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Families of automorphic forms

Roelof W. Bruggeman

This is a corrected and slightly expanded version of the notes for my lectures at
Cérdoba, Argentina, October 24 — November 14, 1995.

The aim was to free the audience from the need to make notes, and to help those
readers on their way who want proofs or more details. In the lectures not all subjects
mentioned in Lthe notes have been discussed. 1 give pointers to the literature, but [
have made no attempt to be complete, or to point always to original sources.

It was a great pleasure to visit Cérdoba and to give these lectures. I thank the
Facultad de Matematica, Astronomia y IFisica of the Universidad Nacional de Cérdoba
and its members for their hospitality. I thank the audience in the lectures for their

“interest. Especially I thank P. Kisbye, 1. Pacharoni and C. Will for many suggestions
and corrections to the notes, which I have gratefully incorporated. Of course, all
remnaining inaccuracies and mistakes are my responsibility.

1 Modular forms
1.1 Doubly periodic functions

To motivate the study of real analytic modular forms, let us first look at functions
on R? that are periodic for the lattice Z2. Fourier theory lells us that L? (R? mod Z?)
has an orlhonormal basis consisting of the functions (z,y) = €>"("=+™%) with (n,m) €
Z?. These functions are real analytic, and are eigenfunctions of the Laplace operator
02 + 2. Fourier theory gives the spectral decomposition of (the selfadjoint extension

of) the Laplace operator. :

We introduce a complex structure by identilying R? with C. Then Z? corresponds
to the latlice A = Z + Zi. Among the doubly periodic functions given above only
the constant one, with (n,m) = (0,0}, is holomorphic. Il we want more complex
analytic doubly periodic functions, we have to allow poles. Thus one arrives at
elliptic functions, which are meromorphic on C and are invariant under translations
by elements of the latiice A. See, e.g.; [15, chap. 1].

One can stay within the realm of holomorphic functions by relaxing the condition
of periodicity. Then one arrives at theta functions, that are holomorphic and satisfy
[ (v + w) = p,(u)f(u), with ¢, a simple exponential factor. See, e.g., [15, Chap. 18].

We shall consider similar ideas in the situation where R? = C has been replaced
by the upper half plane, and the group of translations over elements of Z? = A by a
group of non-euclidean motions.

1.2 Upper half plane

We denole the upper half plane by H:={z € C:Imz > 0}. It inherits a complex
structure from C.



The group SLz(R) of real two-by-iwo matrices with determinant 1 acts on H by

the fractional linear transformations (:3) tz (‘:3) Pz fb’; This is an action
of PSLy(R) := SLy(R)/ {£]}. Note that the maps z + g - z are holomorphic.

Any discrete subgroup I' C SL2(R) can play the role of the group of Lranslatious
over the lattice A = Z + Z above. In these lectures I restrict mysell to the modular
group Dyoa 1= SLa(Z) = { (':3) € SLy(R) : a,b,c,d € Z}. So we will be interested

in functions f : H — C that satisfy f (ﬁ%) = f(z) for all (‘:5) € I'inoa-

Hyperbolic geometry. The upper half plane is a model of plane hyperbolic non-
euclidean geometry. The hyperbolic lines are the vertical half lines and the half circles
with center on the real axis. In a sketch one easily convinces oneself that, given a
hyperbolic line £ and a point P outside it, there are infinilely many hyperbolic lines
through P that do not intersect £. See [20, I1.12] for a further discussion. Lehner
works mainly on the disk {w € C : [w| < 1}, which is equivalent to H under w = 33,
_; Lw
z=17T0.

The fractional linear transformations by elements of SL,(R) send hyperbolic lines
to hyperbolic lines. In fact, these transformations form the group of all motions of
plane hyperbolic geometry.

We s{')na.ll consider functions on H that are invariant under the group of nou-
cuclidean motions determined by [y0q-

Riemannian metric. The upper half plane carries also a differential-geometrical struc-
ture. The metric (ds)? = y~2 ((dz)? + (dy)?) is invariant under the action of SL:(R)
on H. The length of a smooth curve parametrized by [a,b] — H : ¢+ (x(t),y(l)) is

f: Vz'(1)? 4+ y'(t)2y(t) " dt. The geodesics for this metric are hyperbolic lines. For a
further discussion, see, e.g., [26, 1.4], or [12, 1.1)}.

