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A B S T R A C T

Recent research shows increasing decadal ice mass losses from the Greenland and Antarctic Ice Sheets and more generally from glaciers worldwide in the light of
continued global warming. Here, in an update of our previous ISMASS paper (Hanna et al., 2013), we review recent observational estimates of ice sheet and glacier
mass balance, and their related uncertainties, first briefly considering relevant monitoring methods. Focusing on the response to climate change during 1992–2018,
and especially the post-IPCC AR5 period, we discuss recent changes in the relative contributions of ice sheets and glaciers to sea-level change. We assess recent
advances in understanding of the relative importance of surface mass balance and ice dynamics in overall ice-sheet mass change. We also consider recent im-
provements in ice-sheet modelling, highlighting data-model linkages and the use of updated observational datasets in ice-sheet models. Finally, by identifying key
deficiencies in the observations and models that hamper current understanding and limit reliability of future ice-sheet projections, we make recommendations to the
research community for reducing these knowledge gaps. Our synthesis aims to provide a critical and timely review of the current state of the science in advance of the
next Intergovernmental Panel on Climate Change Assessment Report that is due in 2021.

1. Introduction

Major uncertainties in predicting and projecting future sea-level rise
are due to the contribution of the major ice sheets on Earth, Greenland
and Antarctica (Pattyn et al., 2018). These uncertainties essentially
stem from the fact that these ice sheets may reach a tipping point, in
this context defined as (regionally) irreversible mass loss, with a
warming climate and that the timing of the onset of such a tipping point
is difficult to assess. This is particularly true for the Antarctic Ice Sheets
(AIS), where two instability mechanisms potentially operate, allowing a
large divergence in timing of onset and mass loss in model projections,
while the Greenland Ice Sheet (GrIS) is also particularly susceptible to
increased mass loss from surface melting and associated feedbacks
under anthropogenic warming.

The Expert Group on Ice Sheet Mass Balance and Sea Level (ISMASS;
http://www.climate-cryosphere.org/activities/groups/ismass)

convened a one-day workshop as part of POLAR2018 in Davos,
Switzerland, on 15 June 2018, to discuss advances in ice-sheet ob-
servations and modelling since the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC AR5). The talks and
discussions are summarised here in an update of our previous review
(Hanna et al., 2013) where we synthesised material from a similar
workshop held in Portland, Oregon, USA, in July 2012. Here we focus,
in the light of advances in the last six years, on what we need to know in
order to make improved model projections of ice-sheet change. Apart
from providing an update of recent observational estimates of ice-sheet
mass changes, we also set this in a wider context of global glacier
change. The paper is arranged as follows. In Section (2) we discuss
recent advances in ice-sheet observations, while Section (3) focuses on
advances in modelling and identifies remaining challenges – including
links with observational needs - that need to be overcome in order to
make better projections. Section (4) discusses recent and projected
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mass-balance rates for glaciers and ice caps, comparing these with re-
cent ice-sheet changes, setting the latter in a broader context of global
glacier change. Finally, in Section (5) we summarise our findings and
make key recommendations for stimulating further research.

2. Observational estimates of ice-sheet total and surface mass
balance

In this section we summarise recent observation-based estimates of
the total mass balance of the Antarctic and Greenland ice sheets, also
considering changes in surface mass balance (SMB; net snow accumu-
lation minus surface meltwater runoff) and – for marine-terminating
glaciers – ice dynamics (solid ice dynamical discharge across the
grounding line – the contact of an ice sheet with the ocean where the ice
mass becomes buoyant and floats – and subsequent calving of icebergs)
where appropriate (Fig. 1). Fig. 2 shows mean SMB for the ice sheets for
recent periods, while mean surface ice flow velocity maps can be found
in Rignot et al. (2019) and Mouginot et al. (2019) (Fig. 1A in both
papers). Satellite, airborne and in situ observational techniques and
modelling studies have provided a detailed representation of recent ice-
sheet mass loss and increases in ice melt and discharge (Moon et al.,
2012; Enderlin et al., 2014; Bigg et al., 2014; Shepherd et al., 2012,
2018; Trusel et al., 2018; Rignot et al., 2019; Mouginot et al., 2019).

There are three main methods of estimating ice-sheet mass changes.
Firstly, radar and laser altimetry (mainly using CryoSat, Envisat, ERA
and ICESat satellites), which measure changes in height of the surface
over repeat surveys that are interpolated over the surface area of in-
terest to estimate a volume change which is converted into a mass

change. This latter is typically done using knowledge or assumptions of
the radar return depth and/or near-surface density. Alternatively
Zwally et al. (2015) use knowledge of the accumulation-driven mass
anomaly during the period of observation, together with the associated
accumulation-driven elevation anomaly corrected for the accumula-
tion-driven firn compaction, to derive the total mass change and its
accumulation- and dynamic-driven components Secondly, satellite
gravimetry effectively weighs the ice sheets through their gravitational
pull on a pair of orbiting satellites called GRACE (or, since May 2018,
the subsequent GRACE Follow On mission). Thirdly, the mass budget or
component method compares SMB model output with multi-sensor
satellite radar observations of ice velocity across a position on or close
to the grounding line, from which ice discharge can be inferred if the
thickness and vertical velocity profile of ice at that point are also as-
sumed/known. All three methods have their strengths and weaknesses
(e.g. Hanna et al., 2013; Bamber et al., 2018). Altimetry and, especially,
gravimetry, require accurate quantification of Glacial Isostatic Adjust-
ment (GIA; Section 2.3) which contaminates the ice-sheet mass loss
signals. Gravimetry is limited by a relatively short time series (since
2002) and low spatial resolution (∼300 km) compared with the other
methods but is the method that most directly measures mass change.

Altimetry surveys, which date relatively far back to the early 1990s,
provide elevation changes that need to be converted into volume and
then mass changes, requiring knowledge of near-surface density which
is often highly variable and uncertain for ice sheets. In addition, radar
altimeter surveys do not adequately sample relatively steeper-sloping
ice-sheet margins and require correction for the highly-variable radar-
reflection depth that has strong seasonal variations and interannual

Fig. 1. The main processes affecting the mass balance and
dynamics of ice sheets. Mass input from snowfall is balanced
by losses from surface meltwater runoff, sublimation and dy-
namical mass losses (solid ice discharge across the grounding
line). Surface melting is highly significant for Greenland but
for Antarctic grounded ice is very small and subject to re-
freezing. Interaction with the ocean occurs at the undersides of
the floating ice shelves and glacier tongues, and consequent
changes in thickness affect the rate of ice flow from the
grounded ice. Reproduced from Zwally et al. (2015) with the
permission of Jay Zwally.

Fig. 2. Surface mass balance (averaged over the period 1989–2009) of the Antarctic ice sheets (left) and the Greenland Ice Sheet (right) from the regional climate
model RACMO2.3p2 in kg m−2 yr-1 (van Wessem et al., 2018; Noël et al., 2018a). Elevation contour levels (dashed) are shown every 500 m.
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trends and complex interactions between linearly-polarized radar sig-
nals and the direction of the surface slope. Successful corrections have
been developed and applied to radar altimeter data from ERS1 and
ERS2 using crossover analysis data (Wingham et al., 1998; Davis and
Ferguson, 2004; Zwally et al., 2005; Yi et al., 2011; Khvorostovsky,
2012) and to Envisat data using repeat track analysis and an advanced
correction algorithm (Filament and Rémy, 2012). However, the cor-
rections applied by others to Envisat and CryoSat data have been
questioned due to complex interaction of the cross-track linearly-po-
larized radar signal of Envisat and CryoSat with the surface slope that
affects the highly-variable penetration/reflection depth (Zwally et al.,
2016; Nilsson et al., 2016). Also, allowance must be made for firn-
compaction changes arising from temperature and/or accumulation
variations, especially in the context of a warming ice-sheet, which
significantly affect surface elevation without mass change (e.g. Li and
Zwally, 2015; Zwally et al., 2015). A number of the altimetry studies
included here have used a regionally-varying, temporally-constant ef-
fective density value to convert observed volume changes to mass
change estimates. In many cases, a low effective density is assigned for
inland areas, and a high effective density in coastal errors. Because in
Greenland and much of Antarctica, coastal areas are thinning while
inland areas are in neutral balance or thickening, this can produce
negative biases in estimated ice-sheet mass-change rates if the changes
in the interior are associated with long-term imbalance between ice
flow and snow accumulation.

The mass-budget method involves subtracting two large quantities
(SMB and discharge) and needs detailed and complete regional in-
formation on these components, which is recently available from sa-
tellite radar data for discharge. SMB cannot be directly measured at the
ice-sheet scale but is instead estimated using regional climate models
that are evaluated and calibrated using in-situ climate and SMB ob-
servations. These RCM/SMB models can have significant uncertainties
in derived accumulation and runoff (of the order of 15%, e.g. Fettweis,
2018). Deriving discharge requires knowledge of bathymetry and the
assumption of an internal velocity profile in order to determine ice flux
across the grounding line, and there are also errors in determining the
position of the grounding line. Further uncertainty arises in estimating
the discharge from the areas where the ice velocity is not measured.
Despite these significant uncertainties, an advantage of this method is
that the mass change can be partitioned into its (sub-)components.

