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FOURTH POWER MOMENT OF DEDEKIND ZETA-FUNCTIONS
OF REAL QUADRATIC NUMBER FIELDS
WITH CLASS NUMBER ONE

R.W. BRUGGEMAN & Y. MOTOHASHI

1. The problem

The Dedekind zeta function of a real quadratic number field F is defined by
r(s) =D (Na)™%, Res>1, (1.1)

with a running over all integral ideals of F. It continues to C, and (s — 1){p(s)
turns out to be entire. Our principal aim is to establish a spectral decomposition
of the fourth power moment of (p:

229, ) = [ 1§ +itlg(0et (L2)

—00

where g is assumed to be entire, and of rapid decay in any fixed horizontal strip.
With this, we extend to (¢ the discussion that are developed in [10] on the Rie-
mann zeta-function, and in {2} on the Dedekind zeta-function of the Gaussian
number field. The relevant spectral theories in {10] and [2] are, respectively, on
the full modular group and on the Picard group; here it is on the Hilbert modular
group over I, as is to be made precise in Section 3.

Basic convention. We assume that F is of class number one, and that the fun-
damental unit ¢ > 1 of F has norm equal to —1. Thus each ideal in F has a
totally positive generator. The first assumption is essential for our argument, but
the second is mainly for the sake of simplicity. Notations are introduced at the
places where they are needed first time, and thereafter continue to be effective.

To begin with, we put

I(21, 22,23, 24, 9) = / Cr(z1 +it)Ce (22 + it)Cr (23 — it)Cp (24 — it)g(t)dt, (1.3)
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with all Rez; > 1. This continues meromorphically to C*. In particular, it is

regular at py = (3,%,%,3), and we have

Z2(9,F) = J(py; 9) + aog(34) + bog(—34) + a1¢'(34) + brg'(—3i) (1.4)
with constants ao, bo, a1, b1 which depend on F, and could be made explicit. On
the other hand, in the region of absclute convergence, we have the expression

-z —z A Nb
(et 20,50, 740) = (NG ™ (V) 0y (el (8)9 (g e ), (19
a, b

where

3= [ gtar, ocle) = (Ve (16)

cla

with ¢ being an integral ideal. A sum much similar to (1.5) is treated in [2], but
over the Gaussian number field. There an application is made of a natural extension
of a dissection argument that is employed in Section 4.6 of [10]. It exploits the
lattice structure of the ring of integers in the field. We are going to use the same
device. But then we have to transform the sum over ideals in (1.5) into a sum
over the elements of O, the ring of integers in F. In the real quadratic case, that
is a problem, as there are infinitely many generators for each ideal in ©.

2. Initial reduction

To overcome this difficulty, we shall appeal to an instance of partition of one:

) P ) T | T 4+ - L. ___ L 1L 1 1 n . 4 r A 7 /4 Ay -

Lemma 4.1. L€ p D€ such that 1ls rourier transiorm p (see (1.0)) Is even,
real-valued, smooth, supported on a neighbourhood of 0 contained in (—m, ),
and moreover p(0) = 1. Then p is even, real-valued, smooth and of rapid decay

on R, and we have, for any =z € R,

Y plz+n)=1 (21)
neZ
Also we have, for any z,y € R,
1 i A iz
S platmply+m) = o [ pleyeViag (22)
necZ -

Proof. These identities are results of applications of the Poisson sum formula; in
(2.2) the Parseval formula is also used.
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We put, for a non-zero r € F,

1 _[loglz/z|
x(z) = 7P (m) ) (23)

where z' is the conjugate of x over Q. The identities (2.1) and (2.2) give, for
any non-zero x € F,

D xlex) =1, (2.4)

€

> xlex): =cy, (2.5)

€

respectively. Here € runs over all units in O; that is, € = +e§, v € Z. Also we
have put
o= [ perae (26)
x = _Rp . .

Then, for any function f defined over positive reals, we have
f(Na)=3_f(IN(a))x(a), (27)

r

1 —~ ~ !
where a runs over all generators of a, and N

(a) = ad’. Thus, formally,
Y oe(@f(Na) = 3 oe(a) f(IN(a))x(a), (2.8)
a acO,

with O, = O\{0} and o¢(a) = 0¢((a)).
Applying (2.8) to (1.5) we have

Oz, — 2\ Q)0 23— 24
Vor o, zaig) = 3 Zamml@nnl) o 60500 N (b/a))
G,E-O. \a)|7HIVAD)™S
={¥X+X}
a=b a#b
= {jo+j+}(21,22,23,24;g), (29)

say. By virtue of (2.5)

Gr (21 + 23)Cr (21 + 24)Cr (22 + 23) (R (22 + 24)
rlz1+ 22+ 23+ 24) )

Jo(z1, 22, 23, 245 9) = ¢, §(0) (2.10)

On the other hand

Ji(z1, 22, 23, 247 9) = Z |N(m)| 7=~
meO.

x Z Oz — 22\”')Uz3 z‘\u,-rm,)
IN{(n/m)|2|N(1 + n/m)|=

x(n)x(n + m)§(log|N (1 + m/n)|). (2.11)
nr-'femo#o
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Classifying m according to the ideal m = (m), we have

J+(21,22,23,2459) = ) (Nm)™=%

021—z2(n)0z3_14(n+m) .
X X W IV G gy 008 IN (L m/m))

ne0,
n-+m#0
x > x(en)x(e(n + m)). (2.12)
€
The formula (2.2) gives
3 xen)x(e(n +m)) = ex(1 +m/m), (2.13)
where ” ,
e {x) —-1— / Al£)2 exp /1Flog lm/m | df, (2.14)
X T 4 P TP S R0ge
so that ¢, = ¢, (1).
In this way we are led to binary additive divisor sums over F:
m{a, B;h) = Z oa(n)og{n+ m)h(n/m), m>=0. (2.15)
ncO.
n-{fm#o

The condition m > 0, i.e., totally positive, causes no loss of generality under the
present assumptions on F. From (2.12)-(2.13)

J4(21,20,28,24,9) = 3 (Nm)™ 2 2B (21 — 23,25 — 24; 0. (21, 23)), (2.16)
m=(m)
with A
e IN@PINQ+z)F

Following the argument in {9] basically, we shall, in the next section, transform
Bm(a, B; h) into a sum of Kloosterman sums over F, and consequentially, in Sec-
tion 5, decompose it spectrally with the geometric sum formula for the Hilbert
modular group over F, provided a, 8 lie in an appropriate domain. A condition
on h that makes our procedure legitimate is to be given in (2.35). In Section 6 we

shall examine g, if it meets this condition, and apply the result on B..(a, 3;h) to
obtain a spectral decomposition of Z-{a F‘\ Reacance of this the bullk of onur naner

WVGIAL & St LUI AL MSLVLALP VSILIVIL UL A2\ by & . SAUVGUOT Vi Lliigy vt Dlin Ui VUl pagetd

is devoted to the study of B,,{a, 3;h). We begin it with invoking the Ramanujan
expansion, i.e., {2.19), of og in terms of additive characters over F.
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Thus, let us put, for x € F,

elr] = exp (5%(1‘ - x')) , (2.18)
where Dp is the fundamental discriminant of F. We have
— ! <« 1 (¢r(s—1) ifn=0,
Lc' N a,%:ic elan/c| = 0! ial_s(n) ifn£0, (2.19)
¢=(c) (a,c)=1

provided Re s > 2. This can of course be formulated as

x(c) 1 [¢e(s=1) ifn=0,
Z NP Z elan/c] = =) {ar;_s(n) in 0 (2.20)

amod ¢

(a,c)=1

Hence, for Re§ < —1,

R N . (C‘ < - C o R :
Bm(a, B h) = (1 - B) L ‘)|,1—ﬂ Q. elam/c|Dm(a,a/c;h).  (2.21)
c€O. e mod ¢
(a,c)=1
Here
Dmla,a/ch) = Z oa(n)elan/ch(n/m;c), (2.22)
neo. /U,
with
h{z;c) = Z h(ex), (2.23)
e€U.
U = {€: totally positive unit congruent to 1 mod c}. (2.24)
We fix a generator of the group:
Us=le), e >1,¢e>0 (2.25)

We assume that h is such that (2.23) is absolutely convergent, and, for z € F,
h(z; ¢) < |N(z)|~1-max(ORea)—n (2.26)

uniformly in c, with an arbitrary fixed 4 > 0. On this and Reg < —1, the
expansion (2.21) holds.

The use of the Ramanujan formula {2.19)—(2.20) is to separate the parame-
ters n and m in og(n + m) of (2.15). We need to do the same separation for the
factor h(n/m;c) too. To this end we extend h to (R\{0})? via the embedding
z — (z,z'), so that in place of (2.23)

h{z,z';c) = Zh(e'c’m, e.’z'). . (2.27)

veL
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Following Hecke, we apply the Poisson sum formula to the right side, getting

h{z,z';c) Z/ (ehx, e tx')e 2 dt

VEZ
Z/ h(E.’E, g-lml)é—Zwiu/ log ecgg_. (2.28)
0

- log €e vEL §

The change of variable £ — £\/|z’/z| gives

h(ei1|z|, e2]z'|; c)

1
- log €. Z

veL

xr

m/

T h (eI a6 VINGEY) €2 &

g , {2.29)

where e; = =£1, and w, = 7/loge.. This integral is a function of /|N(z)].

Considering its Mellin transform in each quadrant separately, we have, with a
certain vertical line (a) = {s: Res = a},

— | T VDl
hiei|z|, e2|z’}; c) =

2miloge, oy z
X /f h (s — v, s + v, i€) |N(z)|%ds, {2.30)
(a)

where e = (€1, €2), and

5(31,32, / / hiejuy, euz)us ' us? " du, dus. {2.31)

Thus, a rearrangement gives

1 m
D h)= =———3"% :|_
m{aa/c;h) 2milogec 4 ol

X / IN(m)|*he (s — veoi, s + vtot) De(s, a;v;a/c)ds, (2.32)
(a)

—vtoet

where 1+ max(0,Rea) < @, and £ = (Iy,12), I; =0, 1. Here

he(s1, 52) Z el el?h(s, s2;€), (2.33)
and
o-a(n) n Vol P
De(s,aiviafc)= Y N el sevlmlelan/d, (@) =1, (239

........

with sgntfa] = sgnle, o'} = (x/|z))" (=' |2/}
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We assume that h is such that

71(31,32; e) is regular and < (1 + |s;| + |s2]) €0

) ] (2.35)
in the domain |Re s;], |[Re sz} < Co,

with a sufficiently large Co > 0. Then (2.26) holds for |Rea| < 3Cs, for instance.
Namely, (2.32), with an appropriate (a), is valid under (2.35). This assumption
on h is quite drastic; a more refined formulation is of course possible, which seems,
however, not to be essential for our present purpose.

