51 -32.5 -32.7
CG/GC -10.64 -9.54 -26.7 -23.5
GG/CC -13.39 -12.84 -32.7 -31.0
GC/CG -14.88 -15.66 -36.9 -39.5
AGinis 3.61 -1.56 1.5 -18.0
termAU 3.72 0.00 10.5 -2.1
intAU - -8.78 - -29.8
hairpin® - -11.88 - -67.1
dangling end - -0.78 - -9.0

Table 6: Parameters for AH and AS for RNA/RNA. @ The AG parameter for
hairpins was very nonlinear as a function of temperature, varying from -7.1 at
27°C, to -10.5 at 39 °C, to -8.5 at 47 °C. While other parameters often are not
exactly linear, deviations this strong are not seen in other parameters. The
nonlinearity means, however, that AH and AS variables make little sense.
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AH [1] AH (this work) AS [T] AS (this work)

doublet type  (kcal/mol) (kcal/mol)  (cal mol~! K—1)  (cal mol~! K1)
AA/TT -7.9 -7.50 -22.2 -21.0
AT/TA -7.2 -7.49 -20.4 -21.3
TA/AT -7.2 -5.56 -21.3 -16.2
CT/GA -7.8 -8.12 -21.0 -22.2
CA/GT -8.5 -8.54 -22.7 -22.8
GT/CA -8.4 -9.55 -22.4 -26.0
GA/CT -8.2 -8.17 -22.2 -21.9
CG/GC -10.6 -10.48 -27.2 -26.9
GG/CC -8.0 -8.89 -19.9 -22.8
GC/CG -9.8 -10.23 -24.4 -25.6
AGinit 0.2 -3.28 5.6 -18.4
termAT 4.8 0.87 13.8 1.6
intAT - -12.39 - -44.0
hairpin® - -73.85 - -281.8

Table 7: Parameters for AH and AS for DNA/DNA. ¢ The hairpin parameters
were strongly nonlinear, see also the remark at Table [6]

AH [I0] AH (this work) AS [10] AS (this work)

doublet type  (kcal/mol) (kcal/mol)  (cal mol~! K—1)  (cal mol~! K1)
AA/TT -6.62 -5.80 -18.3 -16.4
AC/TG -7.82 -7.66 -19.5 -19.1
AG/TC -7.27 -8.03 -18.5 -21.2
AU/TA -7.12 -6.95 -20.7 -20.8
CA/GT -7.46 -7.77 -20.0 -20.9
CC/GG -6.06 -6.68 -13.4 -15.5
CG/GC -12.37 -12.34 -34.1 -34.1
CU/GA -3.13 -2.82 -6.7 -6.5
GA/CT -9.24 -8.15 -23.9 -20.2
GC/CG -10.29 -10.25 -24.7 -24.2
GG/CC -10.74 -11.63 -26.1 -29.0
GU/CA -8.81 -7.56 -24.0 -20.1
UA/AT -9.50 -10.47 -28.2 -30.5
UC/AG -8.09 -8.90 -21.9 -24.1
UG/AC 7.59 -8.20 -20.1 215
UU/AA -4.86 -5.10 -14.6 -16.7
AGinit 1.9 -6.87 -3.9 -32.2
termAU - 0.00 - 0.09
intAU - -19.75 - -61.1

Table 8: Parameters for AH and AS for RNA/DNA.
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6 The many-state model and microarrays

In the previous chapters of this thesis, we have introduced the many-state model
for partition sums in DNA and RNA hybridization. We have subsequently
created algorithms for this model, tested these algorithms, and used them to
create a new parameter set.

These results now allow us to return to the microarrays that we have intro-
duced in the first chapter. Recall that we introduced the many-state partition
sum because it appeared to be a much better approximation of the actual physics
of the system. It thus seems a logical conclusion to this research to end with a
chapter on the analysis of microarrays using the tools that have been developed.