A more recent group use combinations of measurement strategies to
minimize the disadvantages of each, such as by combining altimetric
with gravimetric data (Sasgen et al., 2019) or mass-budget data with
gravimetric data (e.g. Talpe et al., 2017) to simultaneously estimate
GIA rates and ice-sheet mass-balance rates. These studies typically re-
port errors comparable to those reported by single-technique studies,
but their results may be seen as more credible because they provide self-
consistent solutions for the most important error sources affecting other
studies.

A major international research programme called the Ice-sheet Mass
Balance Inter-comparison Exercise (IMBIE; http://imbie.org/) has at-
tempted to reconcile differences between these various methods, and its
second phase IMBIE2 has recently reported an updated set of reconciled
total mass balance estimates for Antarctica (Shepherd et al., 2018) and
is shortly expected to update previous results for Greenland. However,
despite recent improvements in coverage and accuracy, modern sa-
tellite-based records are too short for attribution studies aiming to se-
parate the contributions from anthropogenic greenhouse gas warming
signal and background climate variability to the contemporary mass
loss (Wouters et al., 2013), and proxy data such as ice cores are
therefore used to overcome this limitation.

We have compiled recent estimates of mass balance using available
(at the time of writing) published references from 2014 to 2019 (Fig. 3),
in an update of Fig. 1 in Hanna et al. (2013). Our new box plots clearly
show continuing significant mass losses from both ice sheets, with ap-
proximately double the recent rate of mass loss for Greenland compared

with Antarctica. However, the boxes tend to suppress the considerable
interannual variability of mass fluctuations, e.g. the record loss of mass
from the GrIS in 2012, and this shorter-term variability is strikingly
shown by annually-resolved time series based on the mass-budget
method [Fig. 3 of Rignot et al. (2019) for Antarctica and Fig. 3 of
Mouginot et al. (2019) for GrIS].

2.1. Antarctic ice sheets

Recent work agrees on significant and steadily growing mass losses
from the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula
but highlights considerable residual uncertainty regarding the recent
contribution of the East Antarctic Ice Sheet (EAIS) to global sea-level
rise (SLR) (Shepherd et al., 2018; Rignot et al., 2019). For Antarctica
there is relatively little surface melt and subsequent runoff, and surface
accumulation has been relatively stable, although recent reports show
an increase in AIS snowfall (Medley and Thomas, 2019). In Antarctica,
the main sustained mass losses are through ice dynamics, expressed as
increased ice discharge across the grounding line. Mass loss through
this mechanism occurs primarily through increased flow speeds of
marine terminating glaciers in the Amundsen and Bellingshausen Sea
sectors, which are sensitive to ocean warming, although superimposed
on these relatively gradual changes there are significant short-term, i.e.
interannual to decadal, SMB variations (Rignot et al., 2019). As a key
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Fig. 3. Mass rates for the Antarctic (top) and Greenland (bottom) ice sheets
derived from published studies. The horizontal extent of each rectangle in-
dicates the period that each estimate spans, while the height indicates the error
estimate. Studies published between 2011 and 2017 are shown with thin lines,
studies published in 2018 and early 2019 with heavier lines. The colour of the
lines indicates the type of estimate used, and any estimate that is based ex-
plicitly on more than one technique is treated as a ‘combined’ estimate. The
IMBIE (Shepherd et al., 2012 for Greenland, Shepherd et al., 2018 for Antarc-
tica) estimates are shown in black. Rectangles are overplotted with annual mass
balance estimates from Rignot et al. (2019) for Antarctica and Mouginot et al.
(2019) for Greenland, to indicate interannual variability. The studies cited in
this plot are described in Supplemental Table I.
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output of the IMBIE2 project, Shepherd et al. (2018) built on Shepherd
et al. (2012) by significantly extending the study period and reconciling
the results of 24 independent estimates of Antarctic ice-sheet mass
balance using satellite altimetry, gravimetry and the mass budget
methods encompassing thirteen satellite missions and approximately
double the number of studies previously considered. They found that
between 1992–2017 the Antarctic ice sheets lost 2725±1400 Gt of ice,
therefore contributing 7.6±3.9 mm to SLR, principally due to increased
mass loss from the WAIS and the Antarctic Peninsula. However, they
also found that EAIS was close to balance, i.e. 5±46 Gt yr−1 averaged
over the 25 years, although this was the least certain region, attributed
to its enormous area and relatively poorly constrained GIA (Section 2.3)
compared with other regions. Shepherd et al. (2018) found that WAIS
mass loss steadily increased from 53±29 Gt yr−1 for 1992–1996 to
159±26 Gt yr−1 during 2013–2017, and that Antarctic Peninsula mass
losses increased by 15 Gt yr−1 since 2000, while the EAIS had little
overall trend in mass balance during the period of study. The overall
reconciled sea-level contribution from Antarctica rose correspondingly
from 0.2 to 0.6 mm yr−1. These authors also reported no systematic
Antarctic SMB trend, and they therefore attributed WAIS mass loss to
increased ice discharge. Of particular concern is the case of ongoing
grounding line retreat in the Amundsen Sea in West Antarctica, as well
as basal melt of ice shelves through polynya-related feedbacks, e.g. in
the Ross Sea (Stewart et al., 2019).

Rignot et al. (2019) used the mass budget method to compare
Antarctic snow accumulation with ice discharge for 1979–2017, using
improved, high-resolution datasets of ice-sheet velocity and thickness,
topography and drainage basins and modelled SMB. Within un-
certainties their total mass balance estimates for WAIS and the Ant-
arctic Peninsula agreed with those of Shepherd et al. (2018) but they
derived a -57 ± 2 Gt yr−1 mass balance for East Antarctica for
1992–2017, compared with the +5 ± 46 Gt yr−1 for the same period
derived in IMBIE2. Possible reasons for this difference include un-
certainties in ice thickness and modelled SMB in the mass budget
method, together with further uncertainties in the IMBIE-2 EAIS mass
estimates arising from volume to mass conversions within the altimetry
data processing and significantly uncertain GIA corrections when pro-
cessing GRACE data. Zwally et al. (2015) found significant EAIS mass
gains of 136 ± 50 Gt yr−1 for 1992–2001 from ERS radar altimetry and
136 ± 28 Gt yr−1 for 2003–2008 based on ERS radar altimetry and
ICESat laser altimetry, dynamic thickening of 147 ± 55 Gt yr−1 and
147 ± 34 Gt yr−1 respectively, and accumulation-driven losses of
11 ± 6 Gt yr−1 in both periods with respect to a 27-year mean. They
attributed the dynamic thickening to a long-term dynamic response
arising from a 67-266% increase in snow accumulation during the
Holocene, as derived from six ice cores (Siegert, 2003), rather than
contemporaneous increases in accumulation. However, because the
results of Zwally et al. (2015) differ from most others, they have been
questioned by other workers (Scambos and Shuman, 2016; Martín-
Español et al., 2017), although see Zwally et al. (2016) for a response.
Bamber et al. (2018) describe “reasonable consistency between [EAIS
mass balance] estimates” if they discount the outlier of Zwally et al.
(2015). Notwithstanding, as highlighted by Hanna et al. (2013) and
Shepherd et al. (2018) and clearly shown here in Fig. 3 which clearly
shows ‘outliers’ on both sides of the IMBIE-reconciled means, disparate
estimates of the mass balance of East Antarctica, which vary by
∼100 Gt yr−1, have not yet been properly resolved. Furthermore, the
range of differences does not appear to be narrowing with time, which
indicates a lack of advancement in one or more of the mass-balance
determination methods.

2.2. Greenland ice sheet

According to several recent estimates, the GrIS lost 257 ± 15 Gt
yr−1 of mass during 2003–2015 (Box et al., 2018), 262 ± 21 Gt yr−1

during 2007–2011 (Andersen et al., 2015), 269 ± 51 Gt yr−1 during

2011–2014 (McMillan et al., 2016), 247 Gt yr−1 of mass − re-
presenting 37% of the overall land ice contribution to global sea-level
rise − during 2012-2016 (Bamber et al., 2018), and 286 ± 20 Gt yr−1

during 2010–2018 (Mouginot et al., 2019). A slightly greater mass loss
of 308 ± 12 Gt yr−1 based on GRACE gravimetric satellite data for
2007–2016 was given by Zhang et al. (2019). Some of the difference
between these numbers can be attributed to different methods con-
sidering either just the contiguous ice sheet or also including dis-
connected peripheral glaciers and ice caps, the latter being the case for
GRACE-based estimates. However, GrIS mass loss approximately
quadrupled during 2002/3–2012/13 (Bevis et al., 2019). The GrIS sea-
level contribution over 1992–2017 was approximately one and a half
times the sea-level contribution of Antarctica (Box et al., 2018). How-
ever, this kind of average value masks very significant interannual
variability of ±228 Gt yr−1, and even 5-year mean values can vary by
±102 Gt yr−1, based on 2003–2016 data; for example recent annual
mass losses ranged from>400 Gt in 2012 (a record melt year caused by
jet-stream changes, e.g. Hanna et al., 2014) to <100 Gt just one year
later (Bamber et al., 2018).

