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We prove the following result on the distribution of Dedekind sums:

m‘°gMZ N (S(dc > = fMg(x y)dy dx,

M= dmod

for each compactly supported continuous function g on R x (R/Z). The proof uses
Kuznetsov’s sum formula in the modular case for varying real weight. © 19%

Academic Press, Inc.

1. INTRODUCTION

1.1. Dedekind Sums. The Dedekind sum S(d, ¢), with d,ceZ, c>1,

(d, c)=1, is defined by
c—1
Sd,c)= Y {-’T'_d} {?} (L1.1)

m=1 ¢

with

{x}—{ if xeZ
T ly-%4 if x=ymodlandO<y<t

Dedekind sums occur in the transformation formula of the eta function
of Dedekind (see, e.g., [11]). More generally, one finds Dedekind sums in
the multiplier systems of the full modular group for real weights.

1.2. In this paper we study the quantity

Kk(u;f)___ i %f(47t ”lu(u+x)| ¢) Z* ezanius(d,c)+2nixd/’c’ (1.2.1)

c=1 dmod ¢
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where k€ Z, u€ R such that u(u + k) #0. The test function f'is continuous
on (0, ) and satisfies some growth condition at 0 to ensure absolute
convergence of the sum. Y ¥, 4. means summation over dmod ¢, (¢, d)=1.

The study of K, (u; /) with fsuitably chosen leads to the following result:

1.3. THEOREM. For ge C.(R x (R/Z))

log M X

Jm BET 2 5 (s o)

dmodc

=? J‘io L/Z g(x, y)dy dx.

In [11, p. 28] the question of whether the points (S(d, ¢), d/c} are dense
in the plane is raised. In [6] a positive answer has been given. Reference
[97 shows that the sequence of (d/c, rS(d, c)) is uniformly distributed
modulo 1 for each nonzero reR. The result given here describes the
distribution a bit more precisely.

1.4. In [3] we studied the distribution of (S(d, c)/c, d/c). We found that
the majority of S(d, c)/c is concentrated near 0, independently of d/c. For
the minority staying away from 0 we found a discrete limiting distribution.
One may view Theorem 1.3 as taking a closer look at the distribution of
the majority near 0.

1.5. For a general test function g it is difficult to get an estimate of the
error term in Theorem 1.3. More precise statements for special cases may
be found in Proposition 5.4 and Lemma 5.5; but there the main term is
much more complicated.

1.6. Sum Formula. The quantity K. (u; f), as defined in (1.2.1), with
ue Z\{0}, occurs in Kuznetsov’s sum formula (cf. Theorem 1 in [7]). To
see that this is indeed the case, remark that

Z* eZni(IZuS(d, ) +xde) Z* erilua+ (u+ ) dye

dmodc dmodc¢

(cf. [8, p. 142]); a satisfies ad=1mod c. The sum formula states that
K, (u; f) is equal to the sum of some other expressions, most of which
contain products of Fourier coefficients of real analytic modular forms of
weight zero.

1.7. This sum formula has been generalized from SL,(Z) to other
discrete subgroups of SL,(R) and other weights by Proskurin [10] and
Bruggeman [1]. Deshouillers and Iwaniec [4] have considered the case of
congruence subgroups I,(N) and have given estimates of sums of
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Kloosterman sums and of sums and integrals of products of Fourier
coefficients of modular forms.

This paper uses many of the ideas in [4]. We work with automorphic
forms for the full modular group only, but we vary the weight con-
tinuously. The sums over the order of Fourier coefficients in [4] become
integrals here.

In Corollary 3.2 we obtain an estimate for integrals of products of
Fourier coefficients that may be compared with Theorem 2 in [4]. It gives
less than [4], as we do not integrate over the order of the Fourier
coefficients at this point.

1.8. Overview. Section 2 states the sum formula used in this paper. It
reformulates the results in [1] and also incorporates into the sum formuia
a result from [2] on the almost complete absence of exceptional eigen-
values in the modular case.

The idea of the sum formula is to relate K, ,(12n;f) to [y do, .
where do, ,, is a measure on RU IR containing information on Fourier
coefficients of modular forms and y is related to f by a Bessel transforma-
tion.

Section 3 estimates the growth of |da, ,,|. This is the basis for estimates
in Section 4 of |y da,,, for a special choice of f and . Under this choice
the main contribution to |y do, ,, is given by the Fourier coefficients of a
power of the eta function of Dedekind. The ideas in these sections come
from [4]. The transition from weight zero to arbitrary real weight makes
it necessary to redo the computations of Deshouillers and Iwaniec in
Section 7.1 of [4]. I could not completely recover their results (see the
occurrence of logarithms in parts (ii) and (iii) of Lemma 4.1). I thank the
referee for a hint that enabled me to handle case (i)(b) of that lemma in
a better way.

The proof in Section 5 of Theorem 1.3 is based on the sum formula and
the estimates in Section 4.

2. SuM ForRMULA

We rewrite for the modular case the sum formula in [1, 16.4.17, in a way
suitable for our present purpose. The result may be formulated as:

2.1. ProrosITION. Let n,meR\{0}, n=mmod 1, put e=sign(nm).
There are measures da, ,, and dd,, on RU IR, a class T, , of test functions
and an integral transform

bi: 7, ,— { functions on (0, c0)}
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such that for each Y€ 7, ,:
(i) yeL'(do,,)
(i) yeL'(ds,,)if n=m,

(iii) K, _.(12n, f) as defined in 121, with f=5by, converges
absolutely, and

[ (5) 0 (5)= 60 [ W(5) A0, () + Koyl ). (211)

The measure do,, ,, is described in 2.16, the measure do,, , in 2.5, the class
J 41 in 2.3, and the integral transform in 2.7.

2.2. Notation. By [y(s)do, ,(s) we mean integration over RUR;
similarly for do,, ,,.

2.3. DEFINITION. Let a>2, 6> 3, neR\{0}.
7, (a, g, n) is the space of functions ¥ on
b—1 1
{seC:|Res| Sa}u{————z > ——E:bs 12 |n| modZ}
such that

(i) y is holomorphic on |Re s| < g,

(ii) ¥ is even on |Res| < g,

(i) y(s)<(1+ Ims|)~%

(iv) Xps16=121n1modz (b —1) [Y(b—1)/2] < c0.
J_(a, g, n) is the space of functions ¥ on {seC: |[Res| <o} such that

(i) s+ y(s)/cos n(s+ 6 |n|) is even and holomorphic on [Re s| < g,
(i) Y(s)<(1+|Ims])~“

Put

Te1n= U Tila,an).
a>2,0>1/2

2.4. Relation with [1, 14.2.7]:

a7 — 1
Tia,0,n)= 1 F 0

2.5. DEFINITION. The measure dé, , is defined by

4s sin 2ns ds
n(cos 2xs + cos 12nn)

+2 y (b—l)¢<b—;—l>. (25.1)

3
T b>1,b=12n/mod2

[$6) i) =22 [ 409
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Remark. Clearly y € L(d5,,, if Y€ T;,.
2.6. Relation with [1, 14.2.12]:

[ 4651 o, )= <o 1.