3. Sum of Kloosterman sums

We are going to show a functional equation for Dy, from which emerges a represen-
tation of By, in terms of a sum of Kloosterman sums over F (see (3.53) below). To
achieve this, there are at least two ways to follow. One is to extend Lemma 3.7 10},
which is originally due to Hecke and Estermann, by using a theta-transformation
formula over F. The other is more functional, and it employs the Eisenstein series
for the Hilbert modular group over F. We shall take the latter, in order to indicate
the existence of an intrinsic geometric structure behind the mean value Z»(g, F),
and thus possibilities of extension, as well. It should, however, be stressed that the
direct treatment developed in th1s section is based on our local specifications, and
the deduction of those results from the general theory of automorphic forms on
semisimple Lie groups is naturally possible (see e.g., [6]).

Thus, we shall work with the Lie group
G = PSL,(R)2. (3.1)
The Hilbert modular group I' is the discrete subgroup in G resulting from the

embedding g — (g,9") of PSL2{O) into G, where the conjugation is applied to
matrices element-wise. Write

/'1 z; 4 1_2’1\
e = (1 5] [ 1J)
rx_/ \/ZH {\/_2 ]\ 70 AN
A v 7 1rml) o
wo= ([ S0 ][ oo snee])

and put
N={nfz]:z eR?}, A={aly] : y € (0,00)%}, K :{k[e] 0e (R/WZ)Z} . (3.3)
Then we have the Iwasawa decomposition

G =NAK, G5 g=nlzlalyk[d]. (3.4)



48 R.W. Bruggeman & Y. Motohashi

In the sequel we shall use this coordinate system on G without mention. If either
n[z] or afy] or both contain expressions involving elements of F, then they should

be understood as results of the embedding. Haar measures on these groups are
defined by

dn deldl'g, da = (ylyz)_ldyldyz, dk =7T_2d01d02, dg = (ylyg)"ldndadk, (35)

with Lebesoue measures dr. du. d8. FRlameonts of tha Tia olgnbro a of (7 ar

Avia H\/IIW AR LAd% LA LRL AT UIWJ’ wy], WVJ « BdAVAAAVALUS WA VLIV LIV Qb A
identified with corresponding right-differential operators on G. The algebra g has
the basis:

wj =305, ef =e”% (iy;0,, +y;8,, — 3i06,), e =e], j=1,2. (36)

We have the relations
[wj, ef] = tiel, [ef,e;] = —2iw;, (3.7)

and also [x1,x] = 0 for x; € {w;, el e;,e; }. These imply in particular that the
center of the universal enveloping algebra of g is the polynomial ring on two

QJ = ;-e + W - ZWJ sz(azj + 392]) + yjaz:jaej- (3'8)

Let f be a function on G that is left I'-automorphic and of weight 2q =
2(q1,92), g; € Z; that is, for any g € G,

fre) =fe), veT; [gklo) =" flg), ab=qmbr+qbs  (39)
The latter is obviously equivalent to
wif =1¢;f, j=12 (3.10)
Then the first relation in (3.7) implies that
e fare M-automorphic and of weight 2(q + 15),
© with 1, = (1,0), 13 = (0,1) '

Such an [ satisfies nahn‘a”v ffq [n

nle

Y1
appropriate smoothness condltlon f shou
of the additive characters

Y= F
J

)
)

o
g :
d adml a Fourier expa.nsmn in terms

Io

Q_n
«
f
* C
S
»
£
[
2
S

I
1
Yn(g) = exp (j%—i(nzl - n’Zz)) , n€o. (3.12)

Having said this, we introduce the Eisenstein series: It is defined, initially
for Res > %, by

Eg(gis,v)= Y ¢q(rg (stovwi,s—vwi)), q=(q1,q2) € 22, v € Z, (3.13)
~YElo\I"
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with w = 7/(2log ). Here

Galgis) = yi THyp e 5o (sl,sz), (3.14)
and I'no = I'NN - I'N A is the stabilizer in I" of the

he point infinity.
Fourier expansion of Eq(g;s, V), we need also to intr

o¢ with Grossencharakters:
Crls,v) = |n/n/|""H(Nn)~%, oe(n,v) = > ld/d|FIN@)E, v e Z, (3.15)
n#0 ?|n

where n = (n), d = (d) with n > 0, d > 0 run over integral ideals. The L-function
¢r{s,v) continues to an entire function, provided v # 0.

Lemma 3.1. As a function of s, Eq(g;s,v) continues meromorphically to C,
satisfying the functional equation

Eq(gi—s,-v) = (&) -~

I"( + s+ vwi+ | )T(3 + s — vwi+ |a2]) (e (1 + 25, —20)
P('z' —s—vwit |<I1DF(§ —s+vwi+|gf) Cr(l-2s,20)

q(g; s, v).(3.16)

When it is of finite value, Eq(g;s,v) is I'-automorphic and of weight 2q. In the
half plane Res > 0, singularities occur only when v = 0 and q = (0,0), and
Eo,0)(g; 5,0) has a simple pole at s = 1 with the residue (72 logéo)/(Dr(r(2))
as its sole singularity. Further,

e Elgis,v) = (y12) ¥ (41 /92)
I'(s + vwi)l'(s — vwi)

T 1 i
+(=1)nte 779 Tyt ;
(-1) \/D—F(y1y2) (y1/y2) P('zl' + s+ ywz)r‘(% + 5 — vwi)
) lal—1 <s+ ) lqzl ! (“ vwi—ja—3\ (p{2s,—2v)
J1=0 % + vwi + J1 J2=0 +s—vwi+tja/ p(l+2s, —2v)
(N +gaf—/ /Ty _\2s 1—ymi
— 1t njmn
4 A (/v Dp) S In/n'| 024(n, 2v) Y (nfz])

¢r(1+ 25, -2v) |N(n)|st3

neo,
Waisgn(n),stves (47171y1/VDE) W_gusgn(n) s—vei (4717’ly2/v/Dr)
I'(3 + s + vwi + qisgn(n)) I'(3 + s — vwi — gasgn(n’))

, (3.17)

where W, , is the Whittaker function. The sum over n € O, converges absolutely
and uniformly for all parameters involved, and moreover it is of exponential decay
as y1y2 tends to infinity.

Proof. Obviously it is enough to prove the expansion (3.17). By the Bruhat de-
composition, we have

Eqogis,v)=dagis)+ Y. > > éqlall/Plwnla/c+nlgs),  (3.18)
c=(c) amodc necO
c=0 (a,0)=
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where s = (s + vw, s — vw), w = k[47, 27]. The sum over n is, by the Poisson
sum formula, equal to

\/___ Z elan/c]| / ¥l (n)py(al/c*lwng; s)dn

neo
que

\/B—N "E Z elan/clpn(nfz])A, c2 ¢q(alc’y]; s), (3.19)

nclo

where A, is the Jacquet operator:

Anf(g / ¥} (n)f(wng)dn (3.20)

Computing the coordinates of wna[y], we have

L) — %—s —vmi *° exp(27riny1§1/\/D_p) i+ §1 20
Ansaoliis) = ()t~ o) [~ LRI (&)

x/m exp(2min'ya€2/v/Dr) (i+§2|>"2‘” &, (3.21)

2Y1+s—vmi i
. (+ @ it e
These integrals are tabulated: For Res >0, R 3 u,
) e%iu{

e (T Wognllul)
(1)‘17r( ) F(s+%+qsgn(u)) if us#0, o)

I'(2s)
I‘(s+%+q)1"(s+ % -q)
Ignoring the convergence issue temporarily, we insert (3.21)—(3.22) into (3.18) via
(3.19), rearrange the summation, and use the twist of (2.19) with Gréssencharakters:

37 le/dFENmY Y ean/d]

(=1)9721 =2 if u=0.

¢ a mod ¢
c=(c) (a,c)=1 (3.23)
1 [ (s —1,2v) ifn=0,
© Cr(s, 2v) {Ul_s(n 2v) ifn#0.
This leads us to the expanmnn (3. 17\ As to the convergence, we shift vnrtlcwny
the two contours in (3.21) approprlately, and see that uniformly for Res >0

Arjezpalalc’yl;s) < (N(€)y/Figz)" 2% exp(—a(|nyi| + [n'y2|)) (3.24)
with @ > 0 and the implicit constant depending only on F. Then, provided Re s >
0, the sum over n € O, in (3.19) is

< (N()v7g2)' ™ 3 Ko (a\/N<n>y{y2), (3.25)

n#(0)
i I~ tha I T2 ~1 iy Af Arda
where n runs over integral ideals of F, and K, is the K -Bessel function of order

£
v. This shows that (3.18) converges absolutely for Re s > %, and moreover yields
the last assertion in the lemma.
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Lemma 3.2. The function D, of s continues meromorphically to C. If o # 0,
then it has simple poles at s = 1, 1 + a with residues

log €c

log €.
46,00¢0lN(@)|* 7! “2=Cr(L — @), duodeolN(e) ™ 198% (1+a), (3.26)

vDr

respectively, and elsewhere it is regular; i.e., it is entire unless v = 0 and £ = (0, 0)
simultaneously. Further, it holds, for all s, that

Dy(s, a5v;a/c) = (ZW/W) /e |2Vﬂ7ci

X Te (s — vwct, s + vwei; @) De(l — s, —o; —v;a*[c), (3.27)

where a¢*a = 1 mod ¢, and

2
Le(s1,82;0) = H (cos 3ma — (—1)" cosm(s; — 1)) [(1—s;)[(1+a—s;). (3.28)
j=1
Proof. Put
falgia/c) = (r/v/Dp)°T*(3(1 + @) (1 + o)
x (ef —el ) (ef —e;) 2 E0,0)(n[a/clg; 30, 0). (3.29)
Note that
nfo/claly] ™" € I'nl—a" /claly/k(}m, 1. (3.30)
Thus, by (3.11), we have
fa(alyl ™} a/c) = (=1)**"2 fa(aly/c”]; —a*/c). (331)