McMillan et al. (2016) found that high interannual (1991–2014)
mass balance variability was mainly due to changes in runoff of 102 Gt
yr−1 (standard deviation, ∼28% of the mean annual runoff value) with
lesser contributions from year-to-year snowfall variations of ∼61 Gt
yr−1 (∼9% of the mean snowfall value) and solid ice discharge of
∼20 Gt yr−1 (∼5% of the mean annual discharge). Their interpretation
of transient mass changes was supported by Zhang et al. (2019) who
attributed big short-term (∼3-year) fluctuations in surface mass bal-
ance to changes in atmospheric circulation, specifically the Greenland
Blocking Index (GBI; Hanna et al., 2016), with opposite GBI phases in
2010–2012 (highly positive GBI) and 2013–2015 (less blocked Green-
land). Also, in the MODIS satellite record since the year 2000, Green-
land albedo was relatively high from 2013 to 2018 after reaching a
record low in 2012 (Tedesco et al., 2018). The relatively low GrIS mass
loss in 2013-14 was termed the “pause” (Bevis et al., 2019). However,
Zhang et al. (2019) inferred an acceleration of 18 ± 9 Gt yr−2 in GrIS
mass loss over 2007–2016. Given this pronounced recent short-term
variability, for example the recent slowdown of rapid mass loss in-
creases in the 2000s and very early 2010s, such trends should only be
extrapolated forward with great caution.

Greenland mass loss is mainly driven by atmospheric warming, and
– based on ice-core-derived melt information and regional model si-
mulations − surface meltwater runoff increased by ∼50% since the
1990s, becoming significantly higher than pre-industrial levels and
being unprecedented in the last 7000 years (Trusel et al., 2018).
Enderlin et al. (2014) found an increasingly important role of runoff on
total mass annual losses during their 2000-2012 study period and
concluded that SMB changes were the main driver of long-term (dec-
adal or longer) mass loss.

However, just five marginal glacier near-termini regions, covering
<1% of the GrIS by area were responsible for 12% of the net ice loss
(McMillan et al., 2016), highlighting the potentially important role and
sensitivity of ice dynamics; these authors alongside Tedesco et al.
(2016) also found an atmospheric warming signal on mass balance in
the northernmost reaches of the ice sheet. Taking a longer perspective
from 1972 to 2018, using extended datasets of outlet glacier velocity
and ice thickness, improved bathymetric and gravity surveys and
newly-available high resolution SMB model output, Mouginot et al.
(2019) reported that dynamical losses from the GrIS have continuously
increased since 1972, dominating mass changes except for the last 20
years, estimating that over this longer period 66 ± 8% of the overall
mass losses were from dynamics and 34 ± 8% from SMB. They con-
cluded that dynamics are likely to continue to be important in future
decades, apart from the southwest where runoff/SMB changes pre-
dominate, and that the northern parts of GrIS – where outlet glaciers
could lose their buttressing ice shelves − are likely to be especially
sensitive to future climate warming.
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2.3. Glacial isostatic adjustment

Processes associated with GIA must be accounted for when quanti-
fying contemporary ice-sheet change (Shepherd et al., 2018) and also
when predicting the dynamics of future change (Adhikari et al., 2014;
Gomez et al., 2015; Konrad et al., 2015). Specifically, ongoing changes
to the height of the land surface and the shape of Earth’s gravitational
field, in response to past ice-mass change, will bias gravimetry- and
altimeter-based measurements of contemporary ice mass balance and
alter the boundary conditions for ice-sheet dynamics. Due to density
differences between the ice sheet and the solid Earth, the impact of GIA
on gravimetry measurements will be 4–5 times greater than the impact
on altimetry measurements (Wahr et al., 2000).

Numerical models can be used to estimate the geodetic signal as-
sociated with GIA (Whitehouse et al., 2012; Ivins et al., 2013; Argus
et al., 2014) or it can be inferred via data inversion (Gunter et al., 2014;
Martín-Español et al., 2016; Sasgen et al., 2017). Both approaches
would benefit from better spatial coverage of GPS observations of land
deformation, while the first approach strongly depends on past ice sheet
change, for which constraints are severely lacking, particularly across
the interior of the Greenland and Antarctic ice sheets. Both approaches
also typically rely on the assumption that mantle viscosity beneath the
major ice sheets is spatially uniform and high enough that the signal
due to past ice-mass change is constant in time. However, recent work
has revealed regions in both Greenland and Antarctica where mantle
viscosity is much lower than the global average (e.g. Nield et al., 2014;
Khan et al., 2016; Barletta et al., 2018; Mordret, 2018). This has two
important implications. First, in regions where upper mantle viscosity is
less than ∼1019 Pa s the response to recent (decadal to centennial) ice-
mass change will dominate the GIA signal, and may not be steady in
time. In such regions a time-varying GIA correction, which accounts for
both the viscous and elastic response to contemporary ice-mass change,
should be applied to gravimetry, altimetry and other geodetic ob-
servations. Secondly, since GIA acts to reduce the water depth adjacent
to a shrinking marine-based ice sheet, this can act to slow (Gomez et al.,
2010) or reverse (Kingslake et al., 2018) the rate of ice loss, with the
stabilising effect being stronger in regions with low upper mantle
viscosity (Gomez et al., 2015; Konrad et al., 2015). To better under-
stand the behaviour and likely future of marine-based ice masses it will
be necessary to quantify the spatially-varying strength of this stabilising
effect and account for feedbacks between GIA and ice dynamics within
a coupled modelling framework (e.g. Pollard et al., 2017; Gomez et al.,
2018; Larour et al., 2019; Whitehouse et al., 2019).

3. Recent advances and challenges in modelling including links
with observational needs

3.1. Modelling ice-sheet instabilities

The marine ice-sheet instability (MISI; Fig. 4) hypothesises a pos-
sible collapse of West Antarctica as a consequence of global warming.
This process, first proposed in the 1970s (Weertman, 1974; Thomas and
Bentley, 1978), was recently theoretically confirmed and demonstrated
in numerical models (Schoof, 2007; Pattyn et al., 2012). It arises from
thinning and eventually flotation of the ice near the grounding line,
which moves the latter into deeper water where the ice is thicker.
Thicker ice results in increased ice flux, which further thins (and
eventually floats) the ice, resulting in further retreat into deeper water
(and thicker ice) and so on. This instability is activated when the
bedrock deepens toward the interior of the ice sheet, i.e., a retrograde
bed slope, as is the case for most of the West Antarctic ice sheet. The
possibility that some glaciers, such as Pine Island Glacier and Thwaites
Glacier, are already undergoing MISI has been suggested (Rignot et al.,
2014; Christianson et al., 2016). Thwaites Glacier is currently in a less-
buttressed state, and several simulations using state-of-the-art ice-sheet
models indicate continued mass loss and possibly MISI or MISI-like

behaviour even under present climatic conditions (Joughin et al., 2014;
Nias et al., 2016; Seroussi et al., 2017). However, rapid grounding line
retreat due to MISI or MISI-like behaviour remains highly dependent on
the subtleties of subglacial topography (Waibel et al., 2018) and feed-
backs associated with GIA (Section 2.3), limiting the predictive beha-
viour of the onset of MISI. In other words, geography matters.

The marine ice cliff instability (MICI) hypothesises (Fig. 4) collapse
of ice cliffs that become unstable and fail if higher than ∼90 m above
sea level, leading to the rapid retreat of ice sheets during past warm
(e.g., Pliocene and last interglacial) periods (Pollard et al., 2015;
DeConto and Pollard, 2016). MICI is a process that facilitates and en-
hances MISI once the ice shelf has completely disappeared but can also
act alone, for instance where the bed is not retrograde (which prevents
MISI). MICI relies on the assumption of perfect plastic rheology to re-
present failure. Cliff instability requires an a priori collapse of ice
shelves and is facilitated by hydro-fracturing through the increase of
water pressure in surface crevasses which deepens the latter (Bassis and
Walker, 2012; Nick et al., 2013; Pollard et al., 2015). Whether MICI is
necessary to explain Pliocene sea-level high stands has been questioned
recently (Edwards et al., 2019).