6.1 Testing the many-state model on microarrays
6.1.1 Comparison of the two-state and many-state models

In the following, we want to compare the two-state model and the many-state
model, to determine which model is better suited for analysis of microarrays. To
allow for a good comparison, each model should have an algorithm associated
with it, that can be used to estimate the hybridization energies AG.

For the two-state model, AGfge. = 1 for a single, unhybridized strand, while
AGhybr, the hybridization free energy for two fully hybridized strands, is equal
to a sum over the nearest-neighbor model parameters corresponding to the base
pair doublets found on the strand, as seen in Section [2.2] For the many-state
model, the values of AG are computed using one of the algorithms from Sec-
tion [3

Both models lead eventually to a certain estimate of AGeﬁ‘ﬁ the effective
stacking free energy for a hybrid in solution. The concentration c¢; of the RNA
corresponding to probe s can be estimated from the measured intensity I and

AG.g, from
c

- 7 . N\
aZy (#-1)
where I, is the measured intensity for the probe, C'is a proportionality constant,

A is a normalization factor for the intensityﬁ and Z, is the partition sum given
by

9)

Cg =

Zy =1+ PGt (10)
Here, « is a fitting parameter to compensate for target-target hybridization,

1
a= 1 _|_ Coeﬂ/AGhybr ?

(11)

where we use the assumption that the likeliness of target-target hybridization
is dependent on the sequence. A large target-probe hybridization free energy
means that it is likely that the target is also highly likely to bind to other targets,

35For the two state model, AGeg = AGhyby- However, when we take into account the self-
AGhybr

AGfree,DNAAGfree,RNA ’

such that we find that the self-hybridization free energies serve as a sequence-dependent nor-

malization.
36Because we are usually far away from saturation, the -1 can be ignored, and A may be
absorbed into C.

hybridization for the many-state model, it is reasonable to use AGeg =
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which might decrease the available concentration of RNA. The definition of «
contains two parameters, ¢y and ', which should be fitted. See also Ref. [11]
for a more detailed explanation of . Note, however, that their o also may
account for hairpin formation, which we have already covered, such that it is
likely that our a will have a smaller effect on the accuracy of our predictions.
However, it was found that calculations without any use of a were significantly
less accurate than calculations using .

When we compare the fitted concentration to the actual experimental con-
centration, the difference serves as an estimate of the quality of the model used
to estimate AGeg.

6.1.2 Thermodynamic parameters for microarrays

The first thing to be done, is to determine what parameters to use for the many-
state model. We have developed a set of parameters for RNA /DNA hybridiza-
tion in Section [5] but these were for 37 °C, while the microarray experiments
we want to consider, are performed at 45 °C. We have also determined the AH
and AS values, so we might use the thermodynamic relation from eq. to
determine a value AG at 45°C. Alternatively, we can fit the experiments from
Section [p| at 45 °C directly, by calculating the experimental AG values for 45 °C
for each sequence. Both methods lead to a possible parameter set.

Another possibility is to fit a new parameter set using the experimental data
available for microarrays. There are various advantages to this approach. First
of all, it is quite possible that there are differences between the experimental
setups, that are unknown to us. The experiments used for Section [5| were
done under well-known conditions, using only one or two DNA sequences. The
microarray experiments, on the other hand, have a completely different setup.
The RNA hybridizes to DNA that is mounted on a chip, and the RNA and
DNA on microarrays is much longer than those in section [5l These and other
considerations motivate us to perform a new fit on microarray experiments.

Before we go into further detail regarding to the fitting, let us introduce the
set of experimental data that we shall be using in our calculations.

6.2 The Latin Square data set
6.2.1 Introduction to the Latin Square experiments

To encourage research being conducted on microarrays, microarray producer
Affymetrix, based in Santa Clara, California, United States, released exper-
imental data from a so-called latin square series of experiments. These are
spike-in experiments, in which known concentrations of certain strands of RNA
are added to a natural biological background.