2.7. DerNiTION.  For neR\{0} and y € 7, define bF'y: (0, 00) > C
by

; _ sds
b =321 8 ) e prrIm
+ ) i(—l)“*m"“ﬁ(b—nw("—“—I)Jb_l(y)
b>1.b=12 |nlmod2 ¥ 2
(27.1)
b =5 ] SO L) e 21.2)
Y 2 cos (s + 6 |nl)’
where J, and I, are the Bessel functions
3 o0 (_l)n (%y)u+2n
Ju(Y)—ngo—————n!r(u+l+n) (2.7.3)
] L, \u+2n
Liy)=3 —z2) (2.7.4)

Zont Mu+1+n)

Remarks. These integrals converge absolutely and define b*'y as func-
tions on (0, o0 ). The estimate of up(s) for |Im s| — oo allows moving the line
of integration to Res=o¢, if y € 7, (a, 0,n) and o, <o. In the case of b}
one should take 2¢, + 1 £ 12 |n] mod 2; then the terms with b<2¢,+ 1 in
the sum disappear.

If we take o, > 1 we obtain an estimate on b*'y(y) for y | 0 from which
the absolute convergence of K, _,(12n, b*'y) follows.

2.8. Relation with [1, 1428]'
b“'»b e+6mlnl(b121n1) v

29. ProposITION [1, 14.2.1, 14.2.3, 14.2.6]. (i) CZ(0, )b (T, ,,)
for each ne R\{0}.

(i1) On CZ(0, o0) the inverse of b} is for generic s given by

—/2 {cosn(s+6|n|)f f(y)st(y)—‘

(b))~ f(s)=

sin 27s

—cosnts—61n) [ 01 L @o)
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and for b=12 |n| mod 2 by

b—1

10N ey [ dy
6 1 (P57 ) =5 0= [Ty 2 @92

(ili) On CX(0, 0) the inverse of b, is given by

)7 fw) =cosats=61nl) [ S Ku) D 293

with Ky, = (n/(2sin ns)){1_,,— I, }.
(iv) Ifyed,, satisfies b yeCF(0, 0), then

[v(s)d8,.(9=0.

2.10. Proofs. Propositions 2.1 and 2.9 have been proved in [1]; we
only need to reconstruct Proposition 2.1 in the present notation. This is
done in the sequel. We also discuss the measure do,, ,, in some detail.

2.11. Notations used in this reconstruction. I'=SL,(Z), I its full
original in the universal covering group G, of SL,(R).
Let reR; there is a character y, of I defined by

r(n(1)=e"%  and 7, <k <g)) — pmirf2

in the notation of [1, Sect. 2]. According to 4.4 of [1] the character g,
corresponds to a multiplier system v, of I” with

1 1 , 01 .
— pTir/6 — pTir/2
U’(O 1) e and v,(_l 0) e,

So v, is the 2rth power of the multiplier system of the eta function of
Dedekind. It is known (see, e.g., [8, IX,1]) that for (? 4)e I with ¢>1,

a b o —2nirS(d, c) + nir(a + d)/6c — mir/2
v,( d) —e :
where S(d, ¢) is the Dedekind sum.

We now take r = 12n, with ne R\ {0}, and define ne { +£1}, 7€ [0, 1] by
r=ntmod 2. We put y =y,, in order to satisfy [1, 4.3.1].
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We take a= (o0, nn), f= (o0, nm), with m=nmod 1; so a, fe A’ (see
[1, 7.2.17). The corresponding Kloosterman sum (see [1, 8.4.4]) is

. _ * 2ni(nna + nmd)/c + 2rinrS(d.c) — ninr(a + d)/6c + ninr/2
S(a, fc)= Y7 e

dmodc¢

- e6m‘nr/ Z* eZm‘(lZnS(d,c) +(m—n )d/(-)' (21 1.1 )

dmod ¢

2.12. Application of [, 16.4.1]. Define ¢=sign(nm). We fix ye7_,
and apply [1, 16.4.17 with

¢ =ﬂe“6’“’“"'x/f (2.12.1)
i
so f=b{5,,, and the right-hand side of [1, (16.4.1)] equals
2ne =" 5, , |n| J Y(s) db, (s)+2me =" Jinm| K, _(n; f).

So in order to get Proposition 2.1 we take

1
do. —=——
[v©) do,,, =

In [}, (16.4.1)] we see that jtp(s) do, ,.(s) is the sum of three terms.

5™l . (left-hand side of (16.4.1) in [1]).

2.13. The first one is due to the continuous spectrum, only present if
ne Z. The factor 1., .s(s) " in [1, (16.4.1)] should be omitted. It is due
to a mistake slipped in in [1, (15.6.3)]; this error propagates till [1,
(16.4.20)], where I made the same mistake in the opposite direction. From
[1, (9.5.12)] we obtain the following expression for this term:

8§ riw
et

where { denotes the zeta function of Riemann and

0 _5(n)a,,(m)
G+ 2s) (1 —25)

sl//(s) ds, (2.13.1)

n
m

o (k)=7}, d*

dlk
(d runs over the positive divisors of k).

2.14. The last term is due to holomorphic modular forms; it is only pre-
sent if mn >0, so if &= 1. It describes a measure on (—3, o) with support
in {(6—1)/2:6>0, b=12 |nf mod 2}. In [I, 16.4.5] we see that the mass

of do, ,, at (b—1)/2 may be described in the following way: Let S,(v,,,,)
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be the space of holomorphic modular cusp forms of weight » with multi-
plier system v,,,,. Each fe Sy(v,,,) has a Fourier expansion

fz)= )3 pilf)e ™. (214.1)

k>0,k=|nmodl

Let B(b, 12 |n|) be an orthonormal basis of S,(v,,,); we may choose it in
such a way that all p,(f) are real for all fin this basis. Then the weight
of ds,, ,, at (b—1)/2 is for nm >0 equal to

4 /imnm))' 0T Y pw(O) e () (2142)

Se€B(b,12|n|)

and equals 0 if nm < 0.