On the other hand, (3.17) gives the expansion

- rr(\.r(,]/r1 RN
falalyliafe) = { J& + &7} (alylsa/e),

—
(%)
(%]
™

—

where
Falyl;a/c) =6e0(n//Dr) T3 (A (1 + @))r(1 + @) (y1y2) 10+
+8¢,0(7/+/Dr)°T*(3(1 — @))Cr (1 — @) (y132) 5~ (3.33)
and

O (alylia/c) = (=1)" (4m/ /D) ety bt hy,lard

X Mnhn”zelan/clKlm(27rInIU1/\/E)
neo N(n)|ze

X K%a 2r|n’|y2//DF)- (3.34)
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We then put
I(s, ;v a/c)
. f f YR IIR I RY \8— (a3 4 v i fa e\
= j o ay/le,a/e)iyyz) 2T YL/ Y2) ayiayz. (39.99)
1<y1 /y2<e2

The expansion (3.34) gives

(_1)11 dr \" Ia(n) o't
I - — E 2
(505 a/C) |C|11+%!c’|lz+'12‘ \/D—p neo. /U, |N(n)|%“n elan/c]

<[] S (R ) . (B2 )

1<y [y2<e2 peZ

% (ngl)s+ll l—ia—uwci (Clcpyz)s+lg—l—%a+umci dyldyz, (336)

2

I IS g g te atlaliibg b 1 TTY Y W LN | LS. |
wiiere wne convergence 18 avsoiute vanrougnoutl. rience, unioiamng ine iniegrai, we

get

~2Zs+4a+1 _
T C | Vel
I(S, o v, a/C) = (_1)1122(11—1—!2—1) T c
Dr|N(c)| d
xT(3(s+h —vmed)) T (3(s + 1 — @ = vwed)) T (3(s + ba + vwed))
xf‘(%(5+lz—a+uwcz )Dg s, a;v5a/c). (3.37)

We then divide T into two parts:

I(s,a;v;a/c) = // + // co={IT+ I }(s,o;v;a/c). (3.38)

1<y1/y2<e? 1<y; /y2<e?
yLy22>1 y1y2<1

Obviously I* is entire in s. By (3.31)—(3.33), we have

I7(s,a;v;a/c)
= (=1)bH (1 — 5, —0; —v; —a*/c)

log e, T \7“* 1 1
+ 62,06, (3 — =
2,0 ,OlN(C)I%(Ha) (‘/DF_) (2(1+a))CF(1+a)(s_a_ T s)

log e, © \*
~+ 62,00, 2011 -
oot IN (c)| 21— (VDF) P -a)

xgpu—a)( 1 _ 1 ) (3.30)

s—1 s—a
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provided Res is sufficiently large. From (3.37)-(3.39), D, is meromorphic over
C. The assertion (3.26) is now immediate. Also (3.39) implies that

I(s,o;v;a/c) = (—1)t 2y (1 — s, — —a*/c), (3.40)

which is equivalent to (3.27)—(3.28). This ends the proof.

Now, we return to (2.32). We asst

Dm(,afc;h) = ZYg(m; a,a/c;h), (3.41)
4

where

-Vt

Ye(m;a,a/c;h) =

—3 ‘_/

2milogec o im

X / |N(m)|871,g (s — vwci, s + vwei) Dy(s, o v;afc)ds,  (3.42)
(a)

with 0 < a — 1 — max(0,Rea) < Cp. Inserting this into (2.21) we have also
B (e, B B) = Y Ze(m; @, B h), (3.43)
e

where

Zp(m;a, B; h) = ¢r(1 — B) Z [N )ll TSR E elam/c]Ye(m; a,a/c; h). (3.44)

ceO. a mod ¢

(a,0)=1
Shifting the contour in (3.42) to the left, we have, by Lemma 3.2

Ye(m; o afc; h) = 4j‘i|N( &)= N (m) a1, 1)¢e (1 = a)
So,e

T4ZE=IN(e )77 N (m)|+*Re(1 + 2,1 + @)¢r(1 + @)

|N(c)]xt? ( 27 )_20_2 o_q(n) mnc’? e
+ 53 Z ———sgn”[n| s
2m3iloge. \ /Drp nEOIT. |N(n)| m'n’c
x/ Te(s — vwet, 8 + vwoet; a)hg (s — vwei, s + vwoet)
()
/[N )]\
7 mn
x | VIV g 3.45
( DN () ) (343)

with
b < min(0, Re o). (3.46)
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Here we have used a bound for Dy(s, ;v : a/c) which follows from (3.27); thus,
it is implicitly assumed that |Re o and |b] are sufficiently smaller than the Cp in
(2.35). Denoting the last integral as L(vw,), we have, by the Poisson sum formula,

j—iT

| emne®
v ¢ ecU,
That is, in (3.45)
cr_a, mnc'2 o
Z Z ] sgn [n]ela* n/c] m dr.  (3.48)
ned. /U, € neo.

This integral can be put as

[Rle(z(m, n;c); @),  z(m,n;c) = (4W\/|mn' 4W\/'mlnll) (3.49)

elvDr " TeVBr
with
281 m/ 282
[hle(z; @) = —/ / Ly (s1,52;0) hg(sl,SQ) — —| dsids;.  (3.50)
v J(v) 2 2

Then

Vil ,0/e; ) = 4ZRLIN (@)1= (m) 1, )ce(1 -

4 ‘5,‘1—‘-IN(cn—°-l!N(m)!”aﬁeu+an_+a>,p<1+a>
\/DF
1 2o 2 —a(n) Y
+ |N |°’+ \ , =7 isgn [n]e[a*n/c][hle(z(m, n; c); ). (3.51)

N(n)
ﬂEO-

This, together with (2.20) and (3.44), gives

Ze(m;a,ﬂ;h)=4j%’zgcp(;(_ o)ée (1 ﬂ)ﬂ) £(1,1)|N(m)[0as8-1(m)

bo,e (r(l+a)Cp(l - ﬂ)
VDF 2+ a-p)

—2a—2
+ -%cp(l ) (%) Z ”‘“‘ sgn”[n]

x D x(@IN(@)|*+P Sp(m, n,c)[h]g( (m, n;c); 0), (3:52)
ccO.

+4

he(l + 0,1+ @)|N(m)|"**g5_a-1(m)
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where
Sp(m,n;c) = Z e[(ma + na*)/c| (3.53)
a mod ¢
(a,0)=1

is a Kloosterman sum over F.

In the sequel we shall always assume, for the sake of simplicity, that
laf, 18l < Cy, (3.54)

where C) > 0 is sufficiently large but C;/Cp with Cp as in (2.35) is sufficiently
small; note the remark made after (3.46). On this and (2.35), the double sum on
the right side of (3.52) converges absolutely for

[Rea|+Ref < —2. (3.55)
In fact, an appropriate shift of contours in (3.50) gives
[Rle(z; @) < |az'1*(|z| + |2'))7* (3.56)

with a ¢ >0 and b as in (3.46), from which the assertion follows immediately.
In Section 5, we shall decompose spectrally the interior sum over ¢ in (3 52)

lﬂn‘- nrnass manlra lhawa o Béels vonsrras g neb o F &

| P A
1au pul puoc We 111anv liIvic a thUlC Lcallauscun‘:uu O1 L€ Suii. Dy Ullc ucullihlull

Yy
(2.3) we have

D (N (¥ Sr (m, n; c)[h]e(x(m, n; c); @)
ceO.

at-f+1
LYy =T
47r Dg

mn |i€/(4108 €0) o

_GO
w0

S——

—

fm, A 0 1\
mn\G, O, G [142) 85,
where

Sm,n(a, B, hle) = Z iN( )I F(m, n;c)[[h]]e(z(m, nic); @, B,€),  (3.58)

with
[hlle(z; @, B,€) = |3aa! |77 o/ |4/ @O8 D R]y(z; ). (3.59)
Note that under (2.35) and (3.54) we have the bounds

[hle(z; 0, B, €) < (Il + |2/]) ™ - { | ~Co/2 if 22| > 1,

|mml|—|Rea|—Reﬁ+1 if Iszl <1, (3'60)

with g > 0 asin (3.56). The extra integration in (3.57) will eventually be elimi-
nated (see (5.4) below).
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Remark. One may consider, more generally than 2,(g,F), the mean value

[e o]
1 . 1 . 2
/ |Cp(§ +it, v1)¢p(5 + it, V2)| g(t)dt. (3.61)
— 00
with arbitrary i1, 13 € Z. The relevant reduction to a sum of Kloosterman sums
can also be performed with Lemma 3.1.

4. Geometric sum formula

The next step is to decompose spectrally the sum Sy, (e, 8,€; [h]e). This will be
accomplished with the geometric sum formula for the Hilbert modular group I.
In the present section we shall describe this principal tool for our purpose.

Let L?(I'\G) be the Hilbert space composed of all left I'-automorphic func-
tions on G which are square integrable against the measure dg. Let 9L2(I'\G) be
its cuspidal subspace, i.e., the one spanned by those elements with zero constant
terms in their Fourier expansions (see (4.17)). One can show the decompositions

LA(IN\G)=CaL’a¢, (4.1)
LA\G) =PV, (4.2)
£=Pe., (4.3)

veZ

where V runs over an orthogonal system of right irreducible subspaces, and &, is
generated by the values of the Eisenstein series Eqy(g; s,v) as in (4.6) below. The
action of the subgroup K leads to a further decomposition

V=PV, (4.4)

where k[f] acts in Vg as the multiplication by ¢%9? and dim Vy £ 1. Analogously
we have
&= P Eva, (4.5)

where

£, q = { / " u(t)Ealg; L+ it, )t - / ()Pt < oo}. (4.6)

-0 —00
We note that the operator Q; acts as a multiplication by a constant in each V,
Le.,
Qlv=(3+£) -1, kv =(s1,k2), (4.7)
with certain k; € C, and that

wjdi = qu . 1, legy‘q = ’LqJ . 1, (48)
which is the same as (3.10).
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The fundamental assertions (4.1)—(4.6) follows from the general theory of
automorphic forms on semisimple Lie groups, see, e.g., {4] or [6]. However, in the
present situation, it is of no difficulties to derive them in the same way as for the
full modular group acting on the upper half plane, for instance as in Chapter One
of [10].

