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We prove the following result on the distribution of Dedekind sums: 

for each compactly supported continuous function g on R x (R/Z). The proof uses 
Kuznetsov’s sum formula in the modular case for varying real weight. 0 1990 

Academic Press, Inc. 

1. INTRODUCTION 

1.1. Dedekind Sums. The Dedekind sum S(d, c), with d, CE Z, c> 1, 
(d, c) = 1, is defined by 

(1.1.1) 

with 

‘x)={~-~ 2 i: zL:rnodl andO<y<l 

Dedekind sums occur in the transformation formula of the eta function 
of Dedekind (see, e.g., [ 111). More generally, one finds Dedekind sums in 
the multiplier systems of the full modular group for real weights. 

1.2. In this paper we study the quantity 

K,(u; f) = f ff(4n J-/C) I* e24aiuS(d,c)+2ai~dic, (1.2.1) 
c=l dmod L’ 
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where K E Z, u E R such that u(u + K) # 0. The test function f is continuous 
on (0, co) and satisfies some growth condition at 0 to ensure absolute 
convergence of the sum. C&,TmodC means summation over d mod c, (c, d) = 1. 

The study of K,(u;f) withfsuitably chosen leads to the following result: 

1.3. THEOREM. For g E C,(R x (R/Z)) 

In [ 11, p. 28-j the question of whether the points (S(d, c), d/c) are dense 
in the plane is raised. In [6] a positive answer has been given. Reference 
[9] shows that the sequence of (d/c, rS(d, c)) is uniformly distributed 
modulo 1 for each nonzero r ER. The result given here describes the 
distribution a bit more precisely. 

1.4. In [3] we studied the distribution of (S(d, c)/c, d/c). We found that 
the majority of S(d, c)/c is concentrated near 0, independently of d/c. For 
the minority staying away from 0 we found a discrete limiting distribution. 
One may view Theorem 1.3 as taking a closer look at the distribution of 
the majority near 0. 

1.5. For a general test function g it is difficult to get an estimate of the 
error term in Theorem 1.3. More precise statements for special cases may 
be found in Proposition 5.4 and Lemma 5.5; but there the main term is 
much more complicated. 

1.6. Sum Formula. The quantity K,(u; f ), as defined in (1.2.1), with 
u E Z\(O), occurs in Kuznetsov’s sum formula (cf. Theorem 1 in [7]). To 
see that this is indeed the case, remark that 

c * e2ni(12uS(d, c) + K d/c) _ 

dmodc 

(cf. [8, p. 1421); a satisfies a d s 1 mod c. The sum formula states that 
K,(u;f) is equal to the sum of some other expressions, most of which 
contain products of Fourier coefhcients of real analytic modular forms of 
weight zero. 

1.7. This sum formula has been generalized from Z,(Z) to other 
discrete subgroups of X,,(R) and other weights by Proskurin [lo] and 
Bruggeman [ 11. Deshouillers and Iwaniec [4] have considered the case of 
congruence subgroups T,,(N) and have given estimates of sums of 
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Kloosterman sums and of sums and integrals of products of Fourier 
coefficients of modular forms. 

This paper uses many of the ideas in [4]. We work with automorphic 
forms for the full modular group only, but we vary the weight con- 
tinuously. The sums over the order of Fourier coefficients in [4] become 
integrals here. 

In Corollary 3.2 we obtain an estimate for integrals of products of 
Fourier coefficients that may be compared with Theorem 2 in [4]. It gives 
less than [4], as we do not integrate over the order of the Fourier 
coefficients at this point. 

1.8. Ooeruiew. Section 2 states the sum formula used in this paper. It 
reformulates the results in [l] and also incorporates into the sum formula 
a result from [2] on the almost complete absence of exceptional eigen- 
values in the modular case. 

The idea of the sum formula is to relate K,-,,,( 12~; f) to j $ da,,,, 
where da,,,, is a measure on R u iR containing information on Fourier 
coefficients of modular forms and $ is related tof by a Bessel transforma- 
tion. 

Section 3 estimates the growth of Ida,,,). This is the basis for estimates 
in Section 4 of !11/ da,,,, for a special choice off and 1(1. Under this choice 
the main contribution to j $ da,,,, is given by the Fourier coefficients of a 
power of the eta function of Dedekind. The ideas in these sections come 
from [4]. The transition from weight zero to arbitrary real weight makes 
it necessary to redo the computations of Deshouillers and Iwaniec in 
Section 7.1 of [4]. I could not completely recover their results (see the 
occurrence of logarithms in parts (ii) and (iii) of Lemma 4.1). I thank the 
referee for a hint that enabled me to handle case (i)(b) of that lemma in 
a better way. 

The proof in Section 5 of Theorem 1.3 is based on the sum formula and 
the estimates in Section 4. 

2. SUM FORMULA 

We rewrite for the modular case the sum formula in [ 1, 16.4.11, in a way 
suitable for our present purpose. The result may be formulated as: 

2.1. PROPOSITION. Let n,meR\{O}, n z m mod 1; put E = sign(nm). 
There are measures da,,,, and dS,,, on R u iR, a class z,n of test functions 
and an integral transform 

b”,: 5& + {functions on (0, co)} 
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such that for each # E %,,I 

6) $ E ~Yd~,,A 
(ii) $EL’(dS,,,) ifn=m, 

(iii) K,,-,(12n, f) as defined in 1.2.1, with f = bE+, converges 
absolutely, and 

f tits) do,, = 4, f W) dk&) + L-An, f ). (2.1.1) 

The measure da,, is described in 2.16, the measure db,, in 2.5, the class 
F kl,n in 2.3, and the integral transform in 2.7. 

2.2. Notation. BY J W) don,m( s we mean integration over R u iR; 1 
similarly for dS,, . 

2.3. DEFINITION. Let a> 2, CT> f, nER\{O}. 
F+(a, 6, n) is the space of functions tj on 

(stC: jResJ<o}u{$-!> -f:b=i2~njmod2} 

such that 

(i) + is holomorphic on (Re S( < 0, 

(ii) II/ is even on (Re $1 < G, 

(iii) e(s) $ (1 + Jim sI)-4 

(iv) C 6s l,b= 121nlmod2 (b- 1) IIC/(b- 1)PI < CO. 
Y- (a, 6, n) is the space of functions ~5 on {s E C: [ Re SI < Q 1 such that 

(i) s I-+ $(s)/cos R(S + 6 Inl) is even and holomorphic on IRe SI <g, 

(ii) It/(s) 4 (1 + IIm sl))“. 