2.15. The middle term in [1, (16.4.1)] is due to square integrable real
analytic modular forms of continuous series type. It is given by a measure
with support in a discrete subset of (0, c0) U [0, (1—-1)/2). As for the
modular case there are no exceptional eigenvalues (see [ S, Proposition 2.1,
p. 5111 for the case ne Z, and [2, Theorem 2.15] for n¢ Z); in our case the
support is contained in (0, c©). In [1, 16.4.4] a description of this measure
is given in terms of Fourier coefficients of modular forms of weight t and
multiplier system vy,,,. In a similar way one arrives at the following
description:

Choose ¢=12nmod 2. Let A°(s U12,) be the space of real analytic
modular cusp forms of weight g, elgcnvalue +—5% and multiplier system
Vizg- S0 A q(s, v,2,) consists of the functions f on the upper half plane #

satisfying
az+b a b\ .
—— = igarg(cz + d)
f(cz+d) Pizn (c d) ¢ /)

for (¢ 8)e SL,(Z) with —n <arg(cz+d)< and

f(Z) = Z pk(f) quign(k)/2,3(4n lkl y)eZnikx,

k=nmodl,k#0

where W _denotes a Whittaker function (see [12, 1.77).

A (s, uu,,) #0 occurs only for 1—s? in a discrete subset of (3, o0), and
d1mA (8 012,) < 0. Integration over SL,(Z)\A gives a scalar product.
Let fl, />, .. be an orthonormal system with

(i) fie AYs, vy3,), With s, €i(0, ),
(i) §—s°<i—s’< -,
(iii) Each 4 q(s, 2,) # 0 is spanned by some of the f;.
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Then the continuous series part of | y(s) do,, , is given by

,/|nm Z ( +sk+1q51gn(n)>

(5= su 3 signtm) ) 52070 palfi) V(s ).

2.16. We may summarize:
The integral { y(s) do,, ,(s) is given by the sum of the terms

8 ico
il |

only present if ne Z,

od 1 1 .
S Sl ¥ W) I (5 =su-+5 gsienion) )
s Py 2 2

6 _»,(n) a,5(m)
(1 +25) {(1 —2s)

1 1
<onlf T (5= 50+ 3a5i8000)) a1

and

v <?—;——1—) 2n~ 2 (4n /|nm|)! —?
b>0,b=12|n| mod 2
x I'(b) Z P;ml(f)l)m(f)

feB(b,12|n])
only present if mn> 0.

2.17. Remark. In most applications of the sum formula it is not
necessary to use this complicated description of do, ,,. It often suffices to
use the following facts, easily derived from 2.16, if one remarks that
V121 = Uy if niMm>0.

2.18. PROPOSITION. Let n,meR\{0}, n=mmod 1.

(i) do, ., is a measure supported in
) b—1
i(0, oo)u{—-—z-—:b>0, b=12 (n| mod 2}

if nrm>0 and in i(0, ) for nm <0.

(il) do,,, is a positive measure.
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(i) If ¥ is integrable for do,, and do,, ., then it is integrable for
do, ,, and
1/2

[ w(5) doy, i)

<{[wordn o ] Wl o)

3. ESTIMATE OF do, ,,

With Theorem 2 in [4] as an example we now prove a result on the dis-
tribution of the total mass of do,, ,,. Our aim is not a large sieve inequality
as in [4], but only an estimate for the measure do, ,, itself. Furthermore,
we have in our situation no analogon of Weil’s estimate of the Klooster-
man sum which is used in [4].

3.1. PrOPOSITION. Let ne R\ {0}.

[ do, ()€ +1a)T>  for Toco.
IsI<T

3.2. CoroLLARY. Let n,meR\{0}, n=mmod 1.
[ 1o, </ T+ ST+ T for T—co.
Isl<T

The corollary follows easily from the proposition if one uses Proposition
2.18(iii). The proof of the proposition is given in the following lemmas.

3.3. LeMMA. Let n#0 and <o <1. For v>0 define

" (s/sin ms)? (cos 2ns + cos 12nn)  for |Res| <o

v={

elsewhere.

Then Yr,€ 7, , and
bay(¥) <, yv" % for v]0ify<],
bay(y) <, 077 for v{0ify>1,
f\l/.,(s) ds, (s)<v~? for vl0.
Proof. Asy,((b—1)/2)=0forall 5>0, b=12 |n| mod 2, it is clear that

v,€7,(a,a,n) for all a> 2. If we write down the integral representation
of 2.7 with the path of integration moved to Re s = o, then

1 16e*° cos ni(s + 6 |n|)
1 - 3
bnwv(y) - 27” J‘Re:=a Sin2 s § JZS(.V) ds'
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From the series representation of J,,(y) (see 2.7) follows
Jo(y) < y* R \F(2s + 1) ! for y<l1. (3.3.1)

Hence

bubuy) <€y I e (L4 |t))" 25 g

—C

<y*p~ " for 0|0, y<1.

We also have the integral representation

1 pn/2 .
J(») =—J cos{(uf — y sin 6) df
)
pee 1 .
+—J e ”‘sm(ycosht——nu)dt for Reu>0 (332)
Yo 2

(see [13, 6.2, formula (7)]). This implies

JAy)ge™™“2Reu  for Reu>0. (3.3.3)
Sofor y>1
bl <] e L+ 1) di

<v? for v]0.

Finally

-1 1
[ dooufs) =7 [ — e85 cotas ds
2ni JRes=o ™

—2nt

o« 1 e—zm
<J evvtzt:i + dt
0 l-e¢

1 o0
<j £ dt+J‘ e "' dt
0 1

<v? for v]0.

34. LemMa. Let neR\{0}.

T
fdo,,,,,(it)<<(1+ln})T2 for T .
1]
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Proof. We use ¥, as in Lemma 3.3.

Ko(12n, bly) <€ 3 b2y (dn Inl/c)

c=1

< Y v+ ¥ v"—M(“”'”')za

1<c<4r|n| cz4aln| ¢

<{|n|2” v" " if || < 1/4n
|njv~? if |nj>1/4n.

The sum formula 2.1 now gives

qu(s) do, (s)<(1+|n)v™? for v]O0.
Take v =272 and remark that y, >0 on the support of do,,,,. So
T T 2 T
[ Pda, (i) € [ fe " do, (i< [ wilit) do,(it)
0 0 0

<[ U,(5) dol5) < (1+1n) T

By partial summation the lemma follows.

3.5. LEeMMA. Let o>1, a>2, p>o+1. Let neR\{0}, 20+1%
12 |n| mod 2. Put

_ {0 for |Res|>a
l/I(S)_{(PZ—SZ)"’/2 for |Resi<o

with arg(p® —s*)=0 for seiR. Then

(i) veIi,.
(it) () dd,n(s) <, 1,
(iii) biW(y) <., . min(1, y**°) for some &> 0.

