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A note on the mean value of the zeta and L-functions. X

By Roelof Wichert Bruggeman
∗) and Yoichi Motohashi

∗∗)
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Abstract: The present note reports on an explicit spectral formula for the fourth moment
of the Dedekind zeta function ζF of the Gaussian number field F = Q(i), and on a new version
of the sum formula of Kuznetsov type for PSL2(Z[i])\PSL2(C). Our explicit formula (Theorem 5,
below) for ζF gives rise to a solution to a problem that has been posed on p. 183 of [M3] and, more
explicitly, in [M4]. Also, our sum formula (Theorem 4, below) is an answer to a problem raised in
[M4] concerning the inversion of a spectral sum formula over the Picard group PSL2(Z[i]) acting
on the three dimensional hyperbolic space (the K-trivial situation). To solve this problem, it was
necessary to include the K-nontrivial situation into consideration, which is analogous to what has
been experienced in the modular case.
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1. Introduction. We are concerned with
the fourth moment

Z2(g,F) =
∫ ∞

−∞

∣∣∣∣ζF(1
2

+ it

)∣∣∣∣4 g(t)dt,
with g a holomorphic function having rapid decay in
any fixed horizontal strip. See [M4] for the motiva-
tion behind this problem, in the light of the theory
of the Riemann zeta-function. Our explicit spectral
decomposition for Z2(g,F) is analogous to that in
Theorem 4.2 in [M3], which treats the fourth mo-
ment of the Riemann zeta function. As in loc. cit.,
the proof is based on an application of a sum formula
relating the spectral decomposition of

L2(PSL2(Z[i])\PSL2(C))

to a sum of Kloosterman sums over F. For the pre-
sent purpose, existing versions of the sum formula,
as in Theorem 2.2 in [MW], cannot be used directly.
One cannot restrict oneself to K-trivial vectors as
is done in [MW], and also needs specific informa-
tion concerning the Bessel transformation in the sum
formula. Theorem 1 below gives the extension of a
Kuznetsov type formula to Fourier coefficients of au-
tomorphic forms with arbitrary K-type. Full proofs
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are given in [BM], which is expected to appear else-
where. Moreover, a relevant Bessel transform (the B,
below) is thoroughly analyzed, and a partial inver-
sion of it is proved (Theorem 2, below), which implies
a solution to the inversion problem mentioned in the
abstract.

The restriction to the Gaussian number field is
by no means essential, as far as the sum formula for
Kloosterman sums is concerned. In treating Kloos-
terman sums over an arbitrary imaginary quadratic
number field Q(

√−D) (Z � D > 0), we deal with
the space

L2(PSL2(O)\PSL2(C)),

where PSL2(O) is the Bianchi group, with O the ring
of integers in Q(

√−D). The difference in the argu-
ment is limited to the discussion about the contribu-
tion of Eisenstein series or the non-cuspidal subspace
eL2 of L2(PSL2(O)\PSL2(C)) that are generated by
them. The Bianchi group has, in general, inequiva-
lent cusps, the number of which is equal to the class
number of the field, and as much the contribution
of eL2 splits into classes. But each of those contri-
butions is similar, in structure, to that of the sole
cusp at infinity present in our sum formula (The-
orem 4, below). Further, congruence subgroups of
Bianchi groups can also be included into our discus-
sion, solely at the cost of greater complexity.

In contrast to this, we exploit the fact that F
has class number one, in deriving the explicit spec-
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tral decomposition for Z2(g,F). Our argument ex-
tends readily to Q(

√−D), provided the field has
class number one. But in the general situation there
exists a difficulty. This stems from the nature of a
splitting argument on which depends the reduction
of Z2(g,F), or rather a closely related quantity, into a
sum of Kloosterman sums. We do not know whether
this splitting argument can be extended to the case
of class number larger than one.

2. Spectral sum formula. Denote G =
PSL2(C), and Γ = PSL2(Z[i]). The Hilbert space
L2(Γ\G) has an orthogonal decomposition

C⊕ 0L2(Γ\G) ⊕ eL2(Γ\G),

with successively the constant functions, the cuspidal
subspace, and the subspace spanned by integrals of
Eisenstein series.