Put 
CT +1,n = u & (a, 0, n). 

ll>2,0>1/2 

2.4. Relation with Cl, 14.2.71: 

ykl(ap 0, n)= +~~~21,1,,. - 

2.5. DEFINITION. The measure dS,, is defined by 

(2.51) 
b> l,br 12JnJmod2 



DEDEKIND SUMS AND MODULAR FORMS 293 

Remark. Clearly $ E L’(&,,,, if \c/ E 5,“. 

2.6. Relation with [l, 14.2.12-J: 

I e(s) do,,,, = 5 ($3 1 >. 

2.7. DEFINITION. For n E R\ (0) and II/ E Y& l.n define b” ‘tj: (0, cc ) + C 
by 

+ c 4(_])‘*-]2,n,l,2(b-1)3 Jb- ,(.vf 
b> I,bs 12 Inlmod2 ’ 

(2.7.1) 

where J, and I, are the Bessel functions 

(2.7.2) 

(2.7.3) 

(2.7.4) 

Remarks. These integrals converge absolutely and define b”lC/ as func- 
tions on (0, co). The estimate of 1,9(s) for IIm ~1 -+ co allows moving the line 
of integration to Re s = o, if $ E &(a, u, n) and ui <(T. In the case of bf, 
one should take 20, + 1 f 12 (nl mod 2; then the terms with b < 20, + 1 in 
the sum disappear. 

If we take (ri > 4 we obtain an estimate on b”+(y) for y 10 from which 
the absolute convergence of K,_,( 12n, b”+) follows. 

2.8. Relation with [l, 14.2.81: 

b’l$, =% e~6nilnl(b~l(n,)t $. 

2.9. PROFWITION [l, 14.2.1, 14.2.3, 14.2.61. (i) Cp(O, co)c b:(F+, .) - , 
for each n E R\(O). 

(ii) On C p (0, co) the inverse of b,+ is for generic s given by 

UW1/(4=~ ( 
dY 

cosNs+6 Inl)~o~f(~V2s(~~~ 

4 
-cosn(s-61nl)j’Uf(~)~-2~(y)y (2.9.1) 

0 
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and for b s 12 Jnl mod 2 by 

(b:)-1f(~)=q(-l)‘D12’“‘“f~f(y)~b-l(y)~. (2.9.2) 

(iii) On C,“(O, co) the inverse of 6; is given by 

(b;)-‘f(s)=cos+-6 lnl)Sa(f(~)K,,(~)$ 

with K2s=(rr/(2sinrrs)){Z-2,-Z2,}. 

(iv) Zf $ E %,, satisfies b,+ $ E C,“(O, co), then 

(2.9.3) 

s $0) dLz(s) = 0. 
2.10. Proofs. Propositions 2.1 and 2.9 have been proved in [ 11; we 

only need to reconstruct Proposition 2.1 in the present notation. This is 
done in the sequel. We also discuss the measure do,, in some detail. 

2.11. Notations used in this reconstruction. F= Z,(Z), Z’ its full 
original in the universal covering group Go of S&(R). 

Let r E R; there is a character xr of Z defined by 

x,(n( 1)) = eni’16 and x, k p = enid2 
(0) 

in the notation of [ 1, Sect. 23. According to 4.4 of [ 1 ] the character xr 
corresponds to a multiplier system v, of F with 

e nirJ6 and v, 

So v, is the 2rth power of the multiplier system of the eta function of 
Dedekind. It is known (see, e.g., [8, 1X,1]) that for (z f;) E i= with c 2 1, 

=e - 2nirS(d,c) + nir(a + d)/6c - nir/2 > 

where S(d, c) is the Dedekind sum. 
We now take r = 12n, with n E R\(O), and define q E ( + 1 }, t E [0, 1 ] by 

r=p mod 2. We put x=x,,, in order to satisfy Cl, 4.3.1 J. 
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We take a=(co,qn), /?=(co,qm), with m=:modl; so a,fl~/I’ (see 
[ 1, 7.2.11). The corresponding Kloosterman sum (see [ 1, 8.4.41) is 

S(a, 8; c) = C* e 2niCqna + qmd)/r + 2niqrSCd.c I ~ niqrta + dV6c + niqrl? 

dmodr 

= e6ninrl 
c 

* e2~i(12nS(d,c)+(m-n)d/~) (2.11.1) 
dmodr 

2.12. Application of [l, 16.4.11. Define E= sign(nm). We fix $ E%., 
and apply [ 1, 16.4.11 with 

(2.12.1) 

wf=b&,,,, and the right-hand side of [ 1, (16.4.1)] equals 

27c6”‘ln’ 6,, InI j $(s) dd,,(s) + 2ne-6”i”‘n’ J$K/ K+,(n;f). 

So in order to get Proposition 2.1 we take 

s Ye) don,, = l 
274F7 

e6niC’n’ . (left-hand side of ( 16.4.1) in [ 1 ] ). 

In [ 1, (16.4.1)] we see that 1 I/+) do,,,(s) is the sum of three terms. 

2.13. The first one is due to the continuous spectrum, only present if 
n E Z. The factor t,C,J,,Cpj(~)- 1 in [ 1, (16.4.1)] should be omitted. It is due 
to a mistake slipped in in [ 1, (15.6.3)]; this error propagates till [ 1, 
(16.4.20)], where I made the same mistake in the opposite direction, From 
[ 1, (9.5.12)] we obtain the following expression for this term: 

o-*,(n) czs(m) ds 
[(1+2s)[(1-2s) ’ 

(2.13.1) 

where i denotes the zeta function of Riemann and 

o,(k)= 1 d” 
dlk 

(d runs over the positive divisors of k). 