This Riemannian metric determines the invariant measure du(z) := d—"'*y‘,‘“‘ and the
hyperbolic Laplacian y? (92 + 92). See, e.g., [12, 1.6].
Fundamental domain. Let F be the region {z € H : |z| < }, 2] 2 1}. (Ilerc and
in the sequel we use the standard convention z = Rez, y = lipz.) The region I 1s
bounded by parts of hyperbolic lines. It has the properties that Vyea - I = H, and
that 2z, = 7.2 for 7 € Tyoa and 21,22 € F, 2 7!)22, can only hold if z; and z, are
on the boundary of I*; see [36, 1.4]. We know a I'jnoq-invariant function completely if
we know its values on F. 4
The quotient. We can view Yjoq := T ,.,94\7'{ as the fundamental domain F' wilh
boundary identifications: iy—1 is identified to iy +3 for y > /3, and ' is identified
to e(*=9 for 8 € [n/3,7/2]. Topologically, Yn,oa is a sphere with one point deleted.
In algebraic geometry one fills up the hole and works with the completion Xjoa =

Yioa U {00}, which is the projective line over C. The point co is called the cusp

0[ X mod-
The Riemannian metric on M induces a metric on Yjneq. It is degencrated at the

points corresponding to ¢ and to e™/3(the horizon is not 27, but , respectively 2 /3
in these points.) The total volume of Yoq is finite, but the tentacle corresponding to
the upper part of F is infinitely long.

1.3 Modular forms of weight 0

Invariant functions. Let us consider functions on H that are invariant under I'yeq.
Some authors call this modular functions; I prefer to restrict this name for a more
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special type of I'oq-invariant functions. .

The first. trivial example is the constant function z — /3/7. It is of course Tpyod-
invarianl, holomorphic, and an eigenfunction of the Laplacian. Actually, one often
works with minus the Laplacian L := —y? (82 + 82).

Fisenstcin series. Let s € C. The function z — y® is an eigenfunction of L with eigen-
value s — s2, but it is invariant only under the subgroup T'® , := {:i: (; 'l') € I‘m.,d}.

A naive approach is to consider the sum

Z Im(~y - 2)°.

’!Er:‘,d \Fmed

I this converges absolutely, it defines a I'yyog-invariant function. This turns out to
work for Re s > 1. To check the convergence, note that the sum equals 1 ):( edy (Y[ lcz + d|?)’,

where (¢, d) runs over the pairs of coprime integers. This defines the Eisenslein series
E(s, z), a [joq-invariant eigenfunction of L with eigenvalue s(1 — s). See {12, 3.1-2]
[or a more general discussion.

An estimate shows that E(s,z) = y* + O (y'""¢") as y — o0. So il we go to
the cusp oo, then |E(s,z)| tends to infinity. A computalion shows that [F(s) is not
an clement of L?(Yod, dyt). Here we see an essential difference between the compact
quotient. R? mod Z2 and Y04 = I'mea\H. All continuous doubly periodic unclions

are bounded, but continuous [yog-invariant functions can approach infinity near the
cusp.

Poincaré serics. z + y° is not the only I'? ,-invariant eigenlunction of the Lapla-
cian. For suitably chosen functions k : z +— €™ p(y) the sum 3 1w \limoa (v-2)
converges and defines so-called Poincaré series, thal are meg-invaria.n{' Eigenftmcﬁions
of L with eigenvalue s — s?. The growth at the cusp is in general exponential. These
Poincaré serics are discussed in [27] and [28]. For a much wider context see {24].
There is another type of Poincaré series, see, e.g., [35, §3). These functions are
clements of L*(Ymed,djt), but are not eigenfunctions of the Laplacian.
Modular functions. This name we reserve for meromorphic [y e¢-invariant functions
on H. By mcromorphic we mean that the function should be meromorphic on the
whole of Xped- At the cusp this condition amounts to holomorphy and exponential
growth in y. The modular functions form the field C(j), where j is the modular
invariant, sce, c.g., [15, Chap. 3, §3].

1.4 Holomorphic modular forms

Other weights. 1 we relax the condition of ['j0q-invariance, we can get many non-
trivial explicit examples. A holomorphic modular form we define o be a function
f : H — C that is holomorphic on H, bounded as y — co, and salisfies

I (‘c’;jg) = (cz+d)f(z) for all (‘:;’) € Trmoat. (1)

The number k is called the weight.