The cuspidal subspace is the closure of the di-
rect sum

⊕
V of an orthogonal system of irreducible

subspaces V , which can be chosen to be invariant
under all Hecke operators. Under suitable normal-
izations, the elements of V have a Fourier expan-
sion with coefficients cV (n) = cV (1)tV (n), n ∈ Z[i],
where tV (n) ∈ R is the eigenvalue of the correspond-
ing Hecke operator. The type of the representation V
is characterized by a discrete set of parameter pairs
(νV , pV ) ∈ iR× Z, such that (1/8)((νV ∓ pV )2 − 1)
are the eigenvalues in V of the two Casimir elements
that generate the center of the universal enveloping
algebra of G.

For the Eisenstein series, the corresponding pa-
rameter (ν, p) runs continuously through iR×Z. The
Fourier coefficients can be expressed in terms of the
Grössencharakter zeta function

ζF(s, p) =
1
4

∑
n�=0

(
n

|n|
)4p

|n|−2s

and divisor sums

σν(n, p) =
1
4

∑
d|n

(
d

|d|
)4p

|d|2ν , d, n ∈ Z[i].

These spectral data are related by the sum for-
mula to Kloosterman sums

SF(m,n; c) =
∑

d mod c
(d,c)=1

exp

(
2πiRe

(
md+ nd̃

c

))
,

c, d,m, n ∈ Z[i], dd̃ ≡ 1 mod c.
To formulate that relation, an integral transfor-

mation is used with the following kernel function:

Kν,p(u) =
1

sinπν
{J−ν,−p(u) − Jν,p(u)},

Jν,p(u) =
∣∣∣u
2

∣∣∣2ν
(
u

|u|
)−2p

·
∑

m,n≥0

(−1)n+m(u/2)2n(ū/2)2m

n!m!Γ(ν − p+ n+ 1)Γ(ν + p+m+ 1)
.

So Jν,p(u) = Jν−p(u)Jν+p(ū), with an appropriate
choice of the arguments of u and ū.

Theorem 1. Let h(ν, p) be a function defined
over the set iR× Z, satisfying the conditions:

1. h(ν, p) = h(−ν,−p),
2. h(ν, p) is regular for |Re ν| ≤ (1/2) + a with a

small a > 0,
3. h(ν, p) � (1 + |ν|+ |p|)−4−b with a small b > 0.

Then we have, for any non-zero m,n ∈ Z[i],∑
V

|cV (1)|2tV (m)tV (n)h(νV , pV )

+
1

2πi

∑
2Z�p

(
mn

|mn|
)p

·
∫

(0)

σν(m,−p/2)σν(n,−p/2)
|mn|ν |ζF(1 + ν, p/2)|2 h(ν, p)dν

=
δm,n + δm,−n

4π3i

∑
Z�p

∫
(0)

h(ν, p)(p2 − ν2)dν

+
∑

Z[i]�c �=0

1
|c|2SF(m,n; c)Bh

(
2π
c

√
mn

)
,

with (0) being the imaginary axis. Here

Bh(u) =
∑
Z�p

1
8πi

∫
(0)

Kν,p(u)h(ν, p)(p2 − ν2)dν.

Convergence of these expressions is absolute through-
out.

Basic to the proof is the computation of the
scalar product of two Poincaré series in two ways:
A spectral computation, corresponding to the de-
composition of L2(Γ\G), and a geometric computa-
tion, by taking apart one of the Poincaré series. The
general approach is an elaboration of the method in
[MW], but some complications occur at the step from
L2(Γ\G/SU(2)) to L2(Γ\G).