The introduction of MICI in one ice-sheet model (DeConto and
Pollard, 2016) has profoundly shaken the modelling community, as the
mechanism potentially results in future sea-level rise estimates of al-
most an order of magnitude larger compared with other studies (Fig. 5
and Table 1). While projected contributions of the Antarctic ice sheets
to sea-level rise by the end of this century for recent studies hover
between 0 and 0.45 m (5 %–95 % probability range), the MICI model
occupies a range of 0.2–1.7 m (Fig. 5a). The discrepancy is even more
pronounced for 2300, where the MICI results and other model estimates
no longer agree within uncertainties. Edwards et al. (2019) discuss in
detail the results of DeConto and Pollard (2016), related to cliff collapse
but also the sensitivity of the driving climate model that overestimates
surface melt compared to other CMIP5 models. MICI is a plausible
mechanism and is observed on tidewater and outlet glaciers in Green-
land and the Arctic. However, whether and how it applies to very large
outlet glaciers of the Antarctic ice sheets will require further scrutiny.
Evidence from paleo-shelf breakup in the Ross Sea shows that ice-sheet
response may be more complicated, including significant lags in the

Fig. 4. Schematics of (a) Marine Ice Shelf Instability (MISI) and (b) Marine Ice
Cliff Instability (MICI). The reader is referred to Section 3.1 for a discussion of
MISI/MICI.
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response of grounding line retreat (Bart et al., 2018). In order to ac-
curately model ice-sheet instabilities, motion of the grounding line must
be accurately represented. International model inter-comparisons of
marine ice-sheet models (MISMIP; MISMIP3d) greatly improved those
models in terms of representing grounding-line migration numerically
by conforming them to known analytical solutions (Pattyn et al., 2012,
2013). These numerical experiments demonstrated that in order to re-
solve grounding-line migration in marine ice-sheet models, a suffi-
ciently high spatial resolution needs to be applied, since membrane
stresses need to be resolved across the grounding line to guarantee
mechanical coupling. The inherent change in basal friction occurring
across the grounding line – zero friction below the ice shelf – requires
high spatial resolution (e.g., <1 km for Pine Island Glacier; Gladstone
et al., 2012) for an accurate representation of grounding-line migration.
Therefore, a series of ice-sheet models have implemented a spatial grid
refinement, mainly for the purpose of accurate data assimilation
(Cornford et al., 2015; Gillet-Chaulet et al., 2012; Morlighem et al.,
2010), but also for further transient simulations where the adaptive
mesh approach enables the finest grid to follow the grounding-line
migration (Cornford et al., 2013, 2016). These higher spatial resolu-
tions of the order of hundreds of meters in the vicinity of grounding
lines also pose new challenges concerning data management for mod-
elling purposes (Durand et al., 2011).

3.2. Model initialisation, uncertainty and inter-comparison

Despite major improvements in ice-sheet model sophistication,
major uncertainties still remain pertaining to model initialisation as
well as the representation of critical processes such as basal sliding and
friction, ice rheology, ice damage (such as calving and MICI) and sub-
shelf melting. New developments in data assimilation methods led to
improved initialisations in which the initial ice-sheet geometry and
velocity field are kept as close as possible to observations by optimising
other unknown fields, such as basal friction coefficient and ice stiffness
(accounting for crevasse weakening and ice anisotropy; Arthern and
Hindmarsh, 2006; Arthern and Gudmundsson, 2010; Cornford et al.,
2015; MacAyeal, 1992; Morlighem et al., 2010, 2013). Motivated by the
increasing ice-sheet imbalance of the Amundsen Sea Embayment gla-
ciers over the last 20 years (Shepherd et al., 2018), and supported by
the recent boom in satellite data availability, data-assimilation methods
are progressively used to evaluate unknown time-dependent fields such
as basal drag by using time-evolving states accounting for the transient
nature of observations and model dynamics (Gillet-Chaulet et al., 2016;
Goldberg and Heimbach, 2013; Goldberg et al., 2015, 2016).

Ensemble model runs equally improve the predictive power of
models by translating uncertainty in a probabilistic framework. The use
of statistical emulators thereby increases the confidence in sampling
parameter space (Bulthuis et al., 2019) and helps to reduce un-
certainties in ice dynamical contributions to future sea-level rise (Ritz
et al., 2015; Edwards et al., 2019). Probability distributions for Ant-
arctica are usually not Gaussian and have a long tail towards high va-
lues, especially for high greenhouse warming scenarios (Fig. 5 and
Table 1).

An important step forward since the Fifth Assessment Report of the
IPCC (IPCC, 2013) is that process-based projections of sea-level con-
tributions from both ice sheets are now organised under the Ice Sheet
Model Intercomparison Project for CMIP6 (ISMIP6) and form an in-
tegral part of the CMIP process (Eyring et al., 2016; Nowicki et al.,
2016; Goelzer et al., 2018a; Seroussi et al., 2019). ISMIP6 is working
towards providing projections of future ice-sheet mass changes for the
next Assessment Report of the IPCC (AR6). It has recently finished its
first set of experiments focussing on the initial state of the ice sheets as a
starting point for future projections (Goelzer et al., 2018a; Seroussi
et al., 2019), which has seen an unprecedented return from ice-sheet
modelling groups globally. With ISMIP6, the ice-sheet modelling com-
munity has engaged to evolve to new standards in availability,

Fig. 5. Projections of Antarctic sea-level contribution at (a) 2100 and (b) 2300
under RCP8.5. Boxes and whiskers show the 5th, 25th, 50th, 75th and 95th
percentiles. The uncertainty range for Golledge et al. (2015) is based on a
Gaussian interpretation for the projections with the 5th percentile given by the
low scenario and the 95th percentile given by the high scenario. Idem for
Golledge et al. (2019) with the 5th percentile given by the simulation without
melt feedback and the 95th percentile given by the simulation with melt
feedback. (c) Median projections of Antarctic sea-level contribution until 2300
(RCP8.5). Colour legend: L14: Simulations by Levermann et al. (2014), G15:
Simulations by Golledge et al. (2015), DP16: Simulations by DeConto and
Pollard (2016), DP16BC: Bias-corrected simulations by DeConto and Pollard
(2016), B19S: Simulations with Schoof’s parameterisation by Bulthuis et al.
(2019), B19T: Simulations with Tsai’s parameterisation by Bulthuis et al.
(2019), E19: Simulations without MICI by Edwards et al. (2019), E19MICI:
Simulations with MICI by Edwards et al. (2019), G19: Simulations by Golledge
et al. (2019).

Table 1
Probabilistic projections (5th, 25th, 50th, 75th and 95th percentiles) of
Antarctic sea-level contribution at 2300 (in metres) under RCP8.5. Colour le-
gend: L14: Simulations by Levermann et al. (2014), G15: Simulations by
Golledge et al. (2015), DP16: Simulations by DeConto and Pollard (2016),
DP16BC: Bias-corrected simulations by DeConto and Pollard (2016), B19S: Si-
mulations with Schoof’s parameterisation by Bulthuis et al. (2019), B19T: Si-
mulations with Tsai’s parameterisation by Bulthuis et al. (2019), E19MICI: Si-
mulations with MICI by Edwards et al. (2019).

5% 25% 50% 75% 95%

L14 0.30 0.64 1.06 1.75 3.54
G15 1.61 2.07 2.28 2.50 2.96
DP16 6.86 7.35 9.05 11.09 11.25
DP16BC 6.94 7.37 9.05 11.08 11.27
B19S 0.27 0.61 1.04 1.47 1.81
B19T 0.59 1.16 1.85 2.55 3.12
E19MICI 7.08 8.28 8.90 9.51 10.71
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accessibility and transparency of ice-sheet model output data (e.g.
Goelzer et al., 2018b), facilitating model-model and data-model com-
parison and analysis.

ISMIP6 has strengthened the links between the ice-sheet modelling
community and other communities of global and regional climate
modellers, ocean modellers and remote sensing and observations of ice,
ocean and atmosphere.

3.3. Ice sheet model-climate model coupling

Fully coupled simulations based on state of the art AOGCMs and
ISMs are an emerging field of active research (e.g. Fyke et al., 2014a;
Fischer et al., 2014; Vizcaino et al., 2015; Reerink et al., 2016; Fyke
et al., 2018). This development will help to improve our understanding
of processes and feedbacks due to climate-ice sheet coupling in con-
sistent modelling frameworks. However, coupling is challenging due to
differences in resolution between climate and ice-sheet models, the
computational expense of global climate models, and the need for ad-
vanced snow/firn schemes, etc. (a review of these challenges and recent
advances is given by Vizcaino, 2014). ISMIP6 is also leading and sup-
porting current coupled modelling efforts (Nowicki et al., 2016).