Eisenstein scries. For even k > 4 the series E;’m (nz +m)™* converges absolutely
for each z € H, and defines a holomorphic function Gy on the upper half plane. The
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3.3 The continuous spectrum

Continuation of the Eisenstein series. Iuspection of the Fourier expansion ol the
Fisenstein series on page 7 shows that E(s,z) has a meromorphic continuation as
o function of s € C. The singularities occur at points where ((2s) = 0, and at
s = 1; they all have first order. The transformation behavior under I'poa stays
valid under continuation and taking residues, and so does the relation LoE(z,8) =
(s — s%) E(s, 2)- There is also a functional equation, relating E(1 — s,2) to E(s, ),
which can be figured oul from the Fourier expansion and the Maass-Selberg relation.
The residue at s = 1 is a constant function. The constant functions form a onc-
dimensional eigenspace of Ay in Hg.

The proof of the meromorphic continuation of the Eisenstein serics [rom inspection
of the Fourier series can be found in [22, 1V.3]. The approach in {16, Ch. X111] is
based on the summation formula of Poisson. Both proofs are bound Lo an arithmetical
situation. Tor discrete groups T' not related to the modular group, they do not work.
There one needs the resolvent of Ao. Several approaches based on this idea of Selberg
one finds explained in [11]. The resolvent is also used in the approaches ol Faddeev,
[9], and Lax and Phillips, [19]. Faddeev’s proof is expanded in {16, Ch. XIV]. The
approach of Colin de Verdiere, [7], looks more like that of Lax and Phillips; 1 discuss
it in Subsection 3.4.

Theorem 2 Let H§ be the ovthogonal complement in Hg of the space C-1 of conslant
functions. The Hilbert spaces H§ and L? ((0,00),%) are isomorphic. The isomor-
phism between these spaces s induced by the Eisenstein transform

£ = [ Bt+1/2,2)/(:) dulc)

for bounded f € Ho. The restriction of Ag to Hg corresponds to multiplicalion by
% + (2 under this isomorphism.

This resull is discussed in [12, Ch. 7], and in {16, Ch.XIV]. A more general point ol
view one finds in [16, Ch. X111}.

For bounded f in Hy the integral defining £ f converges, and defincs a continuous
square integrable funclion on (0,00). This map f = £f is conlinuous in L3-sensc.
Hence it exiends as a map Ho — L*((0,00), %) The theorem statcs that the kernel
of this extension is 11 ® C - 1, and that the induced map I — L* ((0, 00), %) is a
unitary map. |
Spectral decomposition. We have seen that Ho = (HS ® C-1) @ Hg. The restriction
to HS@C- 1 ol self-adjoint operator Ag has a discrete spectrum; the restriction to H§
has a continuous spectrum. For r € (~12,0) U (0,12) the operator A, has a discrele
spectrum in H;.

3.4 Pseudo-Laplacian

In the spectral theory of modular forms the presence of the cusp oo causes problems.
In nost proofs of the meromorplic continuation of the Eiscnstein serics, these dif
ficulties are overcome by giving the kernel of integral operators a special treatment
near Lhe cusp. Interesting in the approach of Colin de Verditre, [7], is the use of
another operator, the pseudo-Laplacian.
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I explain the main ideas in the situation of r = 0. I write H = Hy. The ideas are
from [7]; I refer to [5] for proofs.

Sell-adjoint operator and sesquilinear form. For smooth f,g € H with compact
support in ¥,.q we have

(Lof,g) = / V. Vgdedy,
F

where V[ - Vg is the scalar product of the gradients; sec [12, 4.1]. We define the
subspace D ol those f € H for which y||Vf|| is square integrable on F. We give D
the structure of a Hilbert space by defining

(F9)o = (f.9)+ [ VI-Tgdudy.

The inclusion D — I is not a compact operator, due Lo the presence of the cusp.
(Sece, e.g., [5, 6.2, 6.4].)