In the case at hand, fourteen distinct experiments were carried out, and
each experiment was repeated three times. There were 42 different probe sets (a
probe set represents an RNA strand of several hundred nucleotides long, as is
common for protein-coding RNAs), and each probe set has had about a dozen
intervals of 25 positions selected, whose complements appear on the microarray.
Consequently, every one of the 42 probe sets is represented at about 11 positions
on the microarray. This means that all 11 probes (DNA strands of length 25
on the microarray chip) are expected to measure the same concentration in
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the ideal case. Of course, uncertainties and errors of various kinds will blur
the data, such that a range of different concentration estimates will be found.
One of the challenges in microarray analysis, is to select which concentration
estimates should be included.

In a given experiment, a certain probe set will be added to the experiment
in either one of 14 possible concentrations. The concentrations are in the range
{0,0.125,0.25,0.5,1,...,128, 256,512} picomolar, and the 42 probe sets are dis-
tributed evenly over these concentrations, so that there are three different probe
sets at a given concentration. The concentrations are rotated cyclically, such
that every probe set is found at every possible concentration in a single set of
three experiments.

The data obtained after performing an experiment, is in the form of inten-
sities. This means that a laser is used to detect RNA at the DNA probes.
Thus, we shall use our many-state model to estimate the relationship between
measured intensity and the concentration.

6.2.2 Choosing the right probes to use for analysis

One of the least intuitive problems is to select the probes that are thought to
represent believable values. We would like to derive an independent parameter
set for microarray analysis, as temperatures and circumstances are radically
different from the experiments seen in chapter 5] However, the fit was found to
be complicated, and it took some effort to get a realistic parameter set. Only
by carefully discarding certain probes, a physically believable set of parameters
was obtained.

There are various ways to decide whether the result found at a probe is likely
to give a good estimate of the concentration. We shall give a short discussion
of every method used to discard probes.

Mismatch intensities. In each experiment, we find both the intensity of the
DNA probe, and that of its mismatch twin, which has an altered central (13th)
nucleotide. As the partition sum for the hybridization of mismatches and RNA
targets is significantly lower than the partition sum for perfect matches and
RNA targets, a measurement is considered to be unreliable if the mismatch
intensity is close to or exceeding the perfect match intensity. In our fit, we have
decided to discard probes for which the mismatch intensity was in excess of
70 % of the perfect match intensity.

Low concentration. As there is plenty of data available, it seems an un-
necessary complication to try and predict very low concentrations. Thus, only
the top 4 concentrations (64, 128, 256 and 512 picomolar) were used in the
fitting procedure, as they are most significant with respect to the background
intensities, and thus most likely to be accurate data points.

Median-based sifting. We expect to have 11 probes left for each probe set,
although a very high mismatch intensity might have sized down our probe set
somewhat. They are expected to all yield the same concentration estimate.
Thus, the decision was made to discard the highest two and the lowest two
values, such that only the intermediate estimates remained. This means that
extreme outliers are not included in the fit, as our fitting method is a least-
squares fit, and a small number of outliers would dominate the total square
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error, making a reliable fit impossible.

Weighed errors. If a probe set, for some reason, has lost several probes
because of high mismatch intensities, it is probable that something is just plain
wrong with the fit. Thus, the square error was weighed by the size of the list
(usually this is just 7) of probes whose perfect match intensity was significantly
higher than their corresponding mismatch intensity.

At this point, in most cases, 7 probes are still left for each probe set, which
means that a single experiment still contains 7 -3 -4 = 84 data points. Fitting
on 14 experiments thus yields 1176 data points, which is more than enough for
us. There are at most 50 parameters or so in our fit, and we actually have about
four times more data than we had in the parameter set we derived earlier in
this thesis.

6.3 Fitting the many-state model for microarrays

When we have done this pre-selection of probes, we are ready to estimate con-
centrations for the probes that still remain. The fit is similar to the fit described
in chapter [5] Again, we develop a measure ) which represents the total devi-
ation. In this case, this is done by taking the square of the difference between
the logarithms of the estimated concentration and spike in concentration:

Q=" my(logé, —loge,)?, (12)

where we have defined the concentration és as the spike-in concentration of
RNA targets complementary to probe s. We have also introduced m, as the
number of probes available for the probe set to which probe s belongs. This
weight factor will only affect () when a certain probe set is missing members.
If only the probe sets with a high spike-in concentration are considered (see the
preceding Section [6.2.2)), my is rarely lower than its maximum of 7, and the
inclusion of m, barely affects the fitting procedure.