The absence of exceptional eigenvalues for the
present choice of Γ , the fact that F has class number
one, and the Weil bound for Kloosterman sums, sim-
plify the proof. The extension to general imaginary
quadratic number fields and congruence subgroups is
possible, as is mentioned above.
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3. Geometric sum formula. Theorem 1
has the independent test function on the spectral
side. To use the sum formula for the present pur-
pose, and in other applications, it is useful to have a
partial inversion of the Bessel transform B:

Theorem 2. We put

Kf(ν, p) =
∫
C∗

Kν,p(u)f(u)
dReud Imu

|u|2 .

Then, for any f that is even, smooth and compactly
supported on C∗ = C\{0}, we have

2πBKf = f.

Practical bounds for the Bessel kernel Kν,p can
be derived from the following integral representation:

Theorem 3. Let |Re ν| < 1/4. Then we have,
for any p ∈ Z and non-zero u ∈ C,

Kν,p(u) = (−1)p 2
π

∫ ∞

0

y2ν−1

(
yeiϑ + (yeiϑ)−1

|yeiϑ + (yeiϑ)−1|
)2p

×J2p

(|u||yeiϑ + (yeiϑ)−1|) dy,
where u = |u|eiϑ.

With these results in hand, the spectral sum for-
mula can be applied to h = Kf , with f smooth and
compactly supported on C∗. For such test functions,
the first term in the right hand side of the spectral
sum formula vanishes. Extending the class of test
functions leads to the geometric sum formula:

Theorem 4. Let f be an even function on C∗.
Let us suppose that there exist constants ρ and σ such
that 0 < ρ < 1/2 < σ, and

1. f(u) = O(|u|2σ) as |u| ↓ 0,
2. f is six times continuously differentiable, and

for a+ b ≤ 6∫
C∗

|(u∂u)af(u)|2|u|b−2ρ dReud Imu

|u|2 <∞.

Then we have, for any non-zero m,n ∈ Z[i],∑
Z[i]�c �=0

1
|c|2SF(m,n; c)f

(
2π
c

√
mn

)
= 2π

∑
V

|cV (1)|2tV (m)tV (n)Kf(νV , pV )

− i
∑
2Z�p

(
mn

|mn|
)p

·
∫

(0)

σν(m,−p/2)σν(n,−p/2)
|mn|ν |ζF(1 + ν, p/2)|2 Kf(ν, p)dν.

The convergence is absolute throughout.

Extension to general imaginary quadratic num-
ber fields and congruence subgroups is possible.

4. Explicit formula. Once the geometric
sum formula is available, the approach in Chapter
4 of [M3] can be carried out. Here the fact that F
has class number one is heavily used, as has been
remarked above.

The quantity Z2(g,F) equals J (1/2, 1/2, 1/2,
1/2; g) plus a linear combination of the values of g
and g′ at (1/2)i and −(1/2)i, where J is the mero-
morphic function of the zj that is for Re zj > 1 given
by

J (z1, z2, z3, z4; g) =
∫ ∞

−∞
ζF(z1 + it)ζF(z2 + it)

·ζF(z3 − it)ζF(z4 − it)g(t)dt.

In the region of absolute convergence, this can be
transformed into an infinite sum with terms contain-
ing ĝ(2 log |l/k|), where ĝ is the Fourier transform,
and k, l ∈ Z[i] \ {0}. Observe that here we use the
fact that all ideals in Z[i] are principal, which is es-
sential in the following application of a splitting argu-
ment (see the remark at the end of the introduction
above): The sum of the diagonal terms, i.e., those
with k = l, admits an explicit description in terms
of ζF. The sum of the remaining terms is initially
expressed in binary additive divisor sums over Z[i]

Bm(α, β; g∗(·; γ, δ))
=

∑
Z[i]�n

n(n+m)�=0

σα(n)σβ(n+m)g∗(n/m; γ, δ),

with m ∈ Z[i] \ {0}, and

g∗(u) =
ĝ(2 log |1 + 1/u|)
|u|2γ |u+ 1|2δ

.

The complex parameters α, β, γ, δ depend on the zj .
Contrary to the rational case that is treated in [M3],
this non-diagonal contribution contains terms with
ĝ(0) (corresponding to n = (ε−1)m, ε ∈ {i,−1,−i}).