Proof. The first assertion is clear. For the second one we easily get the
estimate (0(1) of | y(s) dd,, ,(s) for those values of n for which 1 + cos 12zn
stays away from zero. For 6n near 3 mod 1 we deform the path of integra-
tion in (2.5) away from zero. This gives an additional term in the sum, but
a bound only depending on ¢ and p may be obtained.
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Consider now

1 sds
( 1 2 J2y~a2 _—_—
b"w(y)—_zﬂl',[ke::m 8(p s ) JZS(y) Cos 112(.8‘-*6 |n|)
+ Z ﬁ(_l)(b712|n|)/2

2o +1<b<26+1,b=12|nimod2 ¢
b—1
<(b=1% (57) 40 o

with 1+ 1<, <o such that cos n(a, ~ 6 |n|) > 155. Use (3.3.3) to obtain
bay(y) <, , 1. For y<1luse J(p) < |M(u+1)] 7" yRe (see (3.3.1)).

3.6. LEMMA. Let neR\{0}.

j do, (s)<1+|nl.
—12<s5<2

Proof. Take  as in the previous lemma with 6>2. As ¥ >0 on the
support of do, , we get

[ s 0 € (PP =) [ () dar )

[ wis) ds,.,(5)

1+¢
<1+ Y 1+ Y (4n|nl>

1<c<dninl ¢ 4n|n| ¢
{0+|n|1” if |n|<1/4n
<1 .
In| + |n| if in|>1/4n

< +1Ko(12n, b, ¢ )|

<1+ |nl.

3.7. LemMA.  Let neR\{0}, b=12 |n) mod 2, b > 5. The mass of do,, , at
(b—1)/2 is O(|n| + b).

Proof. The sum formula states that this mass equals K,(12n, f)+
2(b—1)/m? with f(y)=(4/n)(~ 1) 1212 (5 _1)J, (y). From (3.3.1)
and (3.3.3) follows

47 |n|

)b—l e, 3-1—) (b—1)

Kofi2n f) < 3 min =

c=1

<1+ |n|.
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3.8. LemMa. Let ne R\{0}.

f do, . (s)<|n|T+T*> for T-— .
2€s€T

The proof is clear from the previous lemma.

4. ESTIMATES OF BESSEL TRANSFORMS

To use the sum formula in the opposite direction it is well to have
estimates of (b*)~! ffor fe C*(0, oc). Here I give more or less the results
of [4, Lemma 7.1] in our notation, and slightly weaker, as I could not
reproduce all the results in [4].

4.1. LeMMA. Let 1€ CP(0, ), 0<t<1, let the support of t be
contained in the interval (1, 8), and let

[ woNdy=2  ¥=] [)idy>1s,
0 0

For X>0 put

Sx(p)=1(y/X)
ax=0F)""fx  for n#0.

(i) (a) For |s| <max(2, 4eX +1), sesupp(do,,), s¢(—3,0):

1+ |log X|

xSy
(b) For teR:

_ ... 1+]log X]
'//n,x(lt)<<——1+—X——
(i) (a) For max(2, X+1)<|s| <max(Y, 4eX+1), sesupp(do,,):
mx(8)<Is| ™2+ X |s| “* log |s].
(b) ForteR, |t| =2:

Yo (it) <t 7+ X |t] "2 log |1].
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(iii) (a) For |s| >max(Y,4eX+1), sesupp(do, ,):
V()<Y |s| 2+ YX |s] ~* log |s|.
by ForteRjt|22:
V(RSB ({H D GRITIERD & [/
(iv) (a) For se(—35,0), sesupp(ds,,), X>1:
Te(s) < X%,
(b) For se(—3,0), sesupp(do, ), X<1:

71.'( -1 )sfsm +1/2 ,/f{‘[(zs)
25+IM(2s5 4+ 1)

':—X(s)z X2s+(9(X2:+2)

with M(u)= [ t(y)y* ' dy, the Mellin transform.

Proof. Throughout the proof we use Propositions 2.9 and 2.18. We
denote f=fy, Y= =y F,, and

ifw=[" 10

= d
w)={" ()K=
0 y
From the series for J, (see (2.7.3)), we get for X< 1, u> —1

Jfu)=(u+ 1)~ 27X " Mo(u) + O(TM(u+2) " X**2);

in view of 2.9 this gives (iv)(b); we use the absence of exceptional eigen-
values of continuous series type.
For a#0 we have

dy 1¢= d
Tl e uoma,

© W1
J, o=l

hence for Rea >0, a #0:
FO e‘“-“f(y)%@””min(l, lo) = X 1)
0

If we use this in the integral representation (3.3.2) we find for u > 0:
i )<j"/2mi (1 : >d9+j°° i (1 1 )dt

¢ - -

J<] ™M Yein 6 o € " X cosh ¢

641/36/3-4
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Now
L 1 .
L mln(l,XSin9>d6<1 if X<t
and
<arcsin X'+ X 'logtan 30|52, . <X '(14+logX) if X>1.
For X>1:

jw e=“(Xcosh 1)~  dr < X~
0
and for X<1, >0, with T=log(X'+./X"2—1):

© —ul 1 1
J.o e “ min <1, Yoo t) dt

T w©
=f e‘“’dt+X“f e “(cosh t) " 'dt
V] T

—(u+1)T
<<T+X“—u:1—
<1+log X|+ (u+ 1) XX+ /X 2—1)~*"1
<1+ |log X].
So for u>0:
Jf(u)<<1—+X‘—li§1ﬂ.

This gives (i)(a) in the case s (0, o).
From [13, 3.61, (1) and (2)] we see that
—T
2 sin 27s

{cos (s + 6 {n|)Jo, —cos n(s — 6 |n|)}J _5,}

ni .
_4_e~1u(s—6|'l|)H§§)’

17
__Zenr(sAﬂnl)Hgi)_
and in (13, 6.21, (10), (11)] we find integral representations which for te R
amount to

1 e |
Hg};z)(y)—_— i;r;eim.[ ej;zycosht~2n-r dr.