In the geometric sum formula the spaces V of (4.2) occur, along with a

certain Iaqqlﬁ(-ahnn among them. Because of this. we need to cl—\nur a structure in

AaalllLALIlO alll0LLs Bl DOLALSO O LWiAls, W LIECQ L0 SN0W a SLryciure in
’

the decomposition (4.4). Thus, observe that the basis elements e of gactin V
and the assertion (3.11) implies the diagram within V:

1

e;')
Vq+12

) Vo-1. = Vg = Vgu, (). (4.9)

The classifeatinn

f \J noncoarng
A AV LaGwoiliLuivil Ul

01 V Concerns now arn
which the V; are placed. To this end, we could rely on the fact that g = sl, @ sl
but we shall use a direct argument.

We pick up a generator ¢ of a non-trivial V. The function ¢ is a cusp-form
over I'\G in the sense that it is an element of °L?(I"\G), and a simultaneous
eigenfunction of §; and wJ as indicated in (4.7) and (4.8). Then, observe that
e¥ei¢ = —((£g; + 3)? + K2) via (3.7) and (3.8), and that integration by parts

gives ||ej o||? = —(e;Fefqo, ), with an obvious usage of notation. Hence we have
llefwllz = ((xg; + 37 + D)ol (4.10)

In particular (+g;+ £)%+x? is non-negative, which allows us to choose &; so that
either k; >0 or 0<ik; < ||g;] - 3l (4.11)

The relation (4.10) shows that the mappings in (4.9) are bijective in general.
Exceptions can occur only if ik; = 1; ~ %, with an integer I; > 1. More precisely,

Vq # {0} and ej:: a={0} <= g;=7Fl; or l;=1,¢; =0. (4.12)

A combination of (4.11)-(4.12) shows that the I; — 1 are the only values that
ik; can take if tk; > . Then, the irreducibility of V implies that the set
{q: Vq # {0}} is the direct product of two intervals in Z. The possibilities are
as follows, with corresponding technical terms: (I) ¢; € Z if k; > 0 (unitary
principal series), (II) ¢; € Z if 0 < ik; <  (complementary series), (III) g = l

N |

with ik; =1 — 5 (holomorphic discrete series), (IV) ¢; < —I; with ix; = I; 2
(anti-holomorphic discrete series), and (V) ¢; = 0 with ix; = 5 (trivial repre-

sentation). But the last case cannot occur, because we are dealing with spaces of
cusp forms. In this way we are led to a classification of the spaces V:
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Lemma 4.1. Let V be an irreducible subspace of °L?(I'\G), for which (4.4) and
(4.7) hold. We have the following possibilities:

1. either k; > 0 or 0 < iKkj < %, for both j =1, 2
2. either ke > 0 or 0 < iks < %, and ik; =1 — 3» mq1 2 | with an integer [ > 1,
3. either k1 > 0 or 0 < iky < %, and ikp =1 — %, m2go > | with an integer 1 > 1,
diry=b -3, ika=l— L, ma>h, me>h

with integers ly,lp > 1,

(4.13)
where 7, = £1, and q; without constraint runs over all integers. We may choose
a cusp form v in V of weight 2qy with

qv = (0,0), (T]llao)a (O,lel), (71311,774l2), (414)

respectively, for which

V=Upv, (4.15)
with the universal enveloping algebra U of g.

Thus, starting from Vg, a multiple application of eJ fills the grid. In case I,
all Vy are non-trivial. In case 4, a sole quadrant of the grid is filled with Vg all

non- h'lvlal and other three oauadrants contain onlv trivial snaces. In the remainin
non-irivial; and otner three quadrants contain only trivial spaces. in the remaintin

o
O
cases 2 and 3, we have a mixed situation. Non-trivial V, are, respectively, in a

vertical and a horizontal halves of the grid that are fixed by V.

Remark. The %4— n? with 0 < ikj < % are called exceptional eigenvalues. It is
known that they satisfy non-trivial lower bounds. The best published result

1
ik < = (4.16)
5
is due to Rudnick, Luo and Sarnak {7]; in the preprint {5}, Kim and Shahidi give
in; < 51
As to the Fourier expansion of oy, we have
— qL+q2 thB
ev(g) = (-1) > W—%( g)
neo, V1T
o qusgn(n),inl (47r|n|yl/V DF) W—qasgn(n’),inz (47r|n’[y2/V DF) (417)
[(5 + iK1 + g1sgn(n)) [(3 +ike — qgesgn(n))

with certain complex numbers py(n) and the Whittaker function W, . This is
in fact the specialization ¢ = v of the result of solving, on the side condition

€ V, the differential equation Q¢ = (1 + k%) in the coordinate system (3.4).
The gamma factors do not produce zeros for the combinations of q and (k1, k2)

TRy

that reauy occur in "l/ L \G). Hereafter we shall assume that

{pv : V} is an orthonormal system in L?(I'\G). (4.18)
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Then we call gyv(n) the Fourier coefficients of V. The vector {ov(n):n € O,} is
well-defined, save for an arbitrary constant multiplier of unit absolute value.

Next, we turn to Hecke operators over the space L?(I'\G). Because of the
particular importance of this concept for our purpose, we shall dwell on certain
details, again exploiting our local situation. Thus, let n = (n), n = 0, be an
integral ideal of F'; note our initial assumption that N(ey) = —1. We define the

o~ t1

action of the Hecke operator T, over a left I'-automorphi

H hey
1001 5 Ol v Oy

Tof(g) = \/le— JZ Y f(alb/dlafn/d?] - g), (4.19)

b mod o
o=(d),d>0

where 0 is an integral ideal. The orthogonal decomposition (4.1) is obviously
preserved by any Ty, and the same can be arranged for (4.2) and (4.4). Further,
it can be shown in a standard way that Ta Ty = TTw for any m, n, and each
Tw is symmetric over L?(I'\G). Thus we may assume that V is such that

Tan = tv(l‘l) -1, tv(ﬂ) € R. (4.20)

Before taking this into (4.17), we note that gy(eg*n) = pv(n), v € Z, which
follows from ¢@v(a[e2“]g) = @v(g). Then, computing the Fourier coefficients of
Tnev, we have, for any m € O.,

ov(m)ty(n) = Z ov(mn/d?). (4.21)
(Dl(m,n)
Hence, for any unit € and O, 3n > 0,
ov(en) = ov(e)tv((n)). (4.22)

In other words, for any n € O,
ov(l) ifn>0,

€ if egn > 0,
ov(n) = tv((n)) - ! g:igeg)\ if :Zn =0 (4.23)

gv(—l) if —n > 0.

Thus there exists at least one unit € such that gyv(e) # 0, since otherwise we
would have ¢y = 0, and the relation (4.21) implies the multiplicative property of
Hecke eigenvalues:

tv((m)tv((n) = Y tv((mn/d®)), m,neO. (4.24)
(@)l(m,n)

As in the modular case, Hecke operators T, are to be supplemented with
involutions with which one may distinguish the parities or the four cases in (4.23).
To this end we put, for any unit ¢,

e = ([Sg“(e) 1] , [Sg“(") 1]) € PGLy(R)?, (4.25)
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We have
JeGJe = G, a[iGI]JEF(a[lcllﬁ)_l =1 (4-26)

We then put, for any left I'-automorphic function f on G,

ief(g) = f(allellgegse)
= f(n[(exy,€'za)la[le|yn, € [ya]k[sgn ()1, sgn(e’)82)). (4.27)

We see readily that the left I'-automorphy is preserved by i. because of (4.26),
and that

2=1, iqig =lge; le =18, Taic = icTy. (4.28)
But weights are not preserved in general. If f is of weight 2q, then i f is of weight
2(sgn(€)q1,sgn(€’')g2) . To get an involution we need either to restrict the weights
or to choose € appropriately.

Let us suppose first that & = (k1,k3) comes under Case 1 in Lemma 4.1.
Then the finite number of V with kv = « all have qv = (0,0), and the v span
a space in which i, is an involution or the identity. The commutativity in (4.28)
implies that the V with kv = « can be chosen such that i.pv = &y (€)y for all
¢ in the unit group. Then each £y is a character of the unit group mod|e?], with
values in {£1}. Hence, in the case qv = (0,0), the relation (4.23) is refined with

ov(€) = ev(1)Av(e) (4.29)

for any unit €. As to the mixed cases, let us assume, for instance, that qv = (g1, 0),
q1 # 0. The expansion (4.17) is actually over those n such that g;n > 0. Thus
we need to use ic with ¢ > 0, i.e.,, ¢ =1 or ¢ mod [¢}]. It is an involution, and
we can again choose a @v satisfying icpv = Av(€)v with Av(e) = £1. Hence, if
qv = (91,0), g1 #0, then

ov(eve) = pov(ev)iv(e); Av(e) =0 if € £ 1,¢0 mod [€d]. (4.30)
with ey = sgn(q). Similarly, if qv = (0, ¢2), g2 # 0, then

ovieve) = ov(en)iv(e); Av(e) =0 ife# 1 ehmod[d],  (431)
with ey = —sgn(qz). Further, if qv = (g1, ¢2), q192 # 0, then the expansion (4.17)

reduces to the one over the integers n such that g1 > 0 and ¢sn’ < 0. Thus in
(4.23) only one case is in fact possible:

ov(eve) = pov(ev)Av(€); Av is the characteristic function of the set (€3], (4.32)
where ey — Cé(1+Sgn(92))€/§(l——sgn(ql))‘

These definitions and (4.23) imply that we may put, for any n € ¢, and for
any unit € such that en > 0,

ev(n) = oviv(n)tv((n)), v (n) = Av(e/ev), (4.33)
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where
ov = ov(ev) (4.34)
with ey as above, and with ey =1 in the case (4.29).

In this way we have defined the function Ay on the set of units via i.. The
action of i, is, however, not limited to cuspidal subspaces. In fact, (3.17) implies
that 1eE0)(g; s, V) = |¢/€'|"™* E(o 0)(g; 5,v). This and (4.6) give an extension of
A and 7:
€

I

e () =ne ()= || = 41, (4.35)

Now, we are ready to state the spectral results that are essential for our

purpose:

Lemma 4.2. Let ky = (k1,K2) be defined by (4.7) and (4.13); qv = (q1,q2) by
(4.14); ty({(n)) by (4.20); (n) by {(4.33), and gy by (4.34). Let

)-
2L+ o] + R0 + |g2| + i7z)
v =lovl"=H (4.36)
L(5 + @] +60)0(5 + lgo| +ik2)
Further, let w be defined for all kv, and satisfy w(xy) < ({(1+1g1){(1+]kz])) "2+
with an arbitrary small constant p > 0. Then we have for any n € O,
S_‘avlnv v ((n))?w(ky) < |N(n)| 24, (4.37)

where V runs over aH cuspidal irreducible subspaces, and the implicit constant
depends only on p. This implies, in particular, that

tv(n) < (N(n))* 74, (4.38)
with the same dependency on p.