2.14. The last term is due to holomorphic modular forms; it is only pre- 
sent if mn > 0, so if E = 1. It describes a measure on ( - 4, co) with support 
in {(b - 1)/2: b > 0, b = 12 (n( mod 2). In [ 1, 16.4.5 J we see that the mass 
of d~n,m at (b - 1)/2 may be described in the following way: Let Sb(uIzin,) 
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be the space of holomorphic modular cusp forms of weight b with multi- 
plier system u,~,~, . Each fe SJV~~,~,) has a Fourier expansion 

f(z)= c pk(f)e2*ik=. (2.14.1) 
k>O.k=Jnlmodl 

Let B(b, 12 Inl) be an orthonormal basis of SJU,,,~,); we may choose it in 
such a way that all Pk(f) are real for all f in this basis. Then the weight 
of d~n,m at (b - 1)/2 is for nm > 0 equal to 

2n-‘(4rc m)‘-‘T(b) c PInI u-1 Plml (f) (2.14.2) 
.fEB(b,12Inl) 

and equals 0 if nm < 0. 

2.15. The middle term in Cl, (16.4.1)] is due to square integrable real 
analytic modular forms of continuous series type. It is given by a measure 
with support in a discrete subset of ~(0, co) u [0, (1 - r)/2). As for the 
modular case there are no exceptional eigenvalues (see [S, Proposition 2.1, 
p. 5111 for the case n E Z, and [2, Theorem 2.151 for n $ Z); in our case the 
support is contained in ~(0, co). In [ 1, 16.4.41 a description of this measure 
is given in terms of Fourier coefficients of modular forms of weight r and 
multiplier system ujZqn. In a similar way one arrives at the following 
description: 

Choose qz 12n mod 2. Let A:($, u12,J be the space of real analytic 
modular cusp forms of weight q, eigenvalue a -s2, and multiplier system 
u,~“. So Ai(s, u,~~) consists of the functions S on the upper half plane .%’ 
satisfying 

for (z 2) E X,,(Z) with - n < arg( cz + d) < n and 

f(z)= c Pk(f) Wqsign(k)/2,s(471 lkl y)e2nikx~ 
kmnmodl,k#O 

where W.,. denotes a Whittaker function (see [12, 1.71). 
Ai(s, v,~~) #O occurs only for a--s2 in a discrete subset of (a, co), and 

dim A$s, c12,J < co. Integration over X.,(Z)\&’ gives a scalar product. 
Let A, f2, . . . be an orthonormal system with 

6) fk E Ai@, Ed with sk E 40, 00 1, 
(ii) $-s,~<~-s~~< -.., 
(iii) Each Az(s, ulZn ) # 0 is spanned by some of the fk. 



DEDEKINDSUMSANDMODULARFORMS 297 

Then the continuous series part of 1 $(s) do,., is given by 

x r i-s* + i 4 sign(m)) Pn(fk) Pm(fk) tibk)- 

2.16. We may summarize: 
The integral j $(s) do,, (s) is given by the sum of the terms 

8 

J 

im * 8 

I I 
j-& W) 

o-*s(n) gzs(m) 
iFi0 i(l+2S)i(l-2s)ds 

only present if n E Z, 

iJl;;;;;i f *(r,)r(f-r,+iqsign(m)) 
k=l 

~-Sk+$?Sign(n~ 
> 

dfk), 

and 

c 
b>O.b=12Inlmod2 

XT(b) 1 P,m,(f)P,n,(f) 
fcBlb,12lnl) 

only present if mn > 0. 

2.17. Remark. In most applications of the sum formula it is not 
necessary to use this complicated description of da,,. It often s&ices to 
use the following facts, easily derived from 2.16, if one remarks that 
u 121nl = ~~~~~~ if nm > 0. 

2.18. PROPOSITION. Let n,mER\{O}, nrmmod 1. 

(i) do,,, is a measure supported in 

i(0, co) u 
b-l 
-:b>O, b=12(n(mod2 

2 

if nm>O and in i(0, oo)for nm<O. 

(ii) do,., is a positive measure. 
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(iii) If $ is integrable for da,, and da,,,, then it is integrable for 
do,,, and 

3. ESTIMATE OF da,, 

With Theorem 2 in [4] as an example we now prove a result on the dis- 
tribution of the total mass of da,,. Our aim is not a large sieve inequality 
as in [4], but only an estimate for the measure da,,, itself. Furthermore, 
we have in our situation no analogon of Weil’s estimate of the Klooster- 
man sum which is used in [4]. 

3.1. PROPOSITION. Let n E R\ { O}. 

I 
do,,,(s)4(l+Jnl)T2 for T-rco. 

ISI =s T 

3.2. COROLLARY. Let n, m E R\{ 01, n s m mod 1. 

5 Id~,,,(s)l~ dm d=.b? T2 for T+ co. 
ISI < T 

The corollary follows easily from the proposition if one uses Proposition 
2.18(iii). The proof of the proposition is given in the following lemmas. 

3.3. LEMMA. Let n # 0 and $ < rs < 1. For v > 0 define 

eUS2(s/sin 7~s)’ (cos 27rs + cos 127rn) 
J/“(S) = IO 

for )Resl Go 
elsewhere. 

Then $, E %,, and 

biti, $ y2avb-7’4 for 010 ify< 1, 

bh+,(y) 40 u-2 for vl0 if y> 1, 

5 tiv(s) dh&) < o-2 for ~10. 

Proof As +,((b - 1)/2) = 0 for all b > 0, b = 12 (nl mod 2, it is clear that 
$, E Y+ (a, CJ, n) for all a > 2. If we write down the integral representation 
of 2.7 with the path of integration moved to Re s = cr, then 
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From the series representation of JzS(y) (see 2.7) follows 

J,,(y)* yZRes lQ2s+ 1)1-l for y6 1. 