6.3.1 Parameters to be fitted

First let us decide which parameters shall be fitted. As it is expected that using
extrapolated values from the parameters of Section [f]is insufficient, we shall try
to fit every parameter encountered in our model. However, because there still are
only a few hundred data points available, we shall only fit a few general bulge,
hairpin and dangling end parameters. This means that we are introducing a
significant error in our model. However, it is expected that the resulting model
will still outperform the two-state model. The parameters included in either
model are presented in Table [9]

6.3.2 Testing for overfitting of the data set

One of the dangers we have to anticipate, is overfitting. Overfitting is the fitting
of too many variables on too few data points, such that some of our parameters
are not physically relevant, but serve only to bring down the error. This is the
case when, for example, we introduce a parameter which is only used in a single
probe. The parameter would bring down the total square error by decreasing

60



parameter type | many-state | two-state
Nearest-neighbor pairs | 36 16
Initiation | 0 (3) 0 (1)
Initiation with dangling ends | 3 0
Hairpins | 2 0
Bulge formation | 3 0
Terminal A-T pairs | 3 0
Internal A-T terminal pairs | 3 0
B (Inverse temperature) | 1 1
C (Proportionality constant) | 1 1
G (Fitting parameter of o) | 1 1
¢o (Fitting parameter of o) | 1 1
Total | 54 20

Table 9: An overview of the parameters to be fitted on the Latin Square data
set, for both the many-state model and the two-state model. The number of
initiation parameters is decreased because of redundancy: the hairpins of DNA
and RNA may absorb the DNA/DNA and RNA/RNA initiation parameters,
and the only resulting initiation parameter for RNA/DNA may be absorbed
into the proportionality constant C. This absorption is indicated by the number
in brackets following the number of initiation parameters. On the other hand,
there are three distinct initiation penalties for dangling ends.

Two-state model ‘ Many-state model

Q after fitting on 1-4 | 1484 127.16
Q for Expt. 8-11 | 230.8 228.0
Q for Expt. 1-14 | 702.3 658.6

Table 10: Estimating the degree of overfitting when only four experiments are
used in the fitting. The values of the total square error, @), are given after a
least-squares fit on the experiments 1-4. The value of @ for experiments 8-11
was calculated without any fitting, using only the parameters calculated in the
fit on the experiments 1-4.

the error corresponding to the probe. However, the parameter does not help in
predicting any other concentration.

This shows that we will have to check whether our parameters are still helpful
in predicting concentrations, when they are used to predict concentrations of
probes other than the probes that were used in the fitting procedure.

To estimate the relative importance of overfitting, the parameter set for each
model was fit only on the experiments 1,2,3 and 4. Then, the parameter set was
used directly to estimate the concentrations for the experiments 8,9,10 and 11,
which do not have any common data points with the experiments 1,2,3 and 4
used in the fit.

The results are shown in Table We immediately see that we are indeed
overfitting. While the many-state model appears to give a much better fit, the
difference is all but gone when we apply the model on a different set of probes.
Although this does not necessarily mean that there is no physical relevance in
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Two-state | Two-state | Many-state | Many-state
model refit model refit
Q after fitting on 1-4 | 1484 167.7 127.1 151.6
Q for Expt. 8-11 | 230.8 217.7 228.0 197.9
Q for Expt. 5-7 and 12-14 | 323.1 311.6 303.5 278.9
Q for Expt. 1-14 | 702.3 697.0 658.6 628.4

Table 11: Comparison between the performance of the original fit and the refit.
Again, the values of the total square error, @), are given after a least-squares
fit on the experiments 1-4. The value of @) for experiments 8-11 was calculated
without any fitting, using only the parameters calculated in the fit on the ex-
periments 1-4. The values in the refit were calculated by using only a very small
number of iterations in the fitting procedure, cutting off the fit even while the
fit has not yet reached the optimal point. While the fits on the experiments 1-4
are of a lower quality, the verification experiments 8-12 are predicted better by
the parameters from the interrupted refit.

the parameters we have found, it certainly provides a clear warning that the
parameters are not reliable.