Lemma 4.3. Let f be sufficiently smooth over (0,00)%, and decay sufficiently
fast as one or both of the two variables tend either to 07 or to +00. Let

Bef(rl ) T2)

[ [T wa) ~ TG () T (ug) — I, (un) durdus | .

=-=2 fu,u2) , (4.39)
o Jo sinh 7rrq sinh 7y U U2

where e = (ey,ep) with e; =+, and J = J,, J; =1, in the usual notation for

Bessel functions. Then we have, for any m,, my € (’)*,

Sp(my, ms; c) firrrmal vl
Z |N (<) (| |vDr ’fc'l\/_ )

ceQ,

=Y avnv(m)ty ((ma)ny (ma)tv (M2)) B, my) f(kv)
\%

—vwi
mimas

T
———
23/Dr log eo S |mim/a

/°° o2it(my, v)ogi (ma,v)
X ; - >
oo [N (myma)|*|Cp(1 + 2it, 2v)]|

Bimymg) f(t + v, t —vw)dt, (4.40)
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where [mymyp] = (sgn(m;mz),sgn(m’m’;)), and other symbols are the same as
in the previous lemma.

Proof. Note that the classification of V enters into these assertions through kv
and 7v. The identity (4.40) is the version of the geometric sum formula for the
Hilbert modular group I’ that we shall apply in the next section. This is an

adaptation of Theorem 2.7.1 of [1] to our present situation. Also, the statistical
result (4 '%7\ follows from Proposition 3.3.1 there. It should be ‘v'v'O}‘th remarking
that the argument in Chapter 2 of [10] can readily be extended so as to yield
these two principal results. The way to deduce the bound (4.38) from (4.37) is
analogous to the modular case (see e.g., Section 3.1 of [10]). Better results are
known, but for our purpose the conventional bound (4.38) is more than sufficient.

It is important that (4.38) is uniform in V.

For the sake of a later purpose, we need to make it clear that the expansion
(4.40) converges rapidly under the assumption on f given in the lemma: To this
end, we remark first that by the definition (4.39) the function B f(r;,2) is regular
for |Imr;] < Cy, j = 1, 2. This constant C; can be assumed to be sufficiently
large. Put

251~1 sy 2s2—1
f(s1,52) -—-/ / ! ul,u2) ) (%) dujdus. (4.41)

This is holomorphic for |Res;| < Cf, 7 = 1,2, and can be assumed to decay
sufficiently fast there. By the Mellin inversion,

Uo\ —

1 ~ (15} —28 282
f(uly u‘2) - W‘ (an) Jia2) f(317 52) (?) (—2*) d51d52, (442)

with appropriately chosen a;, az. Inserting this into (4.39), we get formally

1 i [ ~
Bef(ri,r2) = oz / F(s1,52)J) (51, 71) 0 (55, r3)ds ds2,  (4.43)
(a1) J(az2)

where © ©
© Joi(u) — J%; ~2s-1
J@ (s, r) = / 21 () = J 30 (4) (5 du. (4.44)
JO sinnnwr N s
Assume temporarily that [Imrj| < , 7 = 1, 2. Then set —1 < a; < —[Immry|.

With this the quadruple integral involved in (4 43) converges absolutely, and the
expression (4.43) holds in this domain of (r;,72). On the other hand, we have

JE(s,7) = %{(1 +1)cosms + (1 F 1) coshnr}l(ir — s)[(—ir —s),  (4.45)

provided —% < Res < —|Imr| (for the plus case, which is more delicate, see

11Cd. ’_._,_,

pp. 183-184 of [10]). Then, repla.ce JE(sj,7;) in (4 43) by these, and hlft the
contours to the left appropriately. We see that the representation {4.43) holds in
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the much wider domain |Imr;| < C;. Having done this, we shift the contours to
the right. We find that for instance

Bef(r1, r2) < (L+ [r1] + |r2l) =67/, JImrjj < icy. (4.46)

It remains to consider the case where e = + and ir =1—-35, 1<l € Z, in (4.44).
We have then . .
. yi-1Ll—35—s)
~ 1)) =2(-1) —2——,
)) = 2i{-1) TUT15s)

which is of course a special case of (4.45). With this, we see that (4.46) holds
for all relevant combinations of e and (ri,r2). Hence Lemma 4.2 implies that the
right side of (4.40) converges rapidly.

T (s, (4.47)

talb-l

Before moving to our application of the geometric sum formula, we shall
briefly discuss the Hecke series Hy associated with a cuspidal irreducible subspace
V. Thus, assume (4.20), and put

Hy(s) = 3 bw(n) (Vo) ™, (4.48)

which converges absolutely at least for Res > i—, and is bounded there uniformly
in V, because of (4.38). In fact it is convergent for Res > 1 as can be seen via
a use of the Rankin zeta-function attached to V, but this fact is irrelevant to our
purpose. The formula (4.24) implies an Euler product expression for Hy, and also
the relation

Hy(s1)Hv(s2) = Cr(s1 +82) ) oy ey (W)t () (V)™ (4.49)

in the region of absolute convergence. Further, we have

Lemma 4.4. The function Hv is entire, and satisfies the functional equation:
/ o \ 2(2s-1)

Hy(s) =n"2 (\/“];_F Hy(1-3s)

X 11 [ Av(e;) coshmk; — cosms) (1 — s+ ik;)I(1 — s — mj)] (4.50)
=1

where € = ¢, with (e1,€2) = (€,€’), and (k1,k2) is defined by (4.7) and (4.13).
In particular, we have the bound

Hy(s) < (1+ [s| + |ra| + |k2])*, (4.51)

where ¢ depends only on Res, and the implicit constant only on F and Res.

Proof. The second assertion is the consequence of the first and (4.38) via the
Phragmén-Lindelof convexity principle. The functional equation is a special case
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of Theorem 11.1 in [3]. But we shall give a direct treatment. We apply the method
in Section 3.2 of [10] to the case qv = (0,0). In fact the other cases are simpler.
Let A; = 3(1 — Av(€b)), A2 = 3(1 — Av(eo)), and put o¥ = (eF)* (ef) 2y .
Then consider the integral

_2
A= [ [ erlummrtands, (4.52)
i<y /y2<ef
with Res being sufficiently large. The relation (4.29) implies that

)/\1 (27r/\/]$)’\‘+’\2
\/_I‘( +m1)l"(%+in2)

¥ (aly]) = 4(-1

1 1
% y1\1+2yé\2+2
x 3 6v(m)Ku (2rinlys/v/Dr) Kis, (2n1nly/VDr),  (453)
neO,
where
o4 (n) = n* 12 gy (n) = oy [n[M /Mty ((n)) (4.54)
In fact, Av(¢) is a nontrivial character of the unit group, provided A;+ Az # 0, and
the terms caused by the derivative 8,, in (3.6) cancel out each other in (4.53).

Thus, we have
(2m/\/ D)t tAz
VDEL(5 + ik1)T(5 + irg)

x 3 ((W%wﬁmmmmMm

n€0, mod [e ]

Av(s) = 4(-1)M v

i ~-\2
(0,00)°

X Kixg (27f|n ly2/ v/ DF) 1195 (y192)° " Ldy1dys, (4.55)

in which the convergence is absolute throughout, at least for Res > %. We find
that

—1) oA +A2 =2 - 1-2s
Avle) = v ()
ml(5 + ik1)D(3 + ika) Dr

X T(5(s 4+ A + ik L3 (s + M — ik1))D(3(s + A2 + iK2))
x T(5(s + A2 — ika))Hy(s). (4.56)

On the other hand, arguing as (3.30)—(3.31), we see that ¢} (afy]) = (—1) 11>
w4 (aly]™1). D1v1d1ng the range of integration in (4.52) into two parts, according
as y1y2 <1 and yi1y2 = 1, we find that Ay (s) is an entire function, and satisfies
the functional equation AV( ) = (—1)"**24(1 — 5). This ends the proof.
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5. Binary additive divisor

Now, we are ready to return to (3.58); thus we shall work on the assumptions
(2.35) and (3.54). Note that we have m > 0 (see (2.15)), and nv(m) = nv(1) by
the definition (4.33).

The formulas (3.50), (3.59) and the bound (3.60) imply that the function

[[Zlle(z; o, B, €) is s0 smooth that the geometric sum formula (4.40) can safely be

applied to S, »(a, 3,&;[h]e), provided

1
|Rea| +Refg < —501, (5.1)
with C; as in (3.54); for instance, take Re 3 negative and large, and keep |Re |
relatively small. We shall assume this for the time being; it will be eventually
eliminated. Then the discussion following Lemma 4.3 yields that we have a fast
converging spectral decomposition:

Smn(en 8,6 [hle) = > avav (1)tv ((m))mv () by ((n))Bga [(R]]e(ev; o, 8, )
Vv

oo _ . o0
. m Z | mn |—vwi / o2it(m, 2v)0244(n, 2v)
23/Dg logeo S m'n'| J—oo I]‘v’(mn)i“‘i{p(l + 21t 2u)i2

X By [[R]]e(t + v, t — vw; a, B, €)dt
= {Shn + S Ha, B,&; [hle), (5.2)

say. It is easy to check the uniformity of the convergence with respect to all involved
parameters. The contribution, via (3.57), of S, ,, to (3.52) is equal to

28
2w \ 1
— a1 _ A / °T N{m)s(ats+1)
11 i \Ilb
SFu ~i \ DF/ /
o_a(n)
X . ot avay (Dtv((m)ny (n)ty ((n))
“mod [e2) 1HYATY)|2AE T
n€O, mod [€2] v
0o )
1 =) i mmn |#€/(4log €g)
il (3 _— 0 v o \ (5.3)
X :w el B 8(6)| S| Bm([Plle(kvi o, B, €)dE.  (5.3)

The exchange of the order of summation is legitimate: The function

By [[hlle(kv; a, B,€) is smooth in &, and the bound (4.46) with the present choice

of f and with C; = C; holds even after differentiating with respect to ¢ several

times. Thus the last integral decays sufficiently fast in v and ky. By virtue of

Lemma 4.2, the triple sum in (5.3) converges absolutely, which confirms our claim.
But, Poisson’s sum formula gives, in (5.3),

Z = %B[n][[h”g(fcv, a, 3, 0)) (54)

v

S A e b
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because of our assumption on p. Hence, by (4.49), we see that (5.3) is equal to

1 [ 2r \* :
F(.ﬁ) N(m)7(0+ﬁ+l)zv:avﬂv(l)t\/((m))

x Hy (3(1+ a - 8)) Hv (3(1 — = 8)) BY*[[Rlle(xv; o, 8,0), (5.5)
where
BV = 3" sgnllenv(e)B; (5.6)
€ mod [e3]

with € running over units. Here we have used the fact that ny(en) = nv(e), if
n > 0. Similarly the contribution of S, ,, to (3.52) is equal to

(2ﬂ/ﬁ)25+1 / o2it(m, 2v)
S N(m)®|Cr(1 + 2it, 2v)|2

257r4zlogeo
xCp (5(1+a-p8)—it,v)Cp (3(1+a-B)+it,—v)p (A(1 - a— B) — it,v)
x (e (21 — a = B) + it, —v) BE 4[[h]]e(t + vw, t — vw; a, B; 0)dt, (5.7)

where we have used {4.35). We insert these expressions into (3.43) via (3.52). We
get a spectral decomposition of By, {a, 8; k), provided {2.35), (3.54) and (5.1).