Coupling approaches between atmosphere/ice/ocean/sea ice for the
AIS have been considerably developed since the AR5 (Asay-Davis et al.,
2017; Pattyn et al., 2017; Favier et al., 2017; Donat-Magnin et al.,
2017) but there is still an important need to document the processes
occurring at the interface between ocean and ice. Due to the compu-
tational cost, these are limited to a single basin (Seroussi et al., 2017) or
intermediate coupling for the whole ice sheet (Golledge et al., 2019).
Observations are currently being developed to study the ocean char-
acteristics below the ice shelves using autonomous underwater vehicle
(AUVs) or remotely operated vehicle (ROVs) (Jenkins et al., 2010;
Kimura et al., 2016; Nicholls et al., 2006) and should offer critical in-
formation for modellers.

For the GrIS, coupled models have been applied to investigate
several outstanding questions regarding ice-climate interaction, parti-
cularly on multi-century and multi-millennia timescales. Some ex-
amples of the topics already addressed include the impacts of meltwater
on ocean circulation (Golledge et al., 2019), regional impact of ice-
sheet area change (Vizcaino et al., 2008, 2010), effect of albedo and
cloud change on future SMB (Vizcaino, 2014), and elevation-SMB
feedback (Vizcaino et al., 2015). Ongoing work aims to include more
interaction processes, such as the effects of ocean warming on ice-sheet
stability (Straneo et al., 2013).

Due to their high computational cost, simulation ensembles (for ice-
sheet parameters as well as climate forcing) are rare in coupled mod-
elling. These ensembles are essential tools for the attribution of on-
going mass loss and to constrain uncertainty in century projections.
Vizcaino et al. (2015) compared 1850–2300 GrIS evolution with a
coupled model forced with three different Representative Concentra-
tion Pathways (RCP2.6, RCP4.5 and RCP8.5). For the historical and
RCP8.5 scenarios, they performed a small ensemble (size three). They
found a relatively high uncertainty from climate variability in the si-
mulation of contemporary mass loss. However, this uncertainty was
relatively small for the projections as compared with the uncertainty
from greenhouse gas scenario.

3.4. Earth system/regional climate modelling and surface mass balance
modelling: advances and challenges

3.4.1. General
The accuracy of SMB model output naturally depends on observa-

tions that are available to evaluate the models. Recent efforts to collect,
synthesise and quality-control in-situ observations of SMB over the AIS
and GrIS have greatly improved our confidence in these measurements
(Favier et al., 2013; Machguth et al., 2016; Montgomery et al., 2018),
yet the observational density remains too low to estimate ice-sheet wide

SMB based on interpolation of these data alone. Uncertainties remain
especially large along the ice-sheet margins, where SMB gradients are
steepest and data density lowest because of adverse climate conditions
(Arthern et al., 2006; Bales et al., 2009). Moreover, most in-situ ob-
servations constitute an integrated measurement, providing little in-
sight in SMB component partitioning and seasonal evolution. Suitable
co-located meteorological observations enable time-dependent esti-
mates of SMB and surface energy balance components such as snow
accumulation, sublimation and melt (van den Broeke et al., 2004,
2011), but especially on the AIS surprisingly few (automatic) weather
stations collect sufficient data to do so. In the GrIS ablation zone, the
PROMICE automatic weather station (AWS) network has recently re-
solved this problem (Citterio et al., 2015).

Although their performance in simulating ice-sheet SMB is con-
tinually improving (Cullather et al., 2014; Vizcaino, 2014; Lenaerts
et al., 2016; van Kampenhout et al., 2017), Earth System Models (ESMs)
currently have insufficient (50−100 km) horizontal resolution in the
atmosphere to properly resolve marginal SMB gradients, although
downscaling via elevation classes (Lipscomb et al., 2013; Alexander
et al., 2019; Sellevold et al., submitted), and upcoming variable-re-
solution ESMs may alleviate this. Moreover, as they do not assimilate
observations, ESMs do not simulate realistic weather. Atmospheric re-
analyses have similar low resolution, although this is improved in the
recently released ERA5 reanalysis, but do assimilate meteorological
observations, and hence can be used to force RCMs at their boundaries.
As a result, RCMs provide reasonably realistic ice-sheet weather at ac-
ceptable resolutions: typically 25 km for the full AIS (van Wessem et al.,
2018; Agosta et al., 2019) and 5 km for AIS sub-regions (van Wessem
et al., 2015; Lenaerts et al., 2012, 2018; Datta et al., 2019) and the GrIS
(Lucas-Picher et al., 2012; Fettweis et al., 2017; van den Broeke et al.,
2016). Further statistical downscaling to 1 km resolution is required to
resolve SMB over narrow GrIS outlet glaciers (Noël et al., 2018a). The
resulting gridded SMB products cover multiple decades (1979/1958-
present for AIS/GrIS, respectively) at (sub-)daily timescales, allowing
synoptic case studies at the SMB component level but also multidecadal
trend analysis. RCM products also helped to extend ice-sheet SMB time
series further back in time by guiding the interpolation between firn
cores (Thomas et al., 2017; Box, 2013).

Further improvements are needed: RCMs struggle to realistically
simulate (mixed-phase) clouds (van Tricht et al., 2016) and (sub-)
surface processes, such as drifting snow (Lenaerts et al., 2017), bio-
albedo (Stibal et al., 2017) and heterogeneous meltwater percolation
(Steger et al., 2017). A powerful emerging observational technique for
dry snow zones is airborne accumulation radar (Koenig et al., 2016;
Lewis et al., 2017), which together with improved re-analyses products
such as MERRA (Cullather et al., 2016) will further improve our
knowledge of contemporary ice-sheet SMB.

3.4.2. Greenland
Despite considerable advances with RCMs and SMB models, there

are significant remaining biases in absolute values between GrIS SMB
simulations for the last few decades. However, these are expected to be
at least partly reconciled through a new SMB Model Intercomparison
Project (SMB_MIP; Fettweis, 2018) which is standardising model com-
parisons and evaluation using in-situ and satellite data (e.g. Machguth
et al., 2016). The results of this exercise should help to improve the
models as well as inform on what are the more reliable model outputs.
This exercise may help to resolve significant disagreement between
model reconstructions of GrIS SMB, and especially accumulation, for
the last 50–150 years (van den Broeke et al., 2017).

The elevation classes downscaling method has been applied to
1850–2100 GrIS SMB simulations in several studies with the
Community Earth System Model (CESM): these encompass regional
climate and SMB projections (Vizcaino, 2014), a freshwater forcing
reconstruction and effect on ocean circulation (Lenaerts et al., 2015),
the relationship between SMB variability and future climate change
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(Fyke et al., 2014b), and the time of emergence of an anthropogenic
SMB signal from background SMB variability (Fyke et al., 2014c). The
latter study assesses the point in time when the anthropogenic trend in
the SMB becomes larger than the “noise”, and addresses an observa-
tional gap given the short records and/or limited density of remote-
sensing/in-situ observations and high GrIS SMB variability (Wouters
et al., 2013). Fyke et al. (2014c) identified a bimodal emergence pat-
tern, with upward emergence (positive SMB trend) in the interior due to
increased accumulation, downward emergence (negative SMB trend) in
the margins due to increased ablation, and an intermediate area of no
emergence due to compensating elevated ablation and accumulation.
This study suggests the Greenland summit as an interesting area to
monitor emergence, due to its high signal-to-noise ratio and resulting
early emergence. This high ratio is due to low SMB variability from
drier and colder conditions relative to the margins. These results should
be revisited with further simulations, e.g., from an ensemble and/or
multiple models. Additionally, they should be confronted with available
observations of the recent strong SMB decline to identify whether the
models adequately represent the causes of this trend (e.g., Greenland
Blocking, Hanna et al., 2018).

3.4.3. Antarctica
Shepherd et al. (2018) reveal that present sub-decadal to decadal

precipitation and SMB variations significantly dominate EAIS mass
balance variability (Gardner et al., 2018) justifying the need for further
SMB model improvements, validations, and inter-comparisons (Agosta
et al., 2019; Favier et al., 2017). Thanks to observations, the inclusion
of several key processes have been improved in models since AR5, in-
cluding the roles of the stable atmospheric boundary layer (Vignon
et al., 2017), drifting snow, (Amory et al., 2017; van Wessem et al.,
2018) and supraglacial hydrology (Kingslake et al., 2015, 2017;
Hubbard et al., 2016).