On the space D we have the sesquilinear form s[f, g] = [ V[-Vgdzdy, extending
the linear form (Lof, ¢) on smooth compactly supported clements. Now we use the
lheoremn thal sesquilinear forms of this type correspond to self-adjoint operators (see,
e.g., [13, Chap. VI, §2.1]). This implies that there is a unique self-adjoint operator A
in H with domain contained in D, such that s[f,g] = (Af,g) for all f € dom(A)
and g € D. The choice of s implies that this operator is the sell-adjoint extension Ag
of the Laplace operator. (See, e.g., [5, 6.5].) One calls this way of obtaining Ag the
Friedrichs exlension.

Truncation. 'T'he resolvent of the operator A is not compaci. We go over Lo smaller
spaces Lo arrive at another operator, that has a compact resolvent.

We fix a > 5. The map [ — Iof has an L%-interpretalion. We define °H as the
subspacc of Lhose f € H for which Fof = 0 on (a,00). So "H is a closed subspace
of H. We define °D = *H N D, with the scalar product (-,-)p. This inclusion °D — 3H
is compact, [5, 8.4.8]. The sesquilinear form s restricled Lo 1) corresponds o a
sell-adjoint. operator "A in 1, with compact resolvent. (Sce [5, 9.2.2], wilth ¢ = 0.)

The relation between this operator °A and Lhe Laplacian is discnssed in [5, 9.2.5):
Consider [ € dom(°A), and test it against a smooth ¢ € H with compact support
in Ymml:

("Af,9) = (/, Log) + d(f) Fog(a), (3)

for some d(f) € C. Il Iof is a smooth function on (5,a], then
d(f) = lim - (Fof)' (1)-

We shall show the proof of this relation in 3.4.1.

These resulls mean that, in distribution sense, “A is equal to the Laplacian Lg
everywhere on I, except at the level y = a, where it differs from Ly by a delta
mnclion acling on . The operator ®A is the pseudo-Laplacian of Colin de Verdiere.
Continuation. We want to show that there is a meromorplic family s + E(s) of
modular forins with polynomial growth and eigenvalue s = s— 52, that coincides with
the Eisenstein series for Res > 1. In order to do this, we solve (Lo — s 4 s2) X = 0.
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Pake a smootli function g, : (0,00) = C equal Lo 0 oun (0,5) and ou (32, 0)
equal o a linear combination of y* and y'~* such that p,(a) = |. We define £,
F — C by hy(2z) = p,(y), and extend it to H in a [yeq-invariaut way. We define
ky = (Lo — s + s?) I,. This yields a holomorphic family C — °H : s +— &,.

Let R(s) = (“A—3s +5%)”" be the resolvent. We use this meromorphic family
of operators in “l to define a meromorphic family s +— g, of clements of “If by
gs = R(s)k,. The Fourier term Fyg, is given by a linear combination ¢;(s)y’+ca(s)y' ™
on (%, a), and vanishes above y = a. Define §, on F' by §,(z) = g.(s) fory S« and
3a(2) = g5(z)+cr(s)y® +ca(s)y' = for y > a. This defines a [yyog-invariant function g..

We comnbine the two solutions hy, and §, of (Ly — s+ 52) X = &, to the solution
E, := hy—§, of (Lo — 5+ 52X = 0. The condition Fyf,(a) = | determines this
solution uniquely. Indecd, the non-zero difference of iwo solutious would be a mero
morphic family of eigenfunctions of 4 with eigenvalue ranging through C, which is
impossible for a self-adjoint operator.

The square integrability of g, implies that its Fourier terms ol non-zcro order are
quickly decreasing, so the same holds for E,. The Fourier term of order 0 looks like
Fol,(y) = A(s)y® + B(s)y'™*. If A would vanish identically, the family would be
square integrable for all s with Res > 7, which is impossible. Thus s — -A—("—)E, is a
meromorphic family of modular forms with a Fourier series of the same type as thal
of E(s). The Maass-Selberg relalion (see page 7) implies that il is the Eisenstein
series for Res > 1.

It is much more complicated Lo prove the meromorphic continuation ol the Lisen-
stein series in this way than by looking at the Fourier expansion. Bul this proof works
in a much more general situation, and can be extended to give the continuation in
weight r and spectral parameter s joinily.

3.4.1 Proof of (3)

Here 1 give the proof of formula (3), and the expression for d(f) if Iof is simooth on
(5,a]. This gives me the opportunity o go deeper into the gradient V f.