To be able to interchange the order of integration over y and t we first

move the path of integration to the contour given by R - C: x — 7(x) =
X tig(x), where ¢ is a continuous function, |¢| <1, ¢(x)= —1 for
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x< — 100, and ¢(x)=1 for x = 100. This gives an integral which converges
absolutely. Now integrate first over y and use

< e~ Xsing{x)cosh x

J.OO f(y)eiiycosht(x) Q
0 y

to see that we can move back the path of integration. Hence for teR:

Wixin<|” min(1 1\

X . " X cosh t
{X - if X2l
< )
[log X1+ 1 if X<l
This completes the proof of (i)(a).
We also use the integral representation

sin nu

JAy)=n" [ cos(ud ~ ysin §) b - fw v sinhe g (41 1)
0 ' 0
(see [13, 6.2, formula (4)]). We consider this for — 1 <u < 0. The first term

is @(1) and contributes @(1) to jf(u). The second term contributes for
X=1.

o X 1
< |sin mu J’ e’“"‘““"”min(l, - d
| | 0 Xsinht f

r o i dr
<J et dT+ISin7l’ulX"lJ‘ emur»,\smhr -
0 T sinh 7

with T=log(X~ '+ /X *+1)
<T€T+|Sinﬂu|X71J. (W+ w2+1)—ue—Xw dw
e el

w / 3
<X ' 4 |sinmu| X! w‘“vzl—f——l—tw——e'“ W
| | d
1/X JIi+w?

< X! 4 |sin mu) X* < X,

This gives (iv)(a) (see 2.18).
Now use

1 p
Ku(.)))=§ e—ycoshtAur d‘L’

(see [13, 6.22, (7)]); so for teR
0

Kyuly)= f e~ Y°ohT cos(2t1) dr.
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For (i)(b) it suffices to consider kf(2it) for 1= 0.

kf(2it)=% [ “ Fcosh t)e?" dr (4.1.2)

with Fu)=[g f(y)e *y~'dy. We have seen that F(u)<e **“ for
Re u>0. So for N large

n/2 . '

f F(cosh(+ N + ix))e2 (N +x) gy
0

n/2 1

— XcosxcoshN d s

<f° ‘ x<XcoshN'

This implies that we may move the line of integration in (4.1.2) to ni/2 + R:

kf (2it) = = j F(i sinh t)e¥™ =™ dr

- 1
i in(1, ———)d
<e J_wmm( ’lsinhrlX) i

< _ e 1+ |log X]|
<4 —_—,
¢ 1+ X
This gives (i)(b).
For Reu>1:
s 1\t s)2)
T =4 L”__l (2 y) A+ 2™ (4.1.3)

as may be shown by moving off the line of integration to the left. So for
uz2:

o e L I'((u+5)/2)
U b N Rt b ey e

sgt [ pr oy s gy LUt 5)2)
.LH=‘12S L S )y ‘Wru4wu—nﬂ)s

I((u+1+it)/2) dr
T((u+1—it)/2)| | =1 +ir| [u—1+i] |u+1—it|

<<ji° X

1 dr + ro dr
—11+4= wet (T4+1)3

<Xu?logu.

<Xﬂ_

This gives (ii)(a) for s=(b—1)/2>2 2.
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If we move the line of integration in (4.1.3) to —2—~Reu<Res<
— Re u, we get an additional term:

(1 )”‘ T((u+5)/2) Gy
=y ds + ;
2 I'(1+ (u—s)/2) I'u+1)
this is valid for 6 <0, —2 - Reu <o < —Re u. We may take Re u=0 and
= —1.So for t > 1:
I'it+ (1 +it)/2) Xdr
Ilit+ (1 —it)/2)) | =1 +ir] |2it— 1 +it] 12t + 1 — i

+ | FQRit+ 1) e L
The latter term is O(e™" |¢| ~*?) and gives @(|s| ~*?) in (ii)(a) for seiR.
For the integral we get

Ju(y)=if (4.1.4)

4ni Res=o

Jf(2ir) < foo

— oo

- e(1/2)7!(lt*1/2|-|1+1/2l)
<XL,,O I+ 1tDA+ 2+ 5tH + It—%fl)dT
] e T
+XJ:, 1—0)(1 :;;ﬁl +1—11)
+Xf:: 1—2)1 —tef;:)(l it

The last term is the worst one; if we look at —37 < 1< — 27 we see that we
cannot do better than

<X€mt-l J‘OO dT

<xnl ~21 :
w QD)2 =21 7) AT Tlogt

The other terms are also O(Xe™:™*log ¢). This is sufficient to complete the
proof of (ii)(a). The estimate stated in [4] for this case is a bit sharper
than the one obtained here.

If we again use (4.14) and perform one more partial integration, we
obtain from the latter term a contribution O(Y:~*2e™) to jf(2it) for ¢ = 2.
In the integral we get an additional factor Y(1+|z|)~'. We obtain in the
worst case
~ 2t eﬂl d,r

o (1= (A —1=In)(1 +1—1i7)

o0 dr
s —2
<XTer L, A+002—217)

x|

<XYe"t *logt.

The other terms also satisfy this estimate. This gives (iii)(a) if Re s =0.
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For u > 31 we may move the line of integration in (4.1.3) to Res=1—u.
This gives

Jf(ll)=—1—

4ni

I'((u+5)/2)
(14 (u—s)/2)
I'(3+ 3it)
(3 +u—3it)

f z j:o frp)y s dy

Res=1-uS(s—1)

0 2‘"
YXu—ISu
<-[_C.O | —1+it|?

P SR LD
< Y(4X) j_w PR L
u—1 * : -2 1 l o
< Y(4eX) J lu—1+idut| ?|=+u—ziut| udt
0 2 2

< Yidexyu= = [ (140) 2 de
0
<Y@eX) 'uTr v <uYX

under the condition w=5h—1>2max(Y,4eX+1). This completes the
proof of (iii)(a).
For yy~ we use

1 s+u
Ko=sm | 2vor()

xF(%—“) ds  for o>|Reul; (4.1.5)

by the Mellin transform this is equivalent to

fw Ku(y)y‘fiyl=2s-2r(s+”) r(f—_—") for Res> |Reu,
0

2 2

(see [13, 13.21, (8)]). By moving the line of integration we may deform
(4.1.5) into

1 et s futS s—u
Ku(y)_fn—ijkes:_lz y r( . >r( > )ds

+2% 7 I (w) + 27"y (—u) for Reu=0,u#0. (4.1.6)

This gives for 1> 2:

1 o 1 1
kf(2it)=2—7;L 2“‘s"j0 f’(y)y‘*dyf(§s+it>F(Es—-it) ds

es=—1

. 1 = s
+ X220 5= [ S () Ty,
T it
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So
v (2ir) € e™ XJOO |—14it)~Yr —l+lir+it'
—x 22
X F( 1+1ir it) d1:+e"”t*3"2:l
2 2 |
The term with the integral satisfies
MXJmo e—(1/2)7l’(|f+1'/2l+lt~T/2|) dt
) L UFrN(+ e+ 20+t =21))
! e ™dt
NIX
<e {L (L +0)(1+20(1 + 2t —1)
+ < e dr }
2 (1+7)(1+28)(1 +7—20)
<X( 1 o 1+7 |* 110 141 |¥ )
£ = —_—— ———
30 BTa2i—tl_, 2t Blte—2t|._,
<Xt *logt.