Hence 

(3.3.1) 

~~~~(y)Qe~“;‘uj~~e-y’2(l+~t()-2u+5’2d~ 

6 Y2av=-714 for 010, y< 1. 

We also have the integral representation 

J.(Y)=;j;‘2 cos(utJ - y sin 0) dtl 

+1 s 
00 e-ru . sm for Re I( > 0 

7c 0 
(3.3.2) 

(see [13, 6.2, formula (7)]). This implies 

J,(Y) < e dImU!/*/Re u for Reu>O. (3.3.3) 

So for y31 

b!,liro(y)4jrn e-“‘*(l + jt13)dt 
-cc 

dC2 for vJ.0. 

Finally 

5 I)“(S) d6,,.(s) = 2 jRelsO k evs28s3 cot 7cs ds 

<jm eMu’*t3 : T ~~~~: dt 
0 

<j: t* dt+ jm e-ur2t3 dt 
I 

GO-* for ~10. 

3.4. LEMMA. Let PIER\(O). 

5 ‘d~,,,(~t)<<(l+ Inl)T’ for T+ co. 
0 
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Proof We use t+GV as in Lemma 3.3. 

&(12% W”) 4 f lQI”(47r IWc)l 
c=l 

G c 47r InI 

( 1 
*a 

v-2+ c va-7i4 - 
1 Ccc4nInl c24nlnl c 

4 InI 
{ 

20 &r - 714 if (n( < l/472 
InI v-2 if InI >, 1/4n. 

The sum formula 2.1 now gives 

I ti”(S) do,,(s) 4 (1 + lnlW2 for 010. 

Take v = 2T-* and remark that It/v 3 0 on the support of da,,,. SO 

4 j- t,b”(s) do,,(s) 4 (I+ InI 1 T4. 

By partial summation the lemma follows. 

3.5. LEMMA. Let a>l, a>2, p>a+l. Let noR\{O}, 2a+lS 
12 (nl mod 2. Put 

i(~)={;p2~s2)-a,2 
for )ResJ >e 
for IRe $1 <a 

with arg(p* - s2) = 0 for s E iR. Then 

0) *E%,~, 

(ii) s W 4,,(s) %,,p 1, 
(iii) bLJl(y)e,,,min(l, y’+“)for some E>O. 

ProoJ The first assertion is clear. For the second one we easily get the 
estimate Co(l) of j $(s) dS,,(s) for those values of n for which 1 +cos 12an 
stays away from zero. For 6n near $ mod 1 we deform the path of integra- 
tion in (2.5) away from zero. This gives an additional term in the sum, but 
a bound only depending on a and p may be obtained. 
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Consider now 

+ c 

with 4 + $E < 0,~ Q such that cos ~(0~ - 6 In\ ) > A. Use (3.3.3) to obtain 
bAt+?(y)&, 1. For y< 1 use J,(y)< Ir(u+ l)I-’ yReu (see (3.3.1)). 

3.6. LEMMA. Let n~R\{0}. 

sp do,,(s) 4 1 + Inl. 
1/2<SQ2 

Proof. Take II/ as in the previous lemma with 0 > 2. As I,$ > 0 on the 
support of do,,. we get 

i -l/Z<s<Z 
do,.,(s) < (P' - c*)='~ j WI don,,(s) 

< j VW) d6,.,(s) + lG,(lk b:vVl 

<l+1<c;4z,n, 1-t c (y’+’ 
r24alnl 

<1+ O+lnl’+” 

i 

if In( d 1/4x 

InI + InI if InI > l/471 

3.7. LEMMA. Let n E R\(O), b = 12 InI mod 2, b > 5. The muss of do,,, at 
(b- 1)/2 is O(lnl +b). 

Proof. The sum formula states that this mass equals K,,( 12n, f) + 
2(b- 1)/n2 with f(y)=(4/x)(-l)(b-12inl)‘2 (b- 1) Jb.-l(y). From (3.3.1) 
and (3.3.3) follows 

b-l 

r(b)-‘, & (b- 1) 

Q 1+ Inl. 



302 ROELOFW.BRUGGEMAN 

3.8. LEMMA. Let neR\{O}. 

s do,,,(s) < InI T-t- T2 for T-r co. 
2CsGT 

The proof is clear from the previous lemma. 

4. ESTIMATES OF BESSEL TRANSFORMS 

To use the sum formula in the opposite direction it is well to have 
estimates of (b:)-’ fforf~ Cp(O, cc). Here I give more or less the results 
of [4, Lemma 7.11 in our notation, and slightly weaker, as I could not 
reproduce all the results in [4]. 

4.1. LEMMA. Let T E C ,“(O, co ), 0 < z < 1, let the support of z be 
contained in the interval (1,8), and let 

s om ICY)I 4 = 2, Y= j- Ir”(y)I dy > 15. 
0 

For X> 0 put 

fk4.Y) = 7wm 

+,$=(b:)-‘f, for n#O. 

(i) (a) For Is1 <max(2,4eX+ l), ~~supp(da,,~, s#(-f, 0): 

t4gd4 
1 + [log X( 

1+x . 

(b) For ZER: 

*;Ait) 4 
1 + [log XI 

1+X . 

(ii) (a) For max(2, X+ 1) < (SJ < max( Y, 4eX+ I), SE supp(da,,,): 

v$(s) $ ISI -3’2 + x I.31 -2 log (SI. 

(b) For toR, Jtl>2: 

$,,(it)< Itl-3’2+XItl-210g It(. 
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(iii) (a) For JsI > max( Y, 4eX+ l), s E supp(do,,,): 

l&(s) 4 Y J&s\ -5’2 $ YX 1.91 -3 log IS\. 

(b) For t~R,ltl 22: 

rr/,,(it)4 Y(ltl -s’2+x2 121 -7’2+x3 It/-“). 

(iv) (a) For SE:(--$,O), ~~supp(da,,,), X2 1: 

l&(s) -4 X2”. 

(b) For SE (-f, 0), ~~supp(dcr,,J, Xb 1: 

with AT(U) = 1: z(y) y”- ’ dy, the Mellin transform. 

Proof Throughout the proof we use Propositions 2.9 and 2.18. We 
denotef=f,, $*=t,k,&, and 

IIf = JoW f(Y) J,(Y) $ 
&f(u) = s* f(Y) K(Y) $. 

0 

From the series for J, (see (2.7.3)), we get for XQ 1, U> - 1 

jf(u)=T(u+ 1)-‘2-“X”~z(u)+O(T(~+2)-‘X”+~); 

in view of 2.9 this gives (iv)(b); we use the absence of exceptional eigen- 
values of continuous series type. 

For CI # 0 we have 

hence for Re tl> 0, a # 0: 

If we use this in the integral representation (3.3.2) we find for u > 0: 

jf(u) e J”/’ 
0 

min(l,&)ds+ J: e-Urmin(l,&)dt. 

641,‘36:3-4 
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Now 

j~‘2min(l,&)d@+l if XGl 

and 

< arcsin X- ’ + X- ’ log tan 4 8 ( i/” arcsin x- I* X- ’ ( 1 + log X) if X> 1. 

For X2 1: 

s 

to 

e-“‘(Xcosh t)-‘dt$X-’ 
0 

and for X,< 1, u >O, with T= log(X-’ +,/m): 

s 
aeY’min(l,&)dt 

0 

= 
I 

T 

e -ur dt + X-’ 
0 

f a e-“‘(cash t)-’ dt 
T 

<<T+X-‘e 
-(u+l)T 

u+l 

41+llogx~+(u+1)-‘x-‘(x-‘+J~)-U-’ 

4 1 + (log XI. 
So for u>O: 

1 + (log XI 
if(u)4 x+1 

This gives (i)(a) in the case s E (0, co). 
From [13, 3.61, (1) and (2)] we see that 

-?7. 

2 sin 271s 