Yo [ € C%(Laua\H) we have Vf = (;;). The functions fr = 2L and f, = 2

Dy
have a complicated transformation behavior under the modular group. I is belter Lo
work with B} f = 2iyf. + 2y f, and Eg f = —2iy £ + 2y f,. These functions E£ [ have
the transformation behavior ol weight +2 for the trivial multiplier system. So we can
define Dy as the subspace of Lliose f € Hy for which Lhe distribution derivatives E‘J’,‘f
arc given by square integrable functions.

The distribution derivative EX f is determined by

(B3 [, kz) = — (f, EJ, k4 ) for all smooth ky € Ny,

Here I3 means the space of smooth functions h on H that salisfy h(y-:) =
e2ikerg(crztda} )y (2) for all 4 € Luod, for which |h| has compact support in Yeq. The
differential operator EZ, is defined as +2iyd; + 2yd, £ 2k. (It is the operalor in
weight 2k coming from Lhe element ( _(1)) =3 ?:) of the complexilicd Lic algebra.)
Il f is a smootl function, this relation between EZ and EF, can be checked by apply
ing Stokes’ theorem to the differential form :I:zyi fh— % fh on a truncated fundamental
domain (take the truncation above the support of [A]).
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Note that (yV f,yVh) =15 (E f, Eg:h).

Formula (3). Let g € Ko = C®(Tmoa\H). So g is smooth, [ped-invariant, and has
compact support in Yied. First we con81der the case that I"og = 0 on (b, oo) for some
b € (5,a). Then g € °D, and s[f,g] = 13, (E5/,Efk) = -1 (f,EL,Efg) =
(f, Log). On the other hand, s[f,g] = (°Af, g), so [or this g formula (3) holds.

This leaves only one type of functions g still to be considered: g(z) = g,(z) = ¢(y)
for z € I, ¢ € C(0,00), Supp ¢ C (5,00). If the support of ¢ is contained in (5, a),
then g, is of the type already considered. If the supporl of ¢ is contained in (e, 00),
then all terms in (3) vanish (remember that f and °Af are elements of "A). Let us
consider Lhe antilinear form

6:0— ("Af,90) = (f, Logy) -

It is given by integrating ¢ and its derivatives up to second order against square
integrable funclions; hence & is a distribution in the second Sobolev space on (5, 00).

The support of § is contained in {a}. Theorem 4 in [18, XI, §4] shows that é is a linear
combinalion ol the delta-distribution at a and its derivatives. If we show thal 6 is in
the first. Soholev space (integration of ¢ and ¢’ against square integrable lunctions),

- then only Lhe derivative of order zero can occur.
We have ("Af,g,) = _[:: Fo"Af(y)tp(y)sil. This is continuous for the first Sobolev
norm. [furthermore

) L [ u e d
(hog) = =5 3 (B31.Bde) = 5 3 | RB& £ 00) o3,
8 n 8 T Js Y

which is also continuous for that norm. So the proof of (3) is finished.

Explicit form of d(f). Let [ € dom(®A) C °D, and supposc that Fyf is given by a
smooth function on (5, a]. So there is a smooth function ® on (5, a} such that

o(y) ify<a
y"’{o() ify>a

represents /o f on (5,00). (At y = a we view the derivalives of ¢ as left derivatives.)
We wanl fo show that d(f) = —®'(a).

First we show that (D(a) = 0, and that FLEE [ is represented by y — 2y®'(y) on
(5,a). (OI' course, FoEZ f is represented by 0 on (a,o0); so this determines FoEX f
on (5,00) in 1?2 -sense)

Let ¢ € C(0,00), Suppey C (5,00). Define k € Ky2 by k(2) = p(y) for z € F.
We have
dy

y?

(E3f,k)

— (f,ELk) /‘I’(J (2y¢'(y) — 20(y))—
/ 2817 )‘j———fb( Yo(a).

Application of this result with Supp(y) C (5, ) shows that y +— 2y®'(y) represents
FoEZ f on (5,¢). But then we know for all ¢ with Suppy C (5,00) that

+ " i ' . _1.@_
(BE1,k) = [ 2% (1)e(2) 5.
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So the term with @(a) should vanish for all such ¢, hence ®(a) = 0. Note that we
have used f € °D, butl not that f € dom °A.