This gives (ii)(b).

If we use one more partial integration, we get an additional factor
(1+7]) ! in the integral. If one looks at —1 <1< 1, one sees that one
cannot hope to obtain an additional factor ' in the estimate. To prove
(iii)(b) we take Re s= — 3 in (4.1.5). This gives two more terms in (4.1.6):

—GyP T Mu—1)—=(Gy)y  “ I(—u—1).
For u=2it, +> 2, all additional terms give contributions

O(Yt %e=™), resp. O(YX?t=7%e—™),
For the integral we get

©  YX?3 2it—3+it =2it—-3+it
< r

0 e*(l/Z)n(z+z/2+[tft/2i)dt

dt

Yx?
< fo I+t +r+40) (1 + |- 11))?

< YX3evmt—4,

which completes the proof of (iii)(b).
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42. LeMMA. Let n,meR\{0}, n=mmod 1. Take Yy, as in Lemma
4.1.

(i) (a) If nm>0 and there exists be(0,1) such that b=
12 |n| mod 12, then for X< 1:

[ W55 donls)
- (87: M)l—b Mi(b—1)

X N(b)

+O0(/1+ |n| /14 |m| (Y'?+ |log X]))

Pini — 512(D) Py — 5/12(D)

with

dx d
Nb)=] e =

and p,, the polynomial given by [17_, (1 -q)** =X 2_, pu(b)g" for |g| < 1.
(b) If nm>0 and |n| ¢ (0, 55) + Z, then for X< 1:

[ ¥.14(5) d0,,(5) €/ T+ Tl /TH 1] (Y72 + |log X))

(c) If nm>0, then for X>1:

[ 0(5) o, mls)
(X(log YP+Y"%)  if X<Y
£ /14 n /14 { if X>Y
(ii)) If nm <O, then
[W:x(5) dory )
(Y2 + |log X|) if X<1
<1+ n) J1+|m {(Y"*+X(log Y)?) if 1<X<YYV
X(log X)? if XzY'"2

4.3. Remark that the N in (i)(a) is continuous on [0, co) and satisfies
N(0)=n/3. The polynomials p, satisfy po=1, p,(0)=0 for k>0 and the
degree of p, is at most k.
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44. Proof of Lemma 42. We first consider ¥~ =V, ,. Remark that
Lemma 4.1 gives for reR:

(1 + llog X1)/(1 + X) for |t|<B
Y (i) < |t 72+ X 1]~ * log 1] for Bt <C
Y}ti’s/z+X2YM’7"2+X3YM‘4 for t|1=C
with B=max(2, X) and C =max(X? Y). Put a=./1+|n| /1 +|m|; from
Corollary 3.2 we get
L+ [log X]

“{s)d
J, b @ o) <x = 5 B

j ¥ (5) o, (s) <a(C2 + X(log C)?)  if C>B,
<lslgC

E3 =

J. VT(s) day () €aY(CTIE 4 YOO XPCTE,
sz

Hence
a(Y'2 + |log X1) it X<1
j U (s)do, m(s)<{ (Y2 + X(log Y)?)  if 1<X<Y'”?
aX(log X2 i X> YR

Now we consider ¢ * =y *,. Let sesupp(da, ,).

X if —3<s5<0,X>1
(1+log X1)/(1+X) it |s|<L,s¢(—1%,0)
Is] 3%+ X |s| “%log |s| f Lgs|<M

Yis) 24+ YX|s| logls] if |sj>M

Yyris)<

—

with L=max(2,4eX+ 1), M=max(deX +1,Y). Similarly as in the
previous case we obtain

| U (5) da )
s¢(—1/2,0)
(llog X} + Y'?) for X<1
< S+l J1+|m {(X(log Y)’+Y"*)  for 1<X<Y
Xlog X for X=Y.
For X>1

[, 6 ) dannls) </ T /T,

which may be absorbed into the estimate we already have.
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From 2.18 we see that (b—1)/2€e(—3,0)nsupp(ds,,,) occurs only if
nm>0, 0<b<1, and 12 |n|=bmod 2. But in (2.14.2) we see that an
additional condition is S,(v,5,)#0. This implies 12 [#| =b mod 12 and
Sp(v121m) = C - n**, with n the Dedekind function

’7(2) — eZm’z/24 I—I (1 _ eZm'kz)_
k=1
Define N and p, as indicated in the lemma. From (2.14.2) we see that the
weight of do,, ,, at (b—1)/2 is given by

2(4n iV e )1 b I'(b) Pin) - b/lz(b) Pim|— b/lz(b)
2N(b)

(44.1)

So up to a term which may be absorbed into the error term we obtain from
%1, ¥ *(s)do, (s) the contribution given in the lemma.

5. DISTRIBUTION OF DEDEKIND SUMS

In this section Theorem 1.3 is proved.

5.1. Notation. Let keZ, 7 be as in Lemma 4.1, and y be a Schwartz
function on R. We define for Z > 0:

Al, 1, Z) = f e~ 'e(Zje) T* e 4y(125(d, c)).

= dmodc¢

The dependence on 7 does not show in the notation.
By investigating the behaviour of A(k, x; Z) for Z — oo we get informa-
tion on the distribution of the (S(4, ¢), d/c).

52. Take X=X(n)=4n./|n(n+x)| Z~' for neR. The sum defining
A(k, x; Z) is finite for each Z, so by Fourier inversion:

A(K, X; Z)= J‘w Z C_I‘L' (4TC ln(n + K”) Z* eZnixd/c+24ninS(d,c)xA(n) dn

X =1 X dmodc

= [ K fn) 200)

By the sum formula 2.1 and Proposition 2.9(iv)

A, 1 2) = [Wi(s) oy s rls) mydn (52.1)

neR,n#0, —x

with e(r) =sign(n(n + k)).
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5.3. To estimate A(xk, y; Z) we shall use Lemma 4.2. The dependence of
the error terms on y will be described by

N;(X)=jo0 1x(u)) du for leZ, 1=0.

We assume x # 0, hence N,(3)>0 for each [=0.