(cos x(s+6 lnl)J,,-cos 7c(s-6 Inl)J-2,) 

‘IEi ni(s-61nl)HII)-nle-~i(S-61"l)H(2) Z-e 4 4 2s 3 

and in [13, 6.21, (lo), (ll)] we find integral representations which for t E R 
amount to 

s 

cc 
e f i.wxxhr - Zilr & 

-cc 

To be able to interchange the order of integration over y and z we first 
move the path of integration to the contour given by R + C: x H z(x) = 
x+ id(x), where 4 is a continuous function, 141 < 1, 4(x) = - 1 for 
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x < - 100, and b(x) = 1 for x > 100. This gives an integral which converges 
absolutely. Now integrate first over y and use 

to see that we can move back the path of integration. Hence for ?ER: 

This completes the proof of (i)(a). 
We also use the integral representation 

J,(y) = .-I 
s 

“cos(u8-ysin8)dB-~S”e-uT-.~si”h*d~ (4.1.1) 
0 n 0 

(see [ 13, 6.2, formula (4)]). We consider this for - 1 < u < 0. The first term 
is 0( 1) and contributes cO( I) to jf(u). The second term contributes for 
x> 1: 

This gives (iv)(a) (see 2.18). 
Now use 

,(,,+” ,-.woshr--urd7 
cc 

(see [ 13, 6.22, (7)]); so for t E R 

KZir( y) = Joa e- ycoshr cOS( 2t~) dT. 
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For (i)(b) it s&ices to consider kf(2it) for t 2 0. 

kf(2it) =; sm F(cosh 7)e*‘” dt (4.1.2) 
co 

with F(U) =jpf(y) e-“-“y-‘dy. We have seen that F(U) 4eeXReu for 
Re u > 0. So for N large 

s 

42 
F(cosh( +N+ ix))e2”‘(kN+ix)dx 

0 

- Xcosxcosh N dx 4 x co;h N. 

This implies that we may move the line of integration in (4.1.2) to xi/2 + R: 

kf(2it) = t jz F(i sinh 7)e2itr-xr dr 
co 

4e-“’ l+ ll%XI 
1+x . 

This gives (i)(b). 
For Reu> 1: 

J”(Y)=&~Rrr=-l (;Yy f((“+sY2) 4 r(1 +(u--)/2) 
(4.1.3) 

as may be shown by moving off the line of integration to the left. So for 
2422: 

q x f((l.4 + 1 + it)/2)/ dr 

--m T((u+l-it)/2)I (-l+ir( (u--l+izl (u+l--71 

This gives (ii)(a) for s = (b - 1)/2 2 2. 
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If we move the line of integration in (4.1.3) to -2- Re U-C Re s < 
- Re u, we get an additional term: 

Ju(Y)=L 4,jjRe,-.(iy)-’ r((“+s)‘2) ds+J& (4.1.4) 
r(1 +(u-s)/2) 

this is valid for o<O, -2-Reu<a< -Reu. We may take Reu=O and 
a= - 1. So for t> 1: 

jf(2it) < 
T(iz+(l+it)/2)) Xdz 

r(iz+(l-iz)/2)\ )-l+izj 12it-ltizj 12it+l-itI 

The 
For 

+ If(2it+ 1)1-l (?I-‘. 

latter term is O(e711’l )tl -3’2) and gives 0((sl -3’2) in (ii)(a) for s E iR. 
the integral we get 

+ xi-*’ 
en’ dz 

--oo (l-r)(l-t-$)(l+t-it)’ 

The last term is the worst one; if we look at - 3t < T 6 - 2t we see that we 
cannot do better than I 

<Xe”‘t-’ m I 
dz 

2r (1+2)(2-2t+t) 
6 Xen’f -’ log t. 

The other terms are also O(Xe”‘te2 log t). This is sufficient to complete the 
proof of (ii)(a). The estimate stated in [4] for this case is a bit sharper 
than the one obtained here. 

If we again use (4.1.4) and perform one more partial integration, we 
obtain from the latter term a contribution cO( Yt-5’2e”‘) to jf(2jt) for t > 2. 
In the integral we get an additional factor Y( 1 + lzl))‘. We obtain in the 
worst case 

xyS-:‘(l--r)*(l--:~(i:)(l+f--‘T) 2 2 

<< XYe”‘t -’ 
s 

m 
dr 

*I (1+2)(2-2t+t) 
4 XYe”‘tm3 log f. 

The other terms also satisfy this estimate. This gives (iii)(a) if Re s = 0. 
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For u 2 31 we may move the line of integration in (4.1.3) to Re s = 1 - U. 
This gives 

2-” 
4_S, ,u-1+iz,2 

YXU-‘8U 
I-(;+ iiz, dz 

r($+u-$7) 

4 Y(4X)“-’ m 
s 

e” --oo (u-l+iz,* If++p 

* Y(4eX)“-’ jr lU-l+iurl-2 f+u-;iur -kI* 
0 

+ Y(4eX)“-’ u-1-u j- (1 +r)-“-Sk 

< Y(4eX)“- ’ u -2-u&-3yJ7 

under the condition u = b - 12 2 max( Y, 4eX+ 1). This completes the 
proof of (iii)(a). 

For $ - we use 

for cr> IRe uJ; (4.1.5) 

by the Mellin transform this is equivalent to 

~=2’-2T(~)r(~) for Res>(Reu(, 

(see [13, 13.21, (8)]). By moving the line of integration we may deform 
(4.1.5) into 

Ku(y)=a&,= -1 2”-1y-sl-(~) I-(y) ds 

+ 2”y-“T(u) + 2-“y”T( -U) for Reu=O, u#O. (4.1.6) 

This gives for t 2 2: 

.f’(y)y-‘dyr(ks+it) .(:,-it) ds 
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SO 

II/-(2it)be”’ X O” 
[I -cc 

I-l+itJ-’ r -;+++ir. 
I ( !I 

xl- 
I ( 

1 1 
-2+2is-it 

)I 
dz+es”‘t-3!2 . 

I 

The term with the integral satisfies 

-(l/*)rr(1t+T/21+1l-~/21) dt 

This gives (ii)(b). 
If we use one more partial integration, we get an additional factor 

(1 + Irl)) ’ in the integral. If one looks at - 1 4 r G 1, one sees that one 
cannot hope to obtain an additional factor t - ’ in the estimate. To prove 
(iii)(b) we-take Re s = - 3 in (4.1.5). This gives two more 

-(~y)~-“f(u-l)-(~y)2+V-(-u-l). 

For u = 2it, t > 2, all additional terms give contributions 

O( Yt p512e--at), resp. O( YX2t-712e-z”). 

For the integral we get 

terms in (4.1.6): 

-(1/2)x(f+7/2+ir~t/*/) dT 

GyX3/Oyl+ ) (l+t te* 

<< YX3eC”‘t p4, 

which completes the proof of (iii)(b). 
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4.2. LEMMA. Let n, m E R\(O), n = m mod 1. Take @‘, as in Lemma 