An appropriate extension of the method in Sec-
tion 4.3 of [M3] gives a transformation of Bm into
an expression with Kloosterman sums SF. The test
function occurs in this re-formulated non-diagonal
term by the following integral transformation:

g̃q(s; γ, δ) =
1
2π

∫
C∗
g∗(u; γ, δ)

·
(
u

|u|
)−q

|u|2s−2dReu d Imu,
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with q ∈ Z, Re(s−γ− δ) < 0. It has a meromorphic
continuation in s.

Application of the geometric sum formula, for all
combinations of m,n ∈ Z[i] \ {0}, leads to a spectral
expression for the non-diagonal term, in which occurs
the Hecke series

HV (s) =
1
4

∑
Z[i]�n�=0

tV (n)|n|−2s.

The series converges in a right half plane; the func-
tion has a holomorphic continuation to C, and a
functional equation. As the Hecke series is built with
the trivial character, there is no contribution from
the irreducible spaces V with tV (i) = −1.

In achieving the spectral decomposition of the
contribution of non-diagonal terms, some additional
conditions are first imposed on zj ’s; that is, The-
orem 4 applies well in a rather limited domain of
zj ’s. This domain does not contain the crucial point
(1/2, 1/2, 1/2, 1/2), and hence an analytic continua-
tion is required. This procedure of continuation is
carried out along the same lines as in Section 4.6 of
[M3]. The final result has the following structure:

Theorem 5. There are functionals g �→
MF(g) and g �→ Λν,p(g) on the space of test func-
tions g indicated above such that

Z2(g,F) = MF(g) +
∑
V

|cV (1)|2HV

(
1
2

)3

ΛνV ,pV
(g)

+
1

2πi

∑
4Z�p

∫
(0)

|ζF((1/2)(1 + ν), (1/4)p)|6
|ζF(1 + ν, (1/2)p)|2 Λν,p(g)dν.

In the above, Λν,p(g) is given as the value at
(α, β, γ, δ) = (0, 0, 1/2, 1/2) of Φp(ν;α, β, γ, δ; g),
which is an integral of g̃p(s; γ, δ) for suitable values of
α, β, γ, δ, and meromorphically continued. The con-
struction of Φp is similar to the corresponding trans-
form in the rational case (see Lemma 4.4 of [M3]).
The termMF(g) contains all other contributions: the
diagonal term, the values of g and g′ at ±(1/2)i, and
the residues picked up in the various steps, which are
similar to those terms on p. 175 of [M3].

Our Theorem 5 appears analogous to the corre-
sponding result for the Riemann zeta function, see
Theorem 4.2 in [M3]. Especially, the appearance of
cubic powers of central values of Hecke series is a
common feature. This similarity raises further prob-
lems such as seeking for the analogue of the Ω-result
obtained in Part VII [IM] concerning the Riemann
zeta-function, and the rôle of the Hecke series in the

formation of values of the zeta-function ζF that ex-
tends Part IX [M1]. It is hoped that these issues will
be discussed in our future works.

Finally it should be remarked that for the mean
square of Dedekind zeta-functions of any — real and
imaginary — quadratic number fields there exists a
relatively satisfactory result [M2]. One may combine
the results of [M2] with the argument of Part VIII
[M1], on the eighth power moment of the Riemann
zeta-function, to deduce a spectral decomposition of∫ ∞

−∞

∣∣∣∣ζQ(
√

D)

(
1
2

+ i(T + t)
)∣∣∣∣4 exp

(
−
(
t

G

)2
)
dt

with D ∈ Z, and T ≥ 0, G > 0 being arbitrary. In
this setting the underlying spectral theory is that
over PSL2(R) modulo the Hecke congruence sub-
group of level |D|. Thus there are at least two ways
to spectrally decompose Z2(g,F) with g being the
Gaussian distribution. The experience in the ratio-
nal case suggests, however, that the spectral decom-
position stated in Theorem 5 above will turn out to
be more fundamental, and practical as well.
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