A persistent problem is that climate reanalyses used to force re-
gional climate models still present biases (Bromwich et al., 2011), most
noticeably in moisture transport (Dufour et al., 2019). Constraining
atmospheric moisture and cloud microphysics with ground-based
techniques in Antarctica [ceilometer, infrared pyrometer, vertically
profiling precipitation radar (Gorodetskaya et al., 2015), polarimetric
weather radar, micro rain radar, weighing gauges, multi-angle snow-
flake cameras (Grazioli et al., 2017a), etc.] is necessary to accurately
model cloud evolution and precipitation. Ground-based estimates of
cloud properties and precipitation are only obtained at a few sites,
which calls for the use of distributed remote-sensing techniques to
characterise Antarctic precipitation statistics and rates [e.g., Cloudsat
products (Palerme et al., 2014)]. However, processes occurring within
1 km above the surface remain undetected by satellite sensors. In this
critical layer for SMB, sublimation impacts precipitating snowflakes
(Grazioli et al., 2017b) and drifting snow particles (Amory et al., 2017;
van Wessem et al., 2018), reducing surface accumulation and leading to
potential feedbacks on atmospheric moisture (Barral et al., 2014). Thus
continental-scale sublimation may be underestimated, suggesting mass
balance and SMB agreement likely relies on some degree of error
compensation in models (Agosta et al., 2019).

Recent progress has shown that an improved description of the at-
mospheric structure is needed during precipitation events; several stu-
dies present site-specific results on precipitation origins [precipitation
from synoptic scale systems, hoar frost, diamond dust (Dittmann et al.,
2016; Stenni et al., 2016; Schlosser et al., 2016)] and their impact on
the local SMB. Synoptic-scale precipitation is known to control the
inter-annual variability of accumulation in Dronning Maud Land
(Gorodetskaya et al., 2014), Dome C, and Dome F (Schlosser et al.,
2016) through high-intensity precipitation events, but continental-scale
studies for Antarctica are still rare (Turner et al., 2019). High pre-
cipitation events are related to warm and moist air mass intrusions
linked to mid-tropospheric planetary waves (Turner et al., 2016) that
are connected with the main modes of atmospheric circulation

variability at southern high-latitudes (Thompson et al., 2011; Turner
et al., 2016; Nicolas et al., 2017; Bromwich et al., 2012). Low-elevation
surface melt in West Antarctica (Nicolas et al., 2017; Scott et al., 2019)
and on the Larsen ice shelves (Kuipers Munneke et al., 2018; Bozkurt
et al., 2018) occurs during increased foehn events (Cape et al., 2015)
and moisture intrusions favoured by large synoptic blockings (Scott
et al., 2019). These melt-related moisture intrusions generally occur in
the form of atmospheric rivers (Wille et al., 2019). However, the sy-
noptic causes of these events are still poorly known. Moreover, the
feedbacks between melting and albedo, which may be critical for pro-
cesses prior to ice shelf collapse (Kingslake et al., 2017; Bell et al;,
2018), are poorly observed in the field. Currently, there is a major gap
between the large scale on which models and remote sensing typically
operate (Lenaerts et al., 2016; Kuipers Munneke et al., 2018) and the
local scale, especially regarding snow erosion and redistribution
(Amory et al., 2017). These latter processes typically occur at a deca-
metre scale (Libois et al., 2014; Souverijns et al., 2018), which is not
matched by space- and airborne microwave radar (e.g., between 4 and
6 GHz) or ground penetrating radar (GPR) (Fujita et al., 2011; Verfaillie
et al., 2012; Medley et al., 2013, 2015; Frezzotti et al., 2007) ob-
servations on the kilometre scale that are used to evaluate regional
climate models (Agosta et al., 2019; van Wessem et al., 2018).

Despite improvements in regional-scale models, assessing the future
SMB of Antarctica will rely on our capability to produce accurate future
projections of the moisture fluxes towards Antarctica, e.g. linked to
changes in sea-ice cover (Bracegirdle et al., 2017; Krinner et al., 2014;
Palerme et al., 2017), and the westerly circulation and atmospheric
blocking patterns around Antarctica (Massom et al., 2004). These as-
pects are still poorly represented in CMIP5 simulations (Bracegirdle
et al., 2017; Favier et al., 2016). To resolve this, bias corrections based
on nudging approaches or data assimilation schemes have been pro-
posed, in addition to ensemble approaches (Beaumet et al., 2019;
Krinner et al., 2014, 2019). To aid these efforts, paleo-climate in-
formation on the westerlies (Saunders et al., 2018), sea ice character-
istics (Campagne et al., 2015), temperature (Jones et al., 2016), and
SMB (Thomas et al., 2017) may be useful for constraining the models
(Jones et al., 2016; Abram et al., 2014) and attributing SMB changes to
anthropogenic warming. Emergence of this signal from the natural
climate variability of Antarctica is currently expected between
2020–2050 (Previdi and Polvani, 2016).

4. Recent and projected mass-balance rates for glaciers and ice
caps

In this section we target valley glaciers or mountain glaciers and ice
caps (<50,000 km2) (henceforth glaciers). We here review the ad-
vances, since the IPCC AR5, in the estimate of the contribution to SLR of
wastage from glaciers, as well as its projections to the end of the 21st
century. At the time of AR5, the first consensus estimate of this con-
tribution had just been published (Gardner et al., 2013), and it was
estimated to be 259 ± 28 Gt yr−1 (0.94 ± 0.08 mm yr−1 SLE) for
2003–2009, including the contribution from the glaciers in the per-
iphery of Greenland and Antarctica (henceforth, peripheral glaciers).
For the longer period of 1993–2010, AR5 attributed 27% of the SLR to
wastage from glaciers (Church et al., 2013). This was above the com-
bined contribution of the ice sheets of Antarctica and Greenland (21%),
despite the fact that global glacier volume is only ∼0.6% of the com-
bined volume of both ice sheets (Vaughan et al., 2013). Since then, the
contribution to SLR from the ice sheets has accelerated, as discussed in
earlier sections, which has resulted in a current dominance of the ice-
sheet contribution despite the contribution from glaciers having also
increased in absolute terms, as will be discussed in this section.

4.1. Methods used to estimate the global glacier mass balance

For estimating the global mass balance of glaciers, in addition to the
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techniques already discussed for ice sheets, such as repeated altimetry
(e.g. Moholdt et al., 2010), gravity observations (e.g. Luthcke et al.,
2008), or the mass budget method (e.g. Deschamps-Berger et al., 2019),
other methods are commonly used, which are sometimes variations of
those mentioned above. Purely observation-based techniques include
the extrapolation of both in-situ direct observations by the glaciological
method and geodetic mass balance estimates (Cogley, 2009), as well as
reconstructions based on glacier length changes (Leclercq et al., 2011,
2012, 2014). The glaciological method relies on point measurements of
surface mass balance, which are then integrated to the entire glacier
surface (Cogley et al., 2011). Such measurements are available for a
reduced sample of <300 glaciers (Zemp et al., 2015) out of more than
200,000 glaciers inventoried worldwide (Pfeffer et al., 2014), which
introduces a bias when extrapolating to the whole glacierized area of
undersampled regions (Gardner et al., 2013). The geodetic mass bal-
ance, in turn, is determined using volume changes from DEM differ-
encing and then converting to mass changes using an appropriate as-
sumption for the density (Huss, 2013). The reconstructions based on
observed glacier length changes convert these, upon normalization and
averaging to a global mean, to normalized global volume change. The
latter is converted into global glacier mass change using a calibration
against global glacier mass change over a certain period (Leclercq et al.,
2011).

Finally, the modelling-based approaches for estimating past or
current changes are mostly based on the use of climatic mass balance
models forced by either climate observations or climate model output,
calibrated and validated using surface mass-balance observations. As
these techniques are based on a statistical scaling relationship, they are
commonly referred to as statistical modelling, to distinguish them from
the use of an RCM to estimate, directly, the surface mass balance of an
ice mass. The latter works well for ice caps, but not for glaciers, due to
their complex topography and corresponding micro-climatological ef-
fects (Bamber et al., 2018). Based on statistical modelling, an analysis
of the processes and feedbacks affecting the global sensitivity of glaciers
to climate change can be found in Marzeion et al. (2014a), while the
attribution of the observed mass changes to anthropogenic and natural
causes has been addressed by Marzeion et al. (2014b).

4.2. 20th century and current estimates

Much of the work done since AR5 has focused on improving the
estimates for the reference period 2003–2009 (or some earlier periods),
and on producing new estimates for more recent (or extended) periods.
Both the reanalyses and the new estimates have been based on im-
provements in the number of mass balance or glacier length changes
observations, and on the use of an increased set of gridded climate
observations, and of more complete and accurate global glacier in-
ventories and global DEMs. These improvements allowed Marzeion
et al. (2015) to achieve the agreement, within error bounds, of the
global reconstructions of the mass losses from glacier wastage for the
periods 1961–2005, 1902–2005 and 2003–2009 produced using the
various methods available. In spite of the agreement at the global level,
strong disagreements persisted for particular regions such as Svalbard

and the Canadian Arctic, likely because of the omission of calving in the
statistical models. Marzeion et al. (2017), using a yet more extended set
of glaciological and geodetic measurements (Zemp et al., 2015), gave a
global glacier mass-change rate estimate of −0.61 ± 0.07 mm SLE
yr−1 for 2003–2009 (including Greenland peripheral glaciers, but not
those of the Antarctic periphery), obtained by averaging various recent
GRACE-based studies (Jacob et al., 2012; Chen et al., 2013; Yi et al.,
2015; Schrama et al., 2014) and several studies combining GRACE with
other datasets (Gardner et al., 2013, and an update of it; Dieng et al.,
2015; Reager et al., 2016; Rietbroek et al., 2016). The studies based on
GRACE data consistently give less negative glacier mass balances than
those obtained using other methods. Uncertainties in the GRACE-de-
rived estimates remain important especially due to the small size of
glaciers compared with the GRACE footprint of ∼300 km. Associated
problems include the leakage of the gravity signal into the oceans, or
the difficulty of distinguishing between mass changes due to glacier
mass changes or to land water storage changes. In regional and global
studies, however, the problem of the footprint and related leakage is not
relevant, as individual glaciers need not to be resolved and GRACE has
been shown to be effective in providing measurements of mass changes
for clusters of glaciers (Luthcke et al., 2008). Uncertainties in the GIA
correction also remain, and the effects of rebound from the Little Ice
Age (LIA) deglaciation have to be accounted for.