4.1. 

(i) (a) Zf nm > 0 and there exists be (0, 1) such that b z 
12 Jnj mod 12, then for X< 1: 

J $&(4 don,,(s) 
=7t --I - ‘-bA!r(b-l) 

N(b) 
Z’lnj -b/n(b) PI~I -b,12tb) 

+ ~(J~ &-jLq ( y”* + (log Xl)) 

with 

dx dy N(b) = s,,, Mz)l 4b yb y2 
and pk the pO~ynOi?d given by np=, (1 - q)*’ = c,“=, pk(b)qk for (41 < 1. 

(b) Zfnm>Oand Inl#(O,&)+Z, thenfor X<l: 

j- t&49 don,,(s) e J’=i Jr+l,r (Y”* + Ilog XI ). 

(c) Zf nm>O, then for X>, 1: 

(ii) Zf nm < 0, then 

i 

( Y “2 + (log XI ) if X,<l 

@ JiTiij Jiqq (Yl’* + X(log Yy) if 1 <x< Y”2 

X(log X)2 if x>, Y112. 

4.3. Remark that the N in (i)(a) is continuous on [0, 00) and satisfies 
N(0) = x/3. The polynomials pk satisfy p. = 1, ~~(0) = 0 for k > 0 and the 
degree of pk is at most k. 
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4.4. Proof of Lemma 4.2. We first consider + ~- = $G~. Remark that 
Lemma 4.1 gives for f E R: 

$-(it)@ jtJ-3’2+XItJ--2log )tj 

i 

t1+ lb3 XlMl +a for )tl < B 

for B6 It] G C 

Y lp2+X2Y lt)-‘!2+X3Y 1q4 for It\ > C 

with B = max(2, X) and C = max(X2, Y). Put c( =,/m dm; from 
Corollary 3.2 we get 

I B< ,s( <c C(s) do,,,(s) + ate”‘+ mog Cl’) if C>B, 
-. . 

s, 
,s,, c t/i-(s) do,,,(s) -4 aY(C-ll’ + X2Cp3” + X3C2). 

Hence 

a( Y ‘I2 + (log XI ) if Xdl 

1 $ -(s) do,,(s) 6 a( Y1’2 + X(log Y)2) if 1 <X< Y1/* * 
(aX(log X)’ 

Now we consider $’ = $l,. Let SE s 

(2-2~ 

if X>, Y l/‘. 

if -$ts<O, X>,l 

if Isl<L, s$(-+,O) 
if L<JsJ GM 

4 if JsJ>M 

with L = max(2,4eX + 1 ), M = max(4eX + 1, Y). Similarly as in the 
previous case we obtain 

s ~4(~1,20!~+(s)~~~,*(s) 
< Jm-4 Jiqq { 

((log X( + Y 1’2) for Xbl 

(X(log Y)2 + Y 1’2) for l<X<Y 

Xlog x for X> Y. 

For X> 1 

which may be absorbed into the estimate we already have. 
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From 2.18 we see that (b - 1)/2 E (- 4, 0) n supp(dc,,) occurs only if 
nm >O, O<b < 1, and 12 (nl rb mod 2. But in (2.14.2) we see that an 
additional condition is S,(u,,,,, ) # 0. This implies 12 [nl = b mod 12 and 
Sbh2,n,) = c * vZb, with q the Dedekind function 

rl(z) = e*aW24 fj (1 _ pj=). 
k>l 

Define N and pk as indicated in the lemma. From (2.14.2) we see that the 
weight of da,, at (b - 1)/2 is given by 

WC ,/‘$%l-‘Ub) P,,, +2(b) P,m,-b,,*(b) 
z*N(b) 

(4.4.1) 

So up to a term which may be absorbed into the error term we obtain from 
j”- 1,2 II/ + ($1 d~n,nh) th e contribution given in the lemma. 

5. DISTRIBUTION OF DEDEKIND SUMS 

In this section Theorem 1.3 is proved. 

5.1. Notation. Let KEZ, T be as in Lemma 4.1, and x be a Schwartz 
function on R. We define for Z>O: 

A(lc, x; Z) = f c-‘z(Z/c) c* e2”i”dX(12S(d, c)). 
c=l dmodc 

The dependence on z does not show in the notation. 
By investigating the behaviour of A(K, K; Z) for Z-, co we get informa- 

tion on the distribution of the (S(d, c), d/c). 

5.2. Take X=X(n) = 47~ ,/ln(n + rc)l Z-’ for n ER. The sum defining 
A(K, x; Z) is finite for each Z, so by Fourier inversion: 

) c 
* e2aixd/c + 24ninS(d, cJ~(~) & 

dmod c 

By the sum formula 2.1 and Proposition 2.9(iv) 

with e(n) = sign(n(n + K)). 
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5.3. To estimate n(lc, 2; 2) we shall use Lemma 4.2. The dependence of 
the error terms on x will be described by 

N,(X) = jm lx”‘b)l du for 1E 2, 130. 
-cc 

We assume x # 0, hence N,(X) > 0 for each 12 0. 

5.4. PROPOSITION. For K, K, r as above dt$ne 

g,(x; 6) = 6a2jN(b) g P,(b) Pk-eIKIW 
k-0 

.(,((k+&)signx)+i(-(k+lkl+h)signK)) 

with sign K = 1 if K = 0. Put 

A = max( 1, NJx)“~ N,(X)- 1’3) 

B=min(l, N,(X) N,(x))‘). 

0) bt-*g,(x; b) IS continuous and bounded on [IO, 1) and 
,. 

g,(x; 0) = 
i 
x-zx(o) if K==O 
0 if K#O. 

(ii) For Z>4n(2+ ]K/ + A): 

.4(qx;Z)=~’ Z’-bg,(x;b).Mt(b-l)db 
0 

SO 
(( 

Y l’* + log 
Z 

47r(l + 14) > 
(l+ IKIN +lW + lJd))* 

.~l(XKA + (log W2) . 
> 

ProoJ Let bE(0, l), kEZ, k>O. Take n=k+b/12 and m=n+ IK(. 
From Corollary 3.2 and (4.4.1) we see that 

p,(b) Pk + ,x, (6) N(b)-’ 4 (4~ ,/fk + b,‘12)(k + 14 + WWb- ’ 

.J,mJl+k+IK(+b/‘12 

r(b) 
(5.4.1) 

So for kZ1: 

p,(b) Pk+ jrcj (b) 

N(b) 
-3JW-G. 

This shows that the series defining g,(x) converges absolutely, uniformly 
for 0 <b < 1, with bounded sum. As all terms are continuous on [O, 1) 
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and as the terms with k 2 1 are 0 at b = 0 (see Lemma 4.2), we get the 
continuity on [0, 1) and 

g (*. 0) Jo(O) PlKl(O) 
I( 9 67rN(O) MO) + f( - K)). 

So (i) follows from Remark 4.3. 
Now we apply Lemma 4.2 to estimate the integral in (52.1). We use 

b!(n)l@ NO(X) f or n E 178 and Ii(n)1 <N,(X) In/--[ for n # 0 and ZZ 1. 
Let us first consider the integral over n(n $ PC) ~0. This case is only 

present if rc # 0. Put E = sign K. As n(n + K) = (n + +rc)’ - $x2 < 0, we have 
In(n + u)I < a 1K12, InI 6 ILL and X6 27c I~]/26 1. Further (1 + Inl) 
(1+~nfKl)<<(l+lKl)*. so 

We used the symmetry under n t-, -u-n. The integral over 0 < InI G 
C := min(B, $1~1) is estimated by 