During fitting, it became clear that the fit converged rapidly up a certain
point, after which it continued to converge at a very low pace. It was conjectured
that the point where rapid convergence ended, @@ = 150 for the many-state
model, was the point where the parameters were fitted after noise effects and
no longer corresponded to physical effects. The choice was made to cease the
fit fairly early, and see whether this reduced the severity of overfitting.

The results presented in Table show that indeed the overfitting effects
are much less pronounced when the fitting was stopped at an early time. While
the two-state model shows a moderate improvement, it is primarily the many-
state model that benefits from this early stopping. At this time, we also see
confirmed that the many-state model is an improvement when compared to the
two-state model, as the many-state model results on the verification experiments
8-11 outperform the two-state model by 19.8, or about 9.1 %. Because we have
not used any of these data in our fit, the overfitting effect caused by the extra
parameters cannot account for this decrease in (). The fact that there are about
a hundred data points in each set (74 -4 = 112) also appears to indicate that
the deviation is larger than might have been expected from random variations.
More so, for the refit, it should be noted that in the fit on experiments 1-4
(9.6 %), the verification on experiments 8-12 (9.1 %), and in the fit on the
remaining six experiments (10.5 %), the performance of the many-state model
is repeatedly better than the two-state model performance by about 10 %. This
also suggests that the many-state model is indeed an improvement with respect
to the two-state model.

6.3.3 Parameter sets for calculations on microarrays

The refits from the preceding section, which yielded the best fit to the veri-
fication data set, lead to the following parameter sets for microarray analysis.
Because of the nature of the problem, values for AH and AS cannot be derived,
and only values for AG are given.
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Shared parameters Many-state parameters

RNA/DNA  many- two- RNA/RNA  many- | DNA/DNA  many-
parameter state state parameter state parameter state
AA/TT -0.21 -0.83 | AA/UU -1.21 AA/TT -1.10
AC/TG -3.44 -3.15 AU/UA -0.43 AT/TA +0.32
AG/TC -1.24 -1.40 | UA/AU -0.23 TA/AT -0.17
AU/TA -1.77 -2.22 CU/GA +0.96 | CT/GA +0.25
CA/GT -1.19 -1.09 CA/GU -2.23 CA/GT -1.62
CC/GG -0.05 -0.19 GU/CA -0.39 GT/CA -0.52
CG/GC -1.34 -1.97 | GA/CU -1.14 GA/CT -0.54
CU/GA -1.63 -2.83 CG/GC -0.05 CG/GC -0.79
GA/CT -1.19 -1.32 GG/CC -2.14 GG/CC -0.64
GC/CG 326 -2.31 | GC/CG -4.61 | GC/CG -0.97
GG/CC -3.10 -3.16

GU/CA 434 -4.82

UA/AT +1.15 +1.45

UC/AG +1.28 +1.68

UG/AC +1.08  +1.65

UU/AA +0.67  40.10

Table 12: The parameters found after the fitting of both the two-state and the
many-state nearest-neighbor model on the data of the Latin Square microarray
experiments. The RNA/DNA parameters, which are shared by both sets, are
somewhat mutually similar. None of the parameters is very much like the pa-
rameters found in Section [b so extrapolated values from those parameter sets
were not included. The fitting parameters C, 3, ¢, and 3’ were not included in
the table.