54. PROPOSITION.  For k, ¥, T as above define

o«

1
gx(xsb)=mk=0p

. b\ | . AW
-(x<(k+l~2) sign x)+x(—(k+|kl + 12) s1gn1c)>
with signk =1 if k=0. Put

A =max(1, N(x)'"” Ny(x)~'?)
B=min(1, N(x) No(x) ")

«(b) pk+\xl(b)

(i) b g, (x; b) is continuous and bounded on [0, 1) and
n0)  if k=0

;0)=

2.(x; 0) {0 if k%0,

(1) For Z=4n(2+ |k|+ A):
Ak Z)= | 21", b) Mx(b—1) db
0

+0 ((Y‘/2+Iog mri—g;) (1 + {x)(1 +log(l + [x]))?

N,()(A + (log B)Z)).

Proof. Let be(0,1), keZ, k=0. Take n=k+b/12 and m=n+ |x|.
From Corollary 3.2 and (4.4.1) we see that
Pel(b) Pi s (B) N(B) ™' < (4n \/(k +b/12)(k + x| + B/12))* !

14k +5/12 /1 +k+ K] +5/12
I'(b) '

(54.1)

So for k=1:
pi(b) pk+]xl(b) <
T NGe) < Jk(k +[x]).

This shows that the series defining g,(x) converges absolutely, uniformly
for 0<b< 1, with bounded sum. As all terms are continuous on {0, 1)
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and as the terms with k=1 are 0 at =0 (see Lemma 4.2), we get the
continuity on [0, 1) and

Pol0) Pixi (0)
0) == L
£(x; 0) 62N(0)

So (i) follows from Remark 4.3.

Now we apply Lemma 4.2 to estimate the integral in (5.2.1). We use
|#(n)] < No(x) for ne R and |j(n)] < N,(x) |n] ' for n#0 and /> 1.

Let us first consider the integral over n(n+ k) <0. This case is only
present if x#0. Put e=sign k. As n(n+k)=(n+ 3x)*>— x> <0, we have
ln(n+x) <ilx]? |nl<|x|, and X<2=n|x|/Z<1. Further (1+|n|)
(1+in+x))<(1+ k)2 So

[ ¥k (5) o, (5) 7() i

(#(0) + X(—x)).

'[n(n+k)<0

< (1+ 1) (712 +log
0<|n| < |k|/2,en <0

(2] +12(—n—x)) dn.

We used the symmetry under n+— —k —n. The integral over 0<|n| <
C :=min(B, } |x|) is estimated by

Z
dn \/n(n+ rc)])

V4
< 12 L log————+1log Cl | C
<(1+1x|>No(x>(Y +log - + g 1)

C zZ
<(1+ ;x))Nl(x)E(Y‘”Hog a1 %)

) (1+ 1x])(1 +log(1 + [x]))

+log(1+|x))+llogBl>
Z

<l yir _z

<<Y +10g47r(1+lx|)

-Ni(x)(1 + |log BJ).

For the region C < |n| <D :=min(4, 1 |k|) the integral, if present, is

< 12 .__i___) b dx
<(1+1x;)(y +log s N,(x)jc :

<(1+Ix[)(Y”2+log-4—n—(—1—i——-+log(l+lx|)+|log Cl)

|xl)
-N(x)(|log B| +1og A)

<<Y‘/2+log )(1+Ircl)(l+log(1+lxl))

_Zz
(1 + =)
-N,(x)(log A + |log B|* +1).
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Only if § |x| > 4 we have to consider the integral over A < [n| <% [k{:
7z k172
<(1+|K!)(Y”2+log———>N(x) x Ydx
4 Sl 4p2) L

<(1+l;<1)(Y‘/2+10g47I

4 ~3
—(a_—'m+log(1 + |k|)+log A) N A

<<Y”Z+log ) (1 + |x])(1 +log(l + |x|)) Ny(x)(1 +1log A).

Z

4rn(1+ {xl)

Now we turn to the region n(n+«x)>0. Lemma 4.2 gives several
error terms to be used for n(n+«k) in the regions (0, (Z/4m)?],
[(Z/4r)?, (YZ/4n)*], and [(YZ/4n)%, o), and an explicit term which may
be present if 0 < n(n + ) < (Z/4n)>

We first estimate the integral of the error terms. We write n= — ik + x,
x>4kl. Then n(n+rx)=x'—ix> and /14 J1+In+xl=

V(1 +x)2 =52

The case 0 <n(n+ k)< (Z/4n)® gives a contribution

J (Z/47) + |x1%/4

1 V4
(1+x)?—=x* (Y1/2+log-—————)
/2 f 4 4n /x*—Kk?/4

(O RCI)  Ee

B+ |xj/2
<[ (k) No()

Ixl/2

Z
A Y +log—————+ 14
( an(1+ x))

log (x—% lx])

dn  /x? — K2/4>

+log(1+|rc|)> dx

A+ |x|/2
+J (1+x)(Y1/2+log

B +kl/2
1 —1
M (x-gnl)

V(Z/an) + k24
+

A+ |x|/2

(1 +x)<Y”2+lo ——-———-———)
g47t x? —Kk*/4

-M(x)(x—% |x|)4dx.
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The first term is

Z
<<BY”2+Blog————-—+Blog(1 + |k|) + B |log BI)
4n(l +

1)
(141D Ny() B~

yA
m) (1+ [ )(1 + log(1 + [x]))

- Ny{(x)(llog B| +1);

<<<Y‘/2+log

the second term is

zZ 1
af (B2 1) (12 iog - gontor+ ) ) Mi(2)

4((1 +% lkl) log%+A>

yA
. 172 .
(Y +log4n(1+"d)+log(1+|x|))N1(x)

+ B N,{(x) fl (1 udll + 1) (|log B} +log(1 + |x|)) dy
B y
+ (somethingSO)]

z
< (Y‘/2+log m) (1 + x))(1 +log(l + ixl))
- N,(x)(4 + (log B)*);

and the third one is

V4 1+ k|
<| YY" +1o +1lo
( Bad+1k) " ° A+ (x

A+ x4 +47)

Ni() 4°
|)) *

2 _Zz
<<Y‘/ +log T ‘Kl)-l—log(l + lxl)) N ()1 + x| +4)

1/2 Z
<<Y/ +log——-———4n(l+]xl)>(1+\'€|)(1+10g(1+lK|))N1(X)A-
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The integral of the error terms over n(n+ k) > (Z/4n)? is estimated by

j\/(yz/4n)2+xl/4 4n /x*— /4

(14 x) (Y‘/2+
VN Zian) + x4

(log Y)Z)

7 1 —4
-N4(x)(x—§|rc() dx

dn /x*— k%4 4n . /x?—«?/4
log
V4 V4

x .
+f ___(t+x)
J(YZ/an)? + k24

1 -4
-N4(x)<x—§1h‘|) dx
Nl(X)A3[YI/Z((1+lK|)Z*3+Z'2)
+Z Yog YV (1+ )22+ 27"

o0 KZ yZ>2> yszy ]
1+ S (22)) o
+L < V13 +<47r Y Gz s A x2)

N A | (774 og YPY(1+ )2 4 1)+ [ 128 yzdy]
,

<[YYV4+Z2Y 'log Y] N,(x)A.