Parkes and Marzeion (2018) have analysed the contribution to SLR
from uncharted glaciers (glaciers melted away and small glaciers not
inventoried) during the 21suatagonia, which together contribute to 84
% of the SLR from glacier wastage. They combine the most recent ob-
servations (including CryoSat2 radar altimetry) and the latest results
from statistical modelling, as well as regional climate modelling for the
Arctic ice caps (Noël et al., 2018b) and stereo photogrammetry for
High-Mountain Asia (Brun et al., 2017). They find poor agreement
between the estimates based on statistical modelling and all other
methods (altimetry/gravimetry/RCM) for Arctic Canada, Svalbard,
peripheral Greenland, the Russian Arctic and the Andes, which are all
regions with significant marine- or lake-terminating glaciers, where
statistical modelling, which does not account for frontal ablation, is
expected to perform worse than the observational-based approaches.
Bamber et al. (2018) also present pentadal mass balance rates for the
period 1992–2016, which are shown in Table 2 and clearly illustrate the
increase in global glacier mass losses. If we add to the mass budget for
the last pentad (2012–2016) in Table 2 the mass budget of −33 Gt yr−1

for the Greenland peripheral glaciers estimated by averaging the
CryoSat and RCM values for 2010–2014 given in Table 1 of Bamber
et al. (2018), and the mass budget of −6 Gt yr−1 for the Antarctic
peripheral glaciers over 2003–2009 estimated by Gardner et al. (2013),
we get an estimate of the current global glacier mass budget of
−266 ± 33 Gt yr−1 (0.73 ± 0.09 mm SLE yr−1).

The most recent studies to highlight are those of Zemp et al. (2019)
and Wouters et al. (2019). The former is based on glaciological and
geodetic measurements but uses a much-extended dataset (especially
for the geodetic measurements), the most updated glacier inventory
(RGI 6.0) and a novel approach. The latter combines, for each glacier
region, the temporal variability from the glaciological sample with the

Table 2
Pentad mass balance rates for all glaciers and ice caps, excluding the peripheral glaciers of Greenland and Antarctica. Modified from Bamber et al. (2018). The
contributions from the peripheral glaciers are here excluded because in Bamber et al. (2018) the peripheral glacier contributions are included in those of the
corresponding ice sheet since most data sources (many of them from GRACE) do not separate the peripheral glacier contributions. For reference, the mass-change
rates during 2003–2009, according to Gardner et al. (2013), were −38 ± 7 Gt yr−1 (0.10 ± 0.02 mm SLE yr−1) for the Greenland peripheral glaciers, and −6± 10
Gt yr−1 (0.02 ± 0.03 mm SLE yr−1) for the Antarctic peripheral glaciers. According to Zemp et al. (2019), the contributions during 2002–2016 were −51 ± 17 Gt
yr−1 (0.14 ± 0.05 mm SLE yr−1) for Greenland periphery and −14 ± 108 Gt yr−1 (0.00 ± 0.30 mm SLE yr−1) for the Antarctic periphery.

Pentad 1992–1996 1997-2001 2002-2006 2007–2011 2012–2016

Gt yr−1 −117 ± 44 −149 ± 44 −173 ± 33 −197 ± 30 −227 ± 31
mm SLE yr−1 0.32 ± 0.12 0.42 ± 0.12 0.48 ± 0.09 0.55 ± 0.08 0.63 ± 0.08
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glacier-specific values of the geodetic sample. The calibrated annual
time series is then extrapolated to the whole set of regional glaciers to
assess regional mass changes, considering the rates of area change in
the region. The authors claim that this procedure has overcome the
earlier reported negative bias in the glaciological sample (Gardner
et al., 2013). Nevertheless, for large glacierized regions, substantial
differences remain between different mass-loss estimates, for example
in the Southern Andes where two recent studies have found reduced
mass loss compared to Zemp et al. (2019) and Wouters et al. (2019)
using differencing of digital elevation models (Braun et al., 2019;
Dussaillant et al., 2018). However, the global glacier mass loss estimate
by Zemp et al. (2019), of 0.74 ± 0.05 mm SLE yr−1 during 2006–2016,
excluding the peripheral glaciers (0.92 ± 0.39 mm SLE yr−1 if in-
cluded), is still large compared to that by Bamber et al. (2018), of
0.59 ± 0.11 mm SLE yr−1 for the same period, which is very similar to
the most recent gravimetry-based estimate by Wouters et al. (2019), of
0.55 ± 0.10 mm SLE yr−1, again for the same period (from their Table
S1). This estimate is an improvement over earlier ones, by using longer
time series, an updated glacier inventory (RGI 6.0), the latest GRACE
releases (RL06), which are combined in an ensemble to further reduce
the noise, a new GIA model (Caron et al., 2018) and new hydrology
models (GLDAS V2.1 (Rodell et al., 2004; Beaudoing and Rodell, 2016),
and PCR-GLOBW 2 (Sutanudjaja et al., 2018)) to remove the signal
from continental hydrology.

4.3. Projected estimates to the end of the 21st century

Among the post-AR5 studies on projected global estimates of mass
losses by glaciers to the end of the 21st century, we highlight those of
Radić et al. (2014), Huss and Hock (2015) and Marzeion et al. (2018),
together with the main results from the recent model intercomparison
by Hock et al. (2019). An account of other pre- and post-AR5 (up to
2016) projections can be found in the review by Slangen et al. (2017).
While the first two mentioned projections share many common features
(glacier inventory, global climate models and emission scenarios, a
temperature-index mass balance model, similar climate forcing for the
calibration period and similar global DEMs), they have two remarkable
differences. First, Radić et al. (2014) rely on volume-area scaling for the
initial volume estimate and to account for the dynamic response to
modelled mass change, while Huss and Hock (2015) derive the initial
ice-thickness distribution using the inverse method by Huss and
Farinotti (2012), and the modelled glacier dynamic response to mass
changes is based on an empirical relation between thickness change and
normalized elevation range (Huss et al., 2010). Second, the Huss and
Hock (2015) model accounts for frontal ablation of marine-terminating
glaciers, dominated by calving losses and submarine melt. The results
by Radić et al. (2014) suggest SLR contributions of 155 ± 41 (RCP4.5)
and 216 ± 44 (RCP8.5) mm, similar to the projections of Marzeion
et al. (2012), and to the projections of Slangen and van de Wal (2011)
updated in Slangen et al. (2017). However, the more updated and
complete model by Huss and Hock (2015) predicts lower contributions,
of 79 ± 24 (RCP2.6), 108 ± 28 (RCP4.5), and 157 ± 31 (RCP8.5) mm.
Of these glacier mass losses, ∼10% correspond to frontal ablation
globally, and up to ∼30% regionally. In both models, the most im-
portant contributors to SLR are the Canadian Arctic, Alaska, the Russian
Arctic, Svalbard, and the periphery of Greenland and Antarctica. Both
models are highly sensitive to the initial ice volume. Regarding
Marzeion et al. (2018), while they use basically the same statistical
model as in Marzeion et al. (2012; Marzeion et al., 2014a, b; Marzeion
et al., 2015, 2017), the use of a newer version (5.0) of the RGI, as well
as updated DEMs and SMB calibration datasets, led to lower SLR con-
tributions from glacier wastage to the end of the 21st century, similar to
those by Huss and Hock (2015): 84 [54–116] (RCP2.6), 104 [58–136]
(RCP4.5) and 142 [83–165] (RCP8.5) mm (the numbers in brackets
indicate the fifth and ninety-fifth percentiles of the glacier model en-
semble distribution).