The domain (5.1) is, however, not suitable for the application in our mind,
i.e.,, that to Z2(g,F). We have to continue the decomposition to a neighbourhood
of the point (o, 8) = (0, 0). Because of this, we shall study the transform

®.(r1,r2; 00, B3 h) 27r4z Z Z sgne[e]n., e][[h]]g(rl,rg;oz, B3,0). (5.8)

£ € mod [€?]

rogrmoantizeale,

... {
iCDlJCL,UlVCly, Uuh d..].l:Cl \

(2.33), (3.28), (3.50), a 5 (3.59),

ngne[el[[h]]e(ﬂv;a,ﬂ, 0=

14

9|

®

/ ((1+ ejsgn(es)) cos 3ma — (1 — e;sgn(e;)) cos m(s; — o))
® i= 1

28y 2809

dsidsa, (5.9)

/

><1"(1—sj)l"(l—l—a—sj)]ﬁ(sl,sz;e) z 5

2

where b is as in (3.46), and (e1,¢2) = (¢, €¢') as before. Apply By to this, and
argue as in (4.42)—(4.45). We find that

@ (Tl 725 O, ﬁ) - 8 GZ Z 7]*

€ ¢ mod [eZ]
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2
/ [_ 31752’ H [Asgn(ﬁ, SJ7TJ)C¥ ﬂ) ( %(a+ﬂ+1)_irj)

j=t

X F(Sj — %(Q + 8+ 1) + zrﬂ[‘(l — S;,\)F(l + o — S_;,)] dsidss, (510)
where

Ae:tj (sj,ri0,8) = {(1 £ e;) cos ma — (1 Fe;) cos m(s; — za)}

x {{1F 1) coshmr; + (1 + 1)sinm(s; — L(a+8))}. (5.11)

The expression (5.10) is in fact a result of an application of analytic continuation:
The s;-contour separates the poles of Asgn(c’)(sj,rj,a BT(s; — %(a +8+1)—
irj)T(s; — 3(a+B+1) +iry) and I'(1 - s,;)['(1 +a —s;) to the left and the right,
respectively, and it is assumed that the parameters are such that the contour can
be drawn. Under the assumption (5.1), one may use the contour Res; = b with
2(Oz—|-,6+ 1)<b 1< mm(O Rea); then move it appropriately, and get (5.10). Note
thot 3F Jae ] | R .

that if ir; =1— 5, 1 <1 € 2, then (4.47) has to be taken into account.

If =&, or V with qv = (0,0), then 7. = A, is a character on the group
of units, and

> H A = H(A; +MA(e)AZ) (5.12)

¢ mod [62] =1

with € = ¢, on the right side. We shall show that this can be assumed to hold
for x = V with qv # (0,0) as well. In view of (5.5), we may restrict ourselves
to those V with v (1) # 0. This implies, by (4.33), that Av(ey,}) # 0. Thus, by
{4.30), we see that if qv = (¢1,0), g1 # 0, then the left side of (5.12) is equal
to nv(DAT (AT + Av(eo)A3). Also, if qv = (0, ¢2), g2 # 0, then by (4.31) it is
equal to 7v(1)AT(AT + Av{ep)A). Further, if qv = (¢1,92), q192 # 0, then by
{4.32) it becomes 7v(1)ATAY . Hence, we have, as a refinement of (5.12), that
for any space * with n.(1) #0

2 2
> n@[[A%F = n) [[(AL + A(e)AZ) (5.13)
€ mod [€?] =1 Jj=1

with € = ¢, on the right side.

Lemma 5.1. Let us assume (2.35) and (3.54). Let V, ky = (K1, k2), and qy =
(q1,92) be as in (4.2), (4.13), and (4.14), respectively. Then ®v(kv;a, B;h) is

A antiafioc
regw’m and satisfies

Bv{kvi o, B h) < (L+ |ka] + [kal) "2, (5.14)
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uniformly in V and «, B8, provided

Rea| + Re B < 2min {|Imx; + 3| +6;} . (5.15)
J

Here §; = 0, 1, according as ¢; = 0, # 0, respectively. Analogously, ®¢, (t —
vw,t + vw; o, B; h) is regular, and satisfies

Be, (t — v, t + vy o, By h) < (14 [t] + |v)) /2, (5.16)

provided
|Rea| + Re B < 1 — 2|Imt|. (5.17)

Proof. It is enough to prove the assertions on ®v.If g; # 0, then ik; = |g;| — 5
and the D-factor in (5.10), with * = V and (ri,r2) = kv, is to be modified
as indicated in (4.47). After this modification, one may draw contours in (5.10)
under (5.15), and the assertion on the regularity follows. The decay property is
simply a result of shifting the contours appropriately to the left. This ends the

nrant
prVL

Now, we may state the first of our explicit formulas
Theorem 5.2. Let By, (a, §; h) be defined by (2.15), and assume (2.35). Let a, 8
be such that 3
—~1 < Re(xa+f) < = (5.18)
Then we have the spectral decomposition
Bon(c, ;1) = {BE) + B + B} (2,8;), (5.19)

where

B (0, B5h) = f;](a_lpgp(;gi ;:ggN (m)oats—1(m)h(0,0)
Cr(l+ a)¢r(l — B) e .
vVDr(r(2+a— ﬂ)N( m)* 4o _ayg-1(m)h(e, 0)
Cr(l— a)Cr(1 +[j) 148, m

+\/D_FCF(2—Oz+ﬂ) ( ) a—fg— ( )h(Oﬂ)
Cr(l + a)Cr(1 + B) N (m)t+ats
vVDr (r(2+ a+ B)

O-a—p-1 (m)h(a1 B), (5.20)

B (a, B; h) = (27/+/Dr)* N(m)(et8+1)

x > avny (Dtv ((m)Ev(3(1L +a - B)
\'

x Hy(3(1 — a— B))®v(kv;a, B k), (5.21)
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/_)2,6+1 1
B’(:;)(a, ﬂ; h) = ——-_-—(27r/ DF N(nl)f(a+ﬁ+])

24 log €
oo : oo
m\ ~vwi o9 (m, 2v) 1 .
* V;w (=) J/_m N{myice (Lt 2, 2P F (31 e =8) =ity)
x(p (31 +a—pB) +it,—v) p (3(1 —a - B) —it,v)
x (p (3(1 — @ — B) +it, —v) e, (t + v, t — vw; a, §; R)dt. (5.22)

Here V, kv, tv, nv, av, Hy, are, respectively, defined by (4.2), (4.13), (4.20),
(4.33), (4.36), (4.48); and ®. by (5.10). Also

h{m,n2) ://h(ul,u2)|u1uz|”1(|1+u1||1+uz|)”2du1du2. (5.23)
RQ

The expressions on the right sides of (5.20)—(5.22) are all regular in the domain
(5.18).

Remark. This result should be compared with (3.33) and (3.57) in [9]. We could
express ¥, as linear combinations of products of two integrals of the Mellin-Barnes
type. Then the analogy would be made clearer. A special case is treated in the

proof of Corollary 5.3 below. In the condition (5.18) the lower bound is to secure
the regularity of the Eisenstein term B It could be dropped, but then the
residual term BY) would need a suitable modification.

Proof. As is mentioned after (5.7), a spectral decomposition of B,,(a, 8;k) has
already been established, provided (5.1). Thus its continuation to (5.18) is to
be discussed. The cuspidal contribution has exactly the same form as (5.21). By
Lemmas 4.4 and 5.1, the sum converges absolutely and uniformly in the domain

|Rea|+Re/5'<2rr{;nmin{|1mnj+%|+6j}, (5.24)
7

and there it is regular. According to (4.16), this domain contains (5.18). On the
other hand, the contribution of Eisenstein series has the form same as (5.22), but
with (o, ) in (5.1); thus it is different from the function defined by (5.22) with
(5.18), since the integrand can have singularities in (5.24), say. Those terms with
v # 0 have, however, integrands regular in (5.24). The sum over v converges
absolutely and uniformly because of (5.16)—(5.17), and we may exclude this part
from consideration. The term remaining to be considered is

(ZW/\/EE)Zﬁ+l L (a+B+1) oo o2it(m)
24log € N(m)? _[m N{m)(r(1 + 2it)(p(1 — 2it)

X e (5(1+a—B)—it) (r ({1 +a—B) +it)
x(p(3(1—a=-p)- it) ¢r (3{1 — a — B) + it) V(o B; h)dt, (5.25)
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where (o, 8) in (5.1), and ¥,(q, B;h) = e, (L, t; 0, B; h). This is obviously regular
when [Rea|+Re B < —1. Let us consider the subdomain —2 < Re(+a+3) < —1.