Effect | RNA/DNA RNA/RNA DNA/DNA
hairpin | - 3.04 4.52
bulge® | 7.56 5.88 5.66
dangling end | -0.33 -0.05 0.57
terminal A-T | -1.00 0.93 0.84
internal A-T | -0.74 1.00 1.10

Table 13: The remaining parameters from the many-state model, for bulge,
hairpin, A-U and dangling end effects. “Unfortunately, the bulge parameters
depend quite a bit on their initial values. This is an unfortunate result of our
solution for the overfitting, and the bulge values may be up to 2 kcal/mol off
their currently listed values.
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In these results, Tables|12| and several unexpected observations show up.
For example, RNA/DNA parameters for terminal and internal A-T pairs are
negative, which means that A-T base pairs appear to be more stable connections
than C-G base pairs. This is contrary to known results from the literature [27],
and in general there is little doubt that C-G base pairs are more stable than A-T
base pairs. It remains to be determined whether this is solely a coincidence, or
a trace of some physical effect we have not yet understood.

The hairpin parameters are significantly present. Whereas the parameters
were almost meaningless in the parameter fits in Section [5] their current values
are roughly according to expectations, as they are indeed in the range of hairpin
parameters known from the literature [3]. Because of the lengths of n = 25 of
strands in the current data set, hairpins indeed do contribute, primarily via
self-hybridization and the corresponding decrease in availability in solution@

Unfortunately, the bulge parameters remain large. When the bulge param-
eters were set at 25 each, the total square error instantly increased by about
15 %, which indicates that the bulge parameters are not completely irrelevant.
However, it seems odd that the bulge parameters should be higher than initia-
tion parameters. After all, the initiation corresponds to two strands finding each
other in spite of entropy. Suppose however that these two strands were already
hybridized to each other at another point, somewhere else on the strand. It
would seem that the two strands then would be more likely to hybridize also at
another point. The fact that this does not happen, is perhaps something worthy
of further research. One possible explanation is that it is very hard for a double
helix not to form base pairs between a pair of nucleotides when base pairs are
present on either side, but at this point we have no results at our disposal to
back up this conjecture.

The dangling ends, meanwhile, seem not to have a strong preference to be
either above or below zero. Values from experiments for dangling ends [6] show
a wide spread in parameters, so we cannot assign much meaning to these single
parameters, which are tremendous simplifications with respect to the many
parameters in Ref. [6].

Finally, considering the parameters for the base pair doublets, it is quickly
seen that the parameters are not at all near the extrapolated values at 37 °C. The
two-state model even has a parameter, GU/CA, at -4.82 kcal/mol. The many-
state model’s strongest parameter is RNA/RNA GC/CG at -4.61 kcal/mol.
These are a lot larger than the parameters found in Section [o, and in fact they
are so large that it is hard to believe they can be real. In addition, lacking
material for comparison, it is difficult to say much about the parameter sets.
Obviously, because of our early termination of the fitting procedure, different
initialization of parameters will lead to different sets of parameters. In fact, we
initialized the variables at the values that can be found from the AH and AS
values from section [f] Nothing of these values remains, however, as the values
are completely different in Tables[12] and

One last finding worth some attention is the similarity between the two-state
and many-state parameter sets for the RNA /DNA base pair doublet parameters.
Even though they are not quite the same, it cannot be denied that there is some
similarity between both sets, indicating that the many-state model and the two-

37That is to say, it is known that in microarray experiments, much of the RNA is hybridized
in solution and not available for hybridization on probes.
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state model remain related, and that the parameters are still a representation
of physical properties of DNA and RNA hybridization on microarrays.
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7 Conclusion and summary

In this thesis, we have extended the nearest-neighbor model for DNA and RNA
hybridization. The common two-state assumption is not justified for the lengths
encountered in microarray analysis. Thus, we have created a many-state model,
which takes into account many currently known configurations not yet covered
by the two-state model. The configurations we have not taken into account, such
as those with kissing hairpins, are expected not to have a significant impact on
the partition sum, as those effects are only expected to become important at
lengths much larger than the strands (of lengths ranging from 20 to at most
60) that are known from microarrays. However, throughout the course of this
thesis, we have repeatedly seen confirmation that the many-state model gives
better results than the two-state model.