A recent intercomparison of six global-scale glacier mass-balance
models, GlacierMIP (Hock et al., 2019), has provided a total of 214
projections of annual glacier mass and area, to the end of the 21st

century, forced by 25 GCMs and four RCPs. Global glacier mass loss
(including Greenland and Antarctic peripheries) by 2100 relative to
2015, averaged over all model runs, varies between 94 ± 25 (RCP2.6)
and 200 ± 44 (RCP8.5) mm SLE. Large differences are found between
the results from the various models even for identical RCPs, particularly
for some glacier regions. These discrepancies are attributed to differ-
ences in model physics, calibration and downscaling procedures, input
data and initial glacier volume, and the number and ensembles of GCMs
used.

Although only a regional study, the modelling by Zekollari et al.
(2019) is a good example of one of the lines of improvements expected
for the next generation of models for projecting the evolution of gla-
ciers. Zekollari et al. (2019) have added ice dynamics to the model by
Huss and Hock (2015), in which glacier changes are imposed based on a
parameterization of the changes in surface elevation at a regional scale.
The inclusion of ice dynamics results in a reduction of the projected
mass loss, especially for the low-emission scenarios such as RCP2.6, and
this effect increases with the glacier elevation range, which is typically
broader for the largest glaciers.

The contribution from glaciers to SLR is expected to continue to
increase during most of the 21st century. Note e.g. that the projections
by Huss and Hock (2015) give average rates, over their 90-yr modelled
period, between 0.88 ± 0.27 and 1.74 ± 0.34 mm SLE yr−1, de-
pending on the emission scenario, which are larger than the current
rates. However, this contribution is expected to decay as the total ice
volume stored in glaciers becomes smaller as the low-latitude and low-
altitude glaciers disappear and those remaining become confined to the
higher latitudes and altitudes. The projections by Huss and Hock (2015)
yield a global glacier volume loss of 25–48% between 2010 and 2100,
depending on the scenario. In parallel, the contribution from the ice
sheets is increasing (e.g. Shepherd et al., 2013, 2018; this paper), and
thus the sea-level rise caused by mass losses from land ice masses will
more and more be dominated by losses from the ice sheets (Table 3).

5. Summary and outlook

Never before have there been so much new observational, especially
satellite, data for assessing the state of mass balance of ice sheets and
glaciers and their sensitivity to ongoing climate change. However, the
usable satellite record is still relatively short in climate terms. One of
the main remaining challenges is that satellite observations date back
only 2–3 decades, which is a very short period for the reference and

Table 3
Estimated contributions to sea-level rise by glaciers and by ice sheets over
different recent periods. The data sources are indicated. The percentages in-
dicate the relative contributions of the glaciers and of the ice sheets with respect
to the total contribution from the land-based ice masses.

1993-2010
Church et al. (2013)
(IPCC AR5)

2003/05–2009/10
Gardner et al. (2013)
Shepherd et al. (2012)

2012–2016
modified from
Bamber et al. (2018)

mm SLE yr−1 % mm SLE yr−1 % mm SLE
yr−1

%

Glaciers 0.86 59 0.72 43 0.73 a 40 a,b

Ice sheets 0.60 41 0.95 57 1.10 a,b 60 a,b

a Including the contributions from the peripheral glaciers of Greenland and
Antarctica.

b If the more recent estimate for the Antarctic Ice Sheets by Shepherd et al.
(2018) for 2012–2017 were taken instead of that by Bamber et al. (2018) for
2012–2016, the contribution from the ice sheets would increase to 1.29 mm
SLE yr−1 and the relative contributions would be 36% for glaciers and 64% for
ice sheets.
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evaluation of century-scale projections. Therefore, further extension of
the ice-sheet satellite record into the past, for example through revised
processing of earlier albeit lower quality observations following the
method of Trusel et al. (2018), would greatly inform modellers. Also in
the same line, and for the sake of ice-sheet mass and regional climate
change detection and attribution, model evaluation and improved
projections, the maintenance and extension of current automatic
weather stations (e.g. Hermann et al., 2018; Smeets et al., 2018) across
the ice sheets is of key interest, with particular emphasis on energy
balance stations able to quantify melt energy.

Our review highlights that, despite recent efforts, significant dis-
crepancies remain with respect to absolute mass balance values for the
EAIS, and so further studies are recommended to resolve this matter.
Compared to the AIS, for the GrIS, there is a higher level of agreement,
but absolute values vary by ∼100-300 Gt yr−1 between recent years.
These significant fluctuations are mainly due to SMB variability (pre-
cipitation and runoff) that are in turn linked to fluctuations in atmo-
spheric circulation. Ice dynamics may also have an important role to
play in future changes of the GrIS, especially in regions away from the
southwest, and the relative contributions of SMB and dynamics to fu-
ture mass change remain unclear.

Continued monitoring is vital to resolve these open questions. Apart
from ensuring the continuity of key satellite data provided by missions
including GRACE Follow On (gravimetry) and ICESat2 (altimetry), and
carrying out more frequent (annual) comprehensive inter-comparison
assessments of ice-sheet mass balance, the cryospheric and climate
science communities need to enhance existing collaborations on im-
proving regional climate model and SMB simulations of Antarctica and
Greenland (SMB_MIP being a key example), and also make further
significant improvements to GIA models, as these are some of the key
sources of residual uncertainty underlying current ice-sheet mass bal-
ance estimates.

Recent advances in ice-sheet models show major improvements in
terms of understanding of physics and rheology and model initializa-
tion, especially thanks to the wealth of satellite data that has recently
become available. However, recent model intercomparisons (Goelzer
et al., 2018a; Seroussi et al., 2019) still point to large process and
parameter uncertainties. Nevertheless, new techniques need to be fur-
ther explored to improve initialization methods using both surface
elevation and ice velocity changes, allowing for improved under-
standing of underlying friction laws and rheological conditions of
marine-terminating glaciers (e.g. Gillet-Chaulet et al., 2016; Gillet-
Chaulet, 2019). Given that marine outlet glaciers are especially sensi-
tive to small-change topographic variations, multi-parameter ensemble
modelling and the use of novel emulation methods to evaluate un-
certainty will become an essential tool in ice-sheet modelling. There is a
corresponding need to acquire additional high resolution subglacial
topography data to help with predictions. Several paleo-studies have
also emphasized the importance of subglacial topography in controlling
grounding zone location. Jamieson et al. (2012); Batchelor and
Dowdeswell (2015), and Danielson and Bart (2019) all demonstrate
that the post-LGM Antarctic grounding line preferentially stabilized in
regions where there are vertical or lateral topographic restrictions.
Meanwhile, in recognition of the remaining limitations of ice-sheet
models, despite significant recent progress, alternative novel ap-
proaches including structured expert judgment are useful to assess the
likely impact of ongoing ice-sheet melt on SLR. For example, Bamber
et al. (2019) indicate that a high-emissions greenhouse warming sce-
nario gives a not insignificant chance of a total >2 m SLR by 2100.

Regarding glaciers other than the ice sheets, in spite of recent im-
provements the observational database needs to be further extended in
space and time. As suggested by Zemp et al. (2019), emphasis should be
on closing data gaps in: 1) regions where glaciers dominate runoff
during warm/dry seasons (tropical Andes and Central Asia), and 2)
regions expected to dominate the future glacier contribution to SLR
(Alaska, Arctic Canada, the Russian Arctic and Greenland and

Antarctica peripheries). ICESat-2 and GRACE follow-on missions are
likely to have revolutionary impacts on our knowledge of the mass
changes of glaciers and ice caps, although GIA corrections and LIA
deglaciation effects still have room for improvement. ICESat-2 espe-
cially, with its multiple laser beams and precise repeat-track pointing
capability, has the potential to revolutionise our knowledge of mass
changes on small glaciers worldwide. However, there is an unfortunate
conflict that is seriously limiting ICESat-2 collection of precise repeat-
track data globally. The current mission operation for ICESat-2 has
systematic off-nadir pointing outside of polar regions to provide denser
mapping of vegetation biomass for a vegetation inventory, despite the
fact that such data are also being collected by the GEDI laser altimeter
on the International Space Station. After one year of ICESat-2 vegeta-
tion-inventory mapping, it would be advisable that the mission opera-
tion plan be changed to precise-repeat track pointing to reference tracks
globally for studies of mass changes of glaciers and ice caps, which will
also provide improved vegetation measurements for studies of seasonal
and interannual vegetation changes. DEM differencing from sub-metre
resolution optical satellites such as Quickbird, WorldView and Pléiades
will play a key role in geodetic mass-balance estimates (Kronenberg
et al., 2016; Melkonian et al., 2016; Berthier et al., 2014). The dis-
crepancy between the GlacierMIP mass-change projections from the
various models, even under identical emission scenarios, calls for fur-
ther standardized intercomparison experiments, where common glacier
inventory version, initial glacier volume, ensemble of GCMs and RCP
emission scenarios are prescribed for all models (Hock et al., 2019).
Finally, projections of future contributions to SLR will benefit from
inclusion in the models of ice dynamics, as done by Zekollari et al.
(2019).
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