On noting (5.16)~(5.17), we move the contour to Imt = ‘i . Poles we encounter
are t = —2(1 + a + f)i, and those from the factor G+ 22t) To avoid having
poles on the contour, one could choose an appropriate broken line instead of a
vertlcal line. At any events the resulting integral can be assumed to be regular

for —2 < Re(ta + B) < —2. Then, restricting ourselves to the domain
3
-1 < Re(ta +p6) < 7 (5.26)

we shift the contour back to the original, i.e., the real axis. Thls time, poles we
encounter are ¢t = (1% a + B)i and those frorn the factor (7'(1 + 2it). In this
way we have obtained the desired continuation to the domain (5.18), since the
new integral is regular there. The residual terms arising from this procedure is
those from the poles at ¢t = +1(1 + a + B)i; the other residues cancel out each
other. Namely, the continuation, to (5.18), of the contribution of Eisenstein series
is the sum of (5.22) and

1 —B)cr(l -
1CTIVDR N By s () ECEC )y i

+ ;i(27r/\/Dp)2(1+ﬁ)N(m)1+°‘+ﬁa_a_ﬁ_1 (m)

y Cr(—B)r(1 + a)
F2+a+H)

‘1’12-(1+a+ﬁ)i(0‘, B k). (5.27)

In deriving this we have used the facts that Uy(o, B;h) is an even function of ¢,
as can be seen from (5.10)~(5.11), and that the residue of (r(s) at s =1 is equal

to 2(logeo)/+/Dr.
Thus we h'A".'e to compute the last ¥-factors. By (5.13), we have, for r; =
1

)
Z H Azfn(ej)(sja Ti 0, ﬂ)

€ mod [62]j=1
2%eqes H sin(s; — @) cos 3m((1 — ;)85 + e;B)] . (5.28)
Hence, by (5.10) with x = &,

ioc
‘1’12-(1—a+ﬁ)i(0‘,5;h) = 26162/ / h(s1, s2;€)
—1i00 J —ioco

X H [cos Fm((1—ej)s; + e;B)T(s; — 1 - BT(1 - s7)] dsidsa. (5.29)
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By definition, the s;-contour is to separate the poles of I'{s; —1— ) and I'(1 - s;)
to the left and the right, respectively. The condition (5.26) implies that the contour
can be drawn. In much the same way we have

- 7 a3\ 2 A rioo 10 Y, . \
Yi(tagila,Bin) = i 2. €€z j_ioo j_iw h(s1 + a, 52 + 05 €)
[
2
X I_r [cos im((1 —e;)s; +e;8)(s; — 1 — B)I(L - s7)] dsadsa. (5.30)
j=1

i
The double integrals in (5.29) and (5.30) are to be evaluated, but we shall
treat only the latter, which is somewhat more complicated. We use (2.31). A
rearrangement shows that the integral is equal to

1 [o o]
-lge] €o / / h2(61u1 ) 62‘U,2)R(‘U,1, 61)R(U2, 62)dU1 d’LLz, (531)
0 0
where ha(ui, ug) = (Oy, Ou, h)(u1, ua),
ioo

R(uj,e;) = /_ cos 5T ((1—ej)s+e;8) (s —1—B(1— syust i (5.32)

Note that (5.26) is the same as |[Rea] < 1+ Ref8 < 1 — |Rec|. Thus we may

take, for instance, Res = % as the contour; in particular, the pole § = —a can be

nccnmnr‘ tn "\n on the lo ff O Uho contour Then c"nfflnn‘ the contour in (5 22) to

1ed to be on the left 1e contour. Then, shifting the contour in (5.32) to
Res = +o0 and to Res = —00, according as u; < 1 and u; > 1, respectively, we
find that if u; < 1 then

R(uj, e;) = 2wie; cos zmBT(— ﬁ)/ u®*(1 + eju)Pdu, (5.33)
and that if u; > 1 then
R(u;, e;) = —2mie; cos swB(— /3)/ (1 + ejul® — vP)du
u1+a+ﬁ

+ 2miejcos mBL(— ﬁ)m

+ 2micos (37({e; — 1)a+€;8)) {1+ a)l(-1—a—B). (5.34)
Hence, for u; >0, u; # 1,
Bu; R(uj, e;) = 2mie; cos 3mBL(—B)uf [l + eju;lP. (5.35)

On noting that R(uj;, e;) is continuous for u; > 0 as (5.32) implies, we have, via
(5.31),

U1LsarpilesBih) = 47~ (cos gwBT(— [3)) h(a, B), (5.36)
with R as in (5.23). Analogously we have
¥y (1 a+ﬁ)i(a Bih) = 4n? (COS %wﬁ[‘(—ﬁ) ’ h(O, B), (5.37)

Wha ingert t

YVU LIIONAL U ULk

lAl V\wveai jy aud

the factor (g(—g8), which gives (5.
analytic continuation.

PYarsy
Lo
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Corollary 5.3. Let dr be the ideal divisor function on F. Let h(z) be such that
its embedding h(z,z’) is smooth and compactly supported on (0,00)2. Then we

have, for any O 3 m » 0,
> de(n)dp(n + m)h(n/m) = {g(r) + BO 1 B
ne€d,

where

B (0,0; h) = 41980 / / (s, ) M (m; s, wa)dus dus,
DZ¢r(2) Jo Jo

BE(0,0,R) = N(m)E > ayny ()tv ((m)) Hy (2)2 @y (kv; 0, 0; &),
A\

oo

N(m)% m \ —vwi
B (o, B: b o _mivim): (_
m (@ B3 h) 23+/Dr log o VZ m’)
N o2e{m, 2v) |Cr (3 + it V)|t
) TN G T2

=—00

Mr(m; u1, uz) = o(m)(log uius)(log(uy + 1)(us + 1))
+ {og(m)(co — log N(m)) + 20" (m)} log(uiua(uy + 1)(up + 1))

(5.39)

(5.40)

Pe, (t + vw,t —vw;0,0; h)dt. (5.41)

+ a(m)((co — log N(m))? + ¢1) + 40" (m)(co — log N (m)) + 40" (m), (5.42)

where ¢y, c1 are constants that could be made explicit, and

aM(m) = 3" (log N(2))*N(d).

?[(m)
Also,
®.(r1,72;0,0; h)
=n()r 2 [°° [°° h(uy, us)f :6(.1'1;1_1.1)}’:0(1'2; Jz)duldug’
o Jo U U
where

P;(r;u)

= 2Re [(/\,,(e) +

i F(% + ir)?
sinh7r / T(1 + 2ir)
X F (3 +in b+ ir1+2ir—1/u) ub—] |

with the hypergeometric function F.

(5.43)

(5.45)
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Remark. This is an extension of Theorem 3 in [9] to the field F. That h(z, z') is
supported compactly on (0,00)? makes the situation relatively simple. Otherwise
we would have to overcome a greater complexity that is similar to what is expe-
rienced in the proof of Theorem 4 of [9] (the dual case). Also, observe that the
product of two values of the hypergeometric function in (5.44) is closely related to
the free-space resolvent kernel of the Casimir operators 2; on the quotient space
G/K = H?, the direct product of two copies of the hyperbolic upper half plane.
This can be regarded as a higher dimensional analogue of a phenomenon noted on
p. 179 of [10].

Proof. The assertion (5.42) is the result of taking the limit on the right side of
(5.20) as (a, 5) — (0,0), with the present choice of &. On the other hand, (5.13)

gives

2
2 (&[] AT s, 50,0

€ mod [€2] j=1
(5.46)

2
=2%.(1) H{sin T8; — Au(€5) cosws; coshmry }
i=1

h, we have the expression (5

1
P(r-u) = — 1, —1_; - g)2
$(r;w) . /(%) (s — 3 +ir)l(s — 5 —inl(1 - s)
x {sinws — A.(€) cosms coshwr}uds. (5.47)

Ifir=1- % with an integer [ > 1, an obvious transformation is to be applied to
the factor I'(s — § — ir). We have

1 i I(s— 1 +4ir)
2 : _ /\* 2 (1 - 2,8
w(ri) 2mi ( @+ sinh 7rr> /("}) L -s+ir) (1= 9)u'ds

+L(,\*(c)— : ) /( Ko =500 gyueas, (s.48)

27i sinhnr /' Jiay D(§ — s — ir)

Invoking the Mellin-Barnes formula for the hypergeometric function, we get (5.45).
This ends the proof.

6. The fourth moment of (¢

Having obtained the spectral decomposition of Bwm(a, B;h) with (o, 8) in a ne-
ighbourhood of (0, 8), we are at the position to apply it to our principal problem
Z3(g, F) via (2.16). To this end we have to see if the condition (2.35) is satisfied
by h=g,:
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Lemma 6.1. Let g.(z;~,d) be defined by (2.17), and put

0o poo
g;‘(slasz;e; Y, 6) = A A g*(elulaezu2;71 5)u§1_1u;2_1du1du21 (61)

with e = (e1,e3), e; = £1. Then the function §[si,sa;e;v,8) is regular in the
domain
Re(s; —vy—90) <0, j=1,2 (6.2)

An analytic continuation of it is given by the representation

log Co

gu(51,82;€,7,6) = D{y+ 6 — s1)D(y + 6 — s3)

2
. / §2(2¢ log o) / H sin (6 — i(t + (~1)%€))

x cos 3m((1 — e;)(y — 85) + 6 — e;i(t + ( 1)15))

where the t-contour separates the poles of (1 =8 +i(t+&)L(1—6+1i(t—£)) and
those of I'(sy —y—i(t— €))L (s2—y—1i(t+&)) upwards and downwards, respectively;
and $,8,,7,08 are assumed to be such that the contour can be drawn. Moreover,
if 4,6, and Re sy, Re sy remain bounded, then we have, regardless of (6.2),

Gul(s1,82,€57,8) < (1 + |s1] + |s2]) ™€ (6.4)

with any fixed C > 0.
Proof. We have, by (2.14),

logeg [ .
gu(eruy, eauniy, §) = —o2 / ?(2€log <o)
2T J oo
oo Pt W(t+8),, ~r—i(t=¢)

U

X J/_wg(t)Il Te U_,,_w z(t+£)|L + e-zu-zl‘s i(t—£) dtd§ (6'5)
with uy, ua > 0. Obviously

gs(ert1, €23; 7, 6) < (waug) 7 ? (6.6)
as uy,uz [ 0o. Shift appropriately the contour in the inner integral to see that
g+ is of rapid decay as u;,u2 | 0, and also as u; — 1 with e; = —1 or us — 1
with e2 = —1, either. These considerations yield the first assertion. Then, assume

temporarily that
Rey < Res < Re(y+d) < Rey+ 1. (6.7)
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Under this assumption,

.5;(31, 52;€;7, 5)

=2
o0
—

1 PO OO 2 /
loge o ' (
- f’iro _/ p‘(Qflogeo)/ 9(t) Hbea‘ (st — (—1)&;y, 8)dtdg

with
o] ms——y—in-—l
b v, 0) = —dx 6.9
+(5,m7,9) /0 T (6.9)
We have, for any n € R, that
o0 gE—y—in-1 I'(s—y—wmI’ é6—
o (L+z)—™ I'(6 — i)
and
oo :L.s—-y—in-i
|,
’ n{ AT 1 A \ nf s AT Y s\ (6'11)
_ L\S:",t'f.?’l‘lx_\x_:uwl'ﬁrl + L\"]’j"’u—le\L—uj"'iT‘l
I(s—y—-6+1) F(y—s+1+in)
From these equalities, we get
2, . .
bi(s,757,8) == sin (8 — i) cos (1 F 1){y — 55) + 8 F i)
><I‘(s—'y—in)I‘('y+6—s)I‘(1—6+i17). (6.12)

Inserting this into (6.8), we have the representation (6.3) under (6.7), with the
contour ¢t € R. Deforming the contour appropriately we may drop the constrain
(6.7) and get the second assertion of the lemma. As to the decay property (6.4),
push the new contour far down. This ends the proof.