To perform computations using this model in an efficient way, we have first
developed an algorithm to carry out the necessary computations. This algo-
rithm, which we called the Rainbow algorithm, was developed as an order-n®
algorithm, using the assumption that the partition sum can be split into two
independent parts. We then discussed several improvements that could be made
to make the algorithm more efficient, and that would help skip redundant checks
and computations.

There turned out to be several candidate algorithms. Each of the candidates
was implemented and tested. Results indicated that simple iterative algorithms
are most efficient for short lengths. However, at these lengths, there is virtually
no hairpin or bulge formation, and the effect of partial unzipping is only minor.
For the lengths at which hairpins and bulges are known to form, it was found
that a hybrid algorithm, using both iterative and recursive strategies, performs
best. The differences between the algorithms were found to be quite significant,
with a speedup factor of 7 for the hybrid algorithm with respect to the iterative
algorithm at intermediate lengths, n ~ 50.

With an efficient algorithm at our disposal, the decision was made to first
test the new model on existing literature values. For this purpose, the model was
implemented in a fitting program that computed a new set of parameters for
the nearest-neighbor model. Because implementation of bulges and dangling
ends was somewhat complicated, these parameters were skipped in the early
fitting. However, to be fully compatible with the parameter set to be used for
microarrays, the bulge and dangling end parameters were eventually included.
The significance of the removal of bulges was somewhat surprising, and caused
a shift in the other parameters. This shift might have been thought of as an
overfitting effect, if it were not for the striking similarity between the new set
and the two-state model sets from the literature. However, the two sets still
represent two different approaches that both seem quite able to predict DNA
and RNA hybridization, but that have parameters that lie far apart, especially
where RNA /DNA parameters are concerned. However, both parameter sets also
resulted in a total square error that was much lower than previously known.
It is hardly possible to say anything about the parameters, except that the
parameters for RNA/DNA hybridization remain uncertain. Nonetheless, the
improvement does seem to suggest that the many-state model is more accurate
in predicting DNA and RNA hybridization than the two-state model.

Finally, the algorithm was used in a new fit program to predict concentra-
tions for microarrays. Without the availability of a parameter set, we have
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fitted some of the parameters. The initial guess, being only an extrapolation to
45 °C of parameters known for 37 °C, turned out to perform poorly. Thus, it was
decided to fit all parameters once more. As there were another four parameters
related to concentration estimation, this brought the total number of param-
eters to 54 for the many-state model. Fits were done using these parameters,
but the results were suspicious, so tests were done to check for overfitting. For
comparison, the two-state model was also implemented and fitted, using only 20
parameters. Overfitting was indeed found, in serious amounts for the two-state
model, but the amount of overfitting in the many-state model fit was so severe
that it was deemed necessary to acquire a set of parameters using a different
method of fitting. It turned out that cutting the fit short was sufficient to re-
move much of the overfitting effects. While it is inevitable that some overfitting
effects remain, the results were sufficient to conclude that the many-state model
indeed improves upon the two-state model when used in microarray analysis.

7.1 Outlook for future research

The results of this thesis confirm that the many-state model improves calcula-
tions on DNA and RNA hybridization. This raises a number of new questions
and problems. First of all, it would be desirable to do fits on larger data sets
to gather more decisive evidence on the parameters of the model. Furthermore,
there are many different parameters for bulges and hairpins, and when more
data is available, this also opens up possibilities for inclusion of all of these
parameters, rather than a single parameter for ‘all bulges in DNA/DNA hy-
bridization’, for instance. After all, bulges take many different forms, and the
nucleotide content of the bulges can be expected to play a major role in the
tendency of a bulge to exist. With or without these additional parameters, it is
expected that the many-state model we have developed will help future analysis
of microarrays.

The model is applicable to many other problems in DNA and RNA hybridiza-
tion, too. A lot of research worldwide deals with computations on hybridization,
such as RNA folding, and it is very well possible that the many-state model will
improve results in many different situations.
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