~(l+lul)No(~) Y”*+log 
( 

z 
4h/ia 

+ (log Cl c 
) 

et1 +lWW); Y 1’2 + log 
z 

4n(l+ 14) 
+log(l+IKJ)+IlogBI 

> 

< y”*+1og 
( 

z 
4n(l+ 14) > 

(I+ bl)(l +hidl+ Id)) 

.N,(x)(l+ Ilog BO. 

For the region C< (n( <D := min(A, f Ircl) the integral, if present, is 

.N,(x)(llog 4 +b A) 

6 y”2+10g 
( 

z 
47$1+ 14 1 > 

(1 + l4)(1 +hdl+ Id)) 

. N,(X)(log A + llog Bl* + 1). 
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Only if 4 ) KJ > A we have to consider the integral over A < In( < 4 IK( : 

$(I + /K-I) y”*+1og 
( 

z 
4.c Jrn > J 

N4(X) ‘W2 x -4 dx 
A 

@(I +IKI) 
( 

Y"*+lOg 4a(lZf,K,)+10g(l+irl)+10gA N4(X)Am-3 
> 

z 

4n(l+ /K() > 
(1+ lKl)(l +logtl+ Ik.l))N,(X)(l +logA). 

Now we turn to the region n(n + K) > 0. Lemma 4.2 gives several 
error terms to be used for n(n + K) in the regions (0, (2/4n)*], 
c(Z/4~)*, (YZ/47d21, and [( YZ/4n)*, ocl), and an explicit term which may 
be present if 0 < n(n + K) Q (Z/47~)~. 

We first estimate the integral of the error terms. We write n = - $K +x, 

X > ; IK1. Then n(n + K)=x~--$K~ and ,,/mJm = 
J(1+X)2-~K2. 

The case 0 < n(n + K) < (Z/47r)’ gives a contribution 

s 
,~:~‘2+‘K’2’4~~(Ylf*+~og4~~~) 

-(If(&(~~-~~K1))1+1~(-&(x+~~~~))~)~x with E=sign(rc) 

4 

B+ lh-I/2 

(I+ IJd) No(x) 
/KI/2 

Z 
Y1’2+10g4n(l + ,?c,) +1+~lOg(X-f~Kl)~+lOg(*+,K,))dx 

+s 

A + IKID 
(1 +x) y”*+1og 

( 

Z 

B + Id/* 4n pqi > 

.N,(x) (x-i ,Kl)-l dx 

I 

,/LZ/4n)*+ u*/4 
+ 

A + IK//~ > 
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The first term is 

< BY”*+Blog 
( 

z 
4x(1+ 14) 

+Blog(l+JKJ)+BllogBI 
1 

( Z 
-% y”2+10g4x(1 + ,ic,) > 

(l+ IJcl)(l +log(l+ IJd)) 

. N,(x)(llog 4 + 1); 

the second term is 

es,1 (l+y2+ I)( Y~“+lo~~-~lo~~~~~+l~I~~ N,(X)& ) 

,((l+~,Kl)log~+*) 

’ yl’* + log 
( 

4n(lZ+ lK,)+log(l + 14) N,(X) 
1 

+[$w*)lyy ) + 1 (Ilog 4 + log(l + Id)) dY 

+ (something < 0) 1 
( Z 

4 y1’2+10g4n(l + ,Ic,) 1 
(1 + IKl)(l+ 141 + Id)) 

.N,(XP + (log @*I; 

and the third one is 

G y”*+10g ( Z 

4x(1 + 14) 
+log J$& 

> 
mw3 

4 y”*+10g ( Z 

47$1+ 14) 
+log(l+ 14) N,(x)(l+ Id +A) 

> 

a y”*+10g 
( 

Z 

4x(1 + 14) > 
(I+ ld)(l +log(l + 14)) N,(XM 
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The integral of the error terms over n(n + K) 2 (Z/4x)* is estimated by 

1% Z 

$ [ Y1’* + z-2Y- l log Y] N,(X)A. 

This shows that all error terms in Lemma 4.2 lead to contributions which 
may be absorbed into the error term of this proposition. 

We are left with the following term: 

where we integrate over W= (ER: O<n(n+~)<(Z/47c)~, Jn) E 
(0, &) + Z}, and where b=b(n) is determined by b(n)= 12 InI mod 12, 
O<b(n)< 1. 

Let U={n~R:n(n+~)>/(Z/471)~, ln(~(O,h)+Z}.Ifweintegrateover 
U instead of over W, we get something that in view of (5.4.1) may be 
estimated by 

27$,/a b-1 
Z > 

Jiq/‘l +k+ lK( &4&N,(X) 

QC l+log 
k 3 ko 
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with kO = [ (2/4a)* + k-*/4- 4 IKE], and [ +] the integral part. So 
kOa Z/&z - 1, and the integral over U is O(MV,(x)). This means that we 
may replace the term in (5.4.2) by 

. (i((k + b/12) sign JC) + f( -(k + 11~1 + b/12) sign IC)) db 

= 
s 

l z’-g,(x; b) d%k(b- 1) db. 
0 

5.5. LEMMA. For ICE 2, x a Schwartz function on R, put 

SM(JG Xl’ c 
M/2<c<M 

Then 
26-l- 1 

b-l db 

+ l!&,(M’i3) for M-+ 03. 

Remark. The constants in 0 may depend on K and x. From here on I 
do not keep this dependence explicit. 

Proof: Take z in Lemma 4.1 and Proposition 5.4 in such a way that 

I 
1 

r(y)= o 
for 2<y<4-2a 
for y<2-a and for ya4. 

This may be arranged with a = O( Y-l). 
Put 

TM= c 1 ,rc 1; 
M<c<2M/(2-a) ’ 

then 

ISM(K, X) - A(& X; 2M)I < (TM -I- TIM/Z) IIXII m 

with IlXlIm = s”P.x~R /x(x)1. Trivially estimating TM we obtain 

&(K,X)=n(K,x;=f)+O,(hfY-‘+ 1). 

By Proposition 5.4 

4c,x;2M)=/’ (2M)1-bg,(x;b)&(b-1)db 
0 

+ OK, x( Y “2 + log M). 
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Now we take T such that Y= A4*13; so 

319 

s~(K,X)=j1M1-b2’-*gr(X;6)~7(6-1)d6 
0 

+ O(M 1’3 -I- log M). 

As ~%‘7(6 - 1) 6 1 for 0 < 6 d 1 and g,(x, -) is bounded, we get 

Let 7. be the characteristic function of [2,4], so ~Xr,(b - 1) = 
(2 

2(b- 1) -2’-‘)/(b- 1) and 

2l- b,Xz(6 - 1) -2b;:; ’ =21-b&(z-to)(6-1)4a<< Y-l. 

so 

+ @(MY-’ + M1’3 + log M). 

5.6. PROPOSITION. Let x be a Schwartz function on R, K E Z. Then 

z-2~:mx(x)dx if h.=O = 
0 if k.#O. 

ProoJ The quantity to estimate equals 

= log M j;” M-bg,(x; 6) 
1 _ 2’b - 1 NC*loiml + 1) 

l-6 
d6 

+ 0(M-2’3 log M) by Lemma 5.5 

= log M j2’3 Wbf(6) d6 + B(M-2’3 log M) 
0 
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withy(b) =g,(x; b)/(l -b). This function f is continuous on [0, f] and 

f(O)= o 
I 

n -‘i(O) if x=0 
if K # 0. 

We show that 

s 213 

lim M-b log Mf(b) db = f(0). 
M-+co 0 

For given E > 0 take b E (0, 3) such that (f(b) - f(O)( < E for all b E [0, /?), 
and take M > E -‘la; then 

M-bf(b) db-f(0) 

,<logM O’M-bIf(b)-f(0)l db+M-8 If(O)1 
I 

I 
213 

+logM M-’ If(b)1 db 
0 