In dealing with (2.16), let us assume initially that

[Re(z1—22)| < co, |Re(z3 — z1)| < co; (6.13)
Re 21, Re 23 > Cy, (6.14)

where Cp and ¢ are, respectively, sufficiently large and small positive constants.
Then the last lemma implies that g.(z; 21, 23) satisfies (2.35). Also the spectral
decomposition (5.19) can safely be applied to B(z; — 22, 23 — 24; g«(-; 21, 23)) . Thus
(5 ?ﬂ\—(5,23) yip]ﬂ the decomnosition

J.LU ) 200 A0 LCCIpsinil

Ji(z1,22,23,24;,9) = {3(;) +3(+c) +5(f)}(21,22,23, 24;9)- (6.15)
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Here we have

j&r)(zl,zzfzs, 24;9)

_ Pl — 21+ 22)¢p(1 — 23 + 24)f“{,_
VDFGF@2— 21+ 20— 23+ 2)
F(l+ 21 — 22)¢p(1 — 23 + 24)

+ AN =

VUr (R4 + 21— 22 — 23+ 24)

Cr(1 — 21 + 22)CP(1 + 23 — 24)
VDF (r(2 — 21 + 22 + 23 — 24)
CP(1+ 21 — 22)CP(1 + 23 — 24)
VDR (r(2+ 21 — 22 + 23 — 24)
X Cr(z2 + 24 — 1)Cp(21 + 23)Gu (21 — 23, 20 — 24; 21, 23), (6.16)

C (22 + 23 — 1)CF(21 + 24)9*(21 - 22, 0; ) 21, 23)

Cr(z1 + 24 — 1)Cr (22 + 23)G4 (0, 23 — 24; 21, 23)

+

jg-C)(zla223 23, 24;9) = (27T/ Y DF)Z(ZS.—Z“)

X ZGVT]V(l)HV(%(Zl + 22+ 23+ 24— 1))Hv(%,j(1 + 21 — 22 — 23+ 21))
A%

x Hv(3(1— 21+ 22 — 23 + 24))Pv (kv; 21 — 22, 23 — 24; 8+(; 21, 23)), (6.17)

jf)(zl,zz,zs,h;g) =

(27 /D )2z -7+l /°° Zp(21, 22, 23, 243 £, V)
24log €p o |Cr(1 4+ 2it,20)|2

x $g (t +vw,t — vw; 21 — 29, 23 — 24; g«(; 21, 23))dt, (6.18)

v=—00"

=(p(3(21 + 22 + 23 + 24 — 1) + it, —V)Cr(3(z1 + 22 + 23 + 24 — 1) —it,v)
XCr(3(1+ 21 — 22 — 23 + 24) +it, —V)(F(3(1 + 21 — 22 — 23 + 24) — i, V)
F(2(1-21—|—22—23+Z4)+lt V)Cp( (1 =21 4 22 — 23 + 24) — it,v).(6.19)

L'._

Llle d.[)boluhe (,Ollvelgell(,e b[ al 1> t‘:CeS a. y
secured by (4.37), (4.38), ( .51), (5.14), and (5.16).
We have to continue the expansion (6.15) to a neighbourhood of the central
point py = (3,33 3) We shall consider first the contribution of the cuspidal
subspaces, i.e., (6.17). We need to examine the function ¢ = ®v(kv; 21 — 22,23 —
24; gu(-; 21, 23)). This has to be well-defined in the domain (6.13)-(6.14). In fact,
on noting (4.16) and (6.2), we may take the vertical lines Res; = 3 as the
contours in (5.10) with the current specification. Then, it follows readily that ¢

iq waoiila tha Ararmma
is reguiar in the domain

{Re(21 + 23) > 2 and (6.13) hold} . (6.20)
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Also, shifting both contours to the left sufficiently far, we see, in view of (6.4),
that ¢ is of fast decay with respect to xy uniformly with respect to bounded
(21,22, 23, z4) in (6.20). Thus we find that 3(6)(z1, 23, 23, 24; g) continues to (6.20).
In particular, it is regular at py; that is, ( 21,%2,23,24) = Py, the right side of
(6.17) converges and represents 3° (p1 ;9.

As to the continuation of (6 18) the part corresponding to v # 0 is ana-

IRy

logous to the CUSplCIal COI]BI'IDUUOI] and it is regular in {0.2U). Thus, we need to
consider only the term with v = 0:

(2W/m;)2(zs_24)+1 b ZF(zh 22,23, 24; t: O)
2% Tog €0 oo CF(L ¥ 2it)Cr(1 — 2it)

t(zl — 22,23 — 24;9*('; 21, 23))dt’

(6.21)
where W is as in (5.25), and (21, 22, 23, 24) still satisfies (6.13)~(6.14). Obviously
this continues to the domain where Re(z; + 22 + 23 + 24) > 3 and (6.13) hold.
Let us consider its subdomain where 3 < Re(z; + zz + 23+ 2) < 13 and (6.13)
hold, and move the contour in (6.21) to Imt = 3. Poles we encounter are t =
—5(z1+22+23+25—3)i, and those from the factor CF (14-2it). Here the argument
is analogous to that following (5.25). Thus, as before We may suppose that the
resulting integral is regular in the domain where 2 T 1< Re(z1+z2+,,3+24) < 4 3 and
(6.13) hold. Restricting ourselves to the domain where Y L o Re(z1+2p+23+24) <
2 and (6.12) hold. we shift the contour back to B Thig + ime the noles we ene

158
S ana (s. ;.u; no:4G, we snlit LUiC contour Lack to Ik, 1nis time wne yurco we encounter

are t = (z1 + 29 + 23 + 24 — 3)i and those from the factor CF (1 + 2it). In this
way we obtam the desired continuation of (6.21), since the new integral over R is
regular in the domain

{Re(z1 + 22 + 23 + 2z4) < 3 and (6.20) hold}, (6.22)

which contains p 1. More precisely, this continuation of (6.21) has the expression
that is the sum of the same expression as (6.21) but with (21, 22, 23, z4) in (6.22)
and the residual correction

1 o 2(z3—2za+1)
1 (\/TF) (P2 — 22 — 23)Cr(21 + 24 — 1)CP(2 — 21 — 23)

X (r(za+2a—1)(Grld— 21— 22— 23— 24)) "
X \Ill(zl+zg+z3+z4——3)z(zl 22,23 — 2459*(';Zly23)). (623)

Let J™ be the sum of (2.10), (6.16) and (6.23). This has to be regular at
py, since we have, in a neighbourhood of P,

=90 499 4 909, (6.24)

and have seen already that J itself and 3(6), (e) are all regular at p L We write
Mvy(g) = ‘J(r)(pé) + bog(—35i) + a1g'(31) + blg (—%i), which is in fact a transform
of g. Also, we put Av(g) = ®v(kv;0,0;g.(; 3,3)) and Z,(¢t; g) = Pe, (t—vw, t+
i 0. 0: <L 1Ny whish are integrsl tr ..Mr,wma of o
IIW’ Wy sy y*\ ] 2, 2}/, \'VLll.\all alL v ulucsxax LLALIDIVLLILD Ul y.
In this way we have established an explicit formula for the fourth power
moment of the Dedekind zeta-function (¥ of a real quadratic number field F:
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Theorem 6.2. Let F be of class number one, and have the fundamental unit
€0 > 1 with norm equal to —1. Let g be entire and of rapid decay in any fixed
horizontal strip. Then we have, with transforms Mg(g), Av(g), and Z,(t;g) as
above,

| I+ i) = Me(a) + X evm(DHV (3 Av(g)
P& e i)
+ 234/Dr log o Z /_oo I¢Cr(1 + 2it, 2v)|2

vyr=—00

E, (¢ g)dt, (6.25)

where Dr is the fundamental discriminant of F. Here (r(-,v), tv, nv, av, Hy,
are, respectively, defined by (3.15), (4.20), (4.33), (4.36), (4.48); and V runs over
an orthonormal system of Hecke invariant irreducible subspaces of L*(I"\PSLy(R)?)
with I' being the Hilbert modular group over F.

Remark. This is an extension, to the field F, of Theorem 4.2 of [10] which asserts
a spectral expansion of

200,90 = [ IcCh + i)tg(0 (6.26)

in terms of the spectral theory of L? (PSLy(Z)\PSL,(R)). The corresponding
extension to the Gaussian number field is obtained in Theorem 14.1 of [2], where
Z2(g,Q(i)) is decomposed in terms of the spectral theory of L?(PSL,(Z[i])
\PSLy(C)). A common feature is the appearance of cubic powers of central va-
lues of Hecke series. This peculiar réle of cubic powers of Hecke series was first
found in [8], where (6.26) is dealt with. It is even possible to show that any sin-
gle non-zero Hecke series contributes non-trivially to the formation of values of
respective zeta-functions (see Section 5.4 of [10] for the modular case). It should
be stressed that as is done for 25(g, Q) in [10] we could give precise expressions

for the transforms Mr(g), Av(g), and Z,(¢;g).
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