This shows that all error terms in Lemma 4.2 lead to contributions which
may be absorbed into the error term of this proposition.
We are left with the following term:

Mr(b—
_[(2 Al )p]n,\b/lz(b)P|n+xl¥b/12(b)i(n)dn’ (542)

TN(b)

where we integrate over W={neR: O<n(n+k)<(Z/M4n)’, |nle
(0,5)+Z}, and where b=>b(n) is determined by b(n)=12 |n| mod 12,
O<b(n)y<l.

Let U= {neR: n(n+x)>(Z/4n)% |nl € (0, -5)+ Z). If we integrate over
U instead of over W, we get something that in view of (54.1) may be
estimated by

{ b—1
L f! (R g e ok

k>ko 'O Z

<) (1+l o W)ﬁ k>Ny(x)

k2 ko

<ko—2A3Nl(X)
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with ko= [/(Z/4n)*+«x*/4—1|k|], and [-] the integral part. So
ko>=Z/8n—1, and the integral over U is O(AN,(yx)). This means that we
may replace the term in (5.4.2) by

o 1t Mr(b—1
Z _1—2_7;.[0 (zz)lhb—jj—v(_(—g)__)—pk(b) pk+|x|(b)

k=0

(((k + b/12) sign k) + #( —(k + |«| + b/12) sign k)) db
=f Z1=bg, (x; b) Mr(b—1) db.
)]

5.5. LEMMA. For k€ Z, y a Schwartz function on R, put

SM(K', X): Z l Z* X(12S(d, C))eZm'Kd/c_

MR2<cegs M dmod ¢

Then
26—t
b—1

+0, (M) for M- .

S,k )—jZ/le—b (b db
M 7X - o xx, )

Remark. The constants in ¢ may depend on « and . From here on I
do not keep this dependence explicit.

Proof. Take 1 in Lemma 4.1 and Proposition 5.4 in such a way that

()= 1 for 2€y<4-2a
=10 for y<2—aand for y24.
This may be arranged with a = 0(Y ).
Put
1
Ty = Y =¥y

M<c<2M/(2~a) ¢ dmodc

then

|Sar(r, x) — A, 15 2M) < (Tpg + Tag2) 12l 0
with [x|l, =sup, g lx(x)]. Trivially estimating T',, we obtain

SalK, 1) = Ak, 13 2M)+ O (MY~ +1).
By Proposition 5.4
1
Ak, 1 2M) = | (2M)'~* g,(; b) MT(b— 1) db
(4]

+ 0. (Y +log M).
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Now we take 1 such that Y= M so

1
Sulk, 1) = | M'""2'~%g, (. b) Me(b~1)db
+O(M'” +log M).

As Mb—1)<1for 0<b< 1t and g, (y, -) is bounded, we get

1
f M'=021~bg (v:b) Mr(b—1)db< M7,
2/3

Let 7, be the characteristic function of [2,4], so #t(b—1)=
(232~ 20-4y/(h—1) and
b—l_l

2
21—b‘ _1 -
Ht(b—1) =

=2 g (r—1)b—1)gag YL,

So

b1

1-b
+OMY '+ M2 +log M).

db

2/3
Swlka)= | M1t (i)

5.6. PROPOSITION. Ler y be a Schwartz function on R, k€ Z. Then

logM X 1 A
BT~ X (125 et

1 dmod ¢

am i L

_{n‘zjf’w x)dx  if x=0
0 if k#0.
Proof. The quantity to estimate equals

log M [Zlog M}
Sar2-o(K; X)
M go M2

n

1— 2(b— 1)([ZlogM] + 1)

=long/3 M~bg. (1 b) db
0 K 1-5

+0(M~**logM) by Lemma 55

2/3
—log M j M~0f(b) db+ O(M " log M)
0

641/36/3-5
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with f(b)=g,(x; #)/(1 — b). This function f is continuous on [0, ] and

2000)  if x=0

f(())-—{ if x#0.

We show that

lim f M~ log Mf(b) db= £(0)
Q

M-

For given ¢ >0 take fe (0, %) such that | f(b)— f(0)| <& for all be [0, f),
and take M >¢~ "%, then

2/3
log M f M~bf(b) db— f(O)'
0
B
<log M [ M~ |1(6)~/(0)] db+M~* |0
2/3
+logML M~ |f(b)| db

<e(1—M ) +e(lf(O) + 11 fll)-

5.7. Proof of Theorem 13. Put X=C (Rx(R/Z)); define the linear
forms v and v,, on X by

V(g)=—15 fw f 8(x, y) dy dx

TV _x 'R/Z
varlg l°g M Z v (12S(d, ), f)
€ dmodc ¢
We must prove that for all ge X:
Jim vy (g)=v(g) (57.1)

Remark that Proposition 5.6 gives (5.7.1) for
g=8yx: (X y) o x(x) ™™

with y a Schwartz function on R and xeZ. So (5.7.1) is valid on the
subspace Y of X spanned by the g, ..

Let X, be the subspace of X of functions g with supp(g)<= (—AN, N) x
(R/Z). Put Y, =Xy Y. By the theorem of Stone-Weierstrass each ge X,
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may be approximated in the supnorm on [ — N, N1x (R/Z) by elements of
the form

k
(x, ) Y pulx)er™

K= —k

with ¢, e C*([ =N, N]). We may find Schwartz functions x, with support
contained in (—N—1, N+1) extending the ¢, without making their
supnorms larger. In this way we see that ge X, may be approximated in
the supnorm by elements of Yy, |.

Fix a Schwartz function y on R with 0<y<1 and y=1 on
[-N—1,N+1]. For each heX,,, we have h=hg, o So |vy(h)|<
4]l .o Var(g,.0)- As (5.7.1) holds for g=g, , we see that

WM € Chiy 0l forall M=>=1andall heX,,,.
So for given ge X,y choose he Y, , with | g —hj . small and use

AN +1)

Var(8) = V(@ S Cny i g = hlloo + IV prlh) = V(W) + ——5— llh— gl

to conclude that (5.7.1) holds for this g. As X= ]y, X,y this completes
the proof.
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