~~~~---B~+~(lf~~~l+llfIl,~. 

5.7. Proof of Theorem 1.3. Put X= C,(R x (R/Z)); define the linear 
forms v and vM on X by 

v(g) =; j;, jR,, g(x, Y) d.v dx 

vhf(g) = !!@! 5 5 I* g (lZS(d, c), 3. 
M 

C=l dmod c 

We must prove that for all g E X: 

lim v,&g) = v(g). 
??I-.03 

(57.1) 

Remark that Proposition 5.6 gives (5.7.1) for 

g=g,,: (x, y)w-,(x)e2”‘KY 

with x a Schwartz function on R and JCEZ. So (5.7.1) is valid on the 
subspace Y of X spanned by the g,,. 

Let X, be the subspace of X of functions g with supp(g) c (-IV, A’) x 

(R/Z). Put Y, = X, n Y. By the theorem of Stone-Weierstrass each g E A’, 
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may be approximated in the supnorm on C-N, N] x (R/Z) by elements of 
the form 

k 

(x, Y)H 1 $K(x)e2n'K? 

K= -k 

with (bK~Cm([-NN, N]). W e may find Schwartz functions xK with support 
contained in (-N - 1, N + 1) extending the dh. without making their 
supnorms larger. In this way we see that g E X, may be approximated in 
the supnorm by elements of Y, + 1. 

Fix a Schwartz function x on R with O<x< 1 and x = 1 on 
[-N-l, N+l]. For each /zEX~+~ we have h=hgx,o. So IvJh)l< 
l(h(l, v,(g,.,). As (5.7.1) holds for g=g,,, we see that 

Ivdh)l 6 c,, 1 llhll m for all Ma1 and all hEXN+i. 

So for given g E X, choose h E YN + I with 1) g - hJj z small and use 

Iv/w(g) - v(g)1 G CN, 1 Ilg-hllco+ lv,dh)-VJY +2(;:1J Ilh -41 cc 

to conclude that (5.7.1) holds for this g. As X= U,y, 1 XN this completes 
the proof. 
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