Now we turn to 8(p) = d(f)p(a) = (“Af,g)—(f, Log), with g = g, € Iy as above.
We have

. I =
(Af,g) = [ RAN@) P00 5
(f, Log) = ' / & ()p"(y) dy
- /sam'(y)mdy (use B(a) = 0)

T / " 8"(y)py) dy + ¥'(a)p(a)

o) = [ (RAn)+ y%"(y))mjj—? — ®'(a) o(a).

As 6 has support in {a}, we conclude that Fg®Af is represented by y — —y*®"(y) on
(5,a), and that d(f) = —®'(a).

4 Perturbation

Now we turn lo the question how the spectrum of A, varies as r runs through
(—12,12).

4.1 Transformation
"To apply the perturbation theory of linear operators discussed in Chapter VII of [13],
we need to have a family of operators acting in a fixed space.

This can be arranged by multiplication by the powers of the cta function of De-
dekind. Remember that ,.(z) = y"/*p(z)*. The map [ — 75,/ sends functions
with transformation hehavior described by v, to Tyoega-invariant functions. But ihis
transformation has several drawbacks. Firstly, the map is not unitary. So it is better
to use f — e~ 2 mloen £ 1y (his way we gel a unilary isomorphism H, — Hy. Instead
of considering L, and its self-adjoini extension A, in the spaces [,, we can cousider
the family r — e~ 2T mlosn o [, o etirlmlesn jy the fixed space H = Il,. :

For z near the cusp oo the factor e¥71m1ogn(2) is complicated. 'I'he Fourier terms
of the function of weight » do not correspond term by term to those in the Fourier
expansion of the pog-invariant function. To achieve that, we replace 21m logy by a
smooth real valued function ¢t on H with the properties

i) L(z) = Lwa forall y > 5.
i) ((7-2) = a(y)+arg(cz+d)+t(z) for each v = (2 ) € Pimoa. Here a: Pyon — 57
is the function such that v,(y) = €™ for all 4 € [0q and all » € C.

This can be arfanged in such a way that ¢(z) = 2Imlogn(z) for z € F, y < 3

(Lemma 3.2 in[1]). Above the level y = 5, the Fourier terms in weight r correspond
to the Fourier terms in weight 0.
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Ounce we have chosen the transformation function t, we can work completcly
in I = Iy Let L(r) = e o L, 0" 1t is an exercise lo see thal L(r) =
Lo 4+ L") 4 22 L), with well determined differential operators L(!) and L(2).

4.2 Holomorphic family of operators
For f,g € C®(Tmoa\M) we can write

(L(r)f,9) =s[f, gl + rsV[f,g] + 7*sP( £, 4],

with the form s that we discussed on page 10, and two other sesquilinear forms s{!)
and s(). Some estimates show that s(!) and s are defined on *D (proof in [5,
Lemma 8.4.11]). The expression s(r) : = s 4 rs{!} 4+ r25(2) makes sense for r € C, not
only for r € (—12,12). More work, see [5, §9.1], shows that there is a neighborhood V,
of 0 in C on which r s(r) is a holomorphic family of type (a) in the sense of [13,
Chap. VII, §1.2]. I do not state what that means, butl list consequences for the
present situation: For each r € V; there is a densely defined closed operator ?A(r)
in °H such that s(r)[f, g] = (*A(r) [, g) for f € dom(°A(r)) and g € °D. This operator
extends L(r). TFor r = 0 it is the pseudo-Laplacian. All ®A(r) have a compact
resolvent. For r € V5 such that 7 € ¥ we have “A(F) = “A(r); in particular, *A(r)
is sell-adjoinl. lor » € Vo N R. For real r € V; the spectrum of "A(r) is discrete, the
cigenvalues are holomorphic in 7 on a neighborhood of ¥, N R; this neighborhood
may depend on the eigenvalue. If A : % NR — R is an elgenvalue, then there
is a finite munber of eigenfamilies r = ;(r), each extending holomorphically to
a neighborhood of V5 N R, such that the ¢;(r) form an orthonormal basis of the
eigenspace ker (°A(r) — A(r)) for each r € V5 N R. To summarize: The family r —
“A(r) is as well behaved as one can reasonably wish it o be. (These facts are based
on the [ollowing results in [13]: Chap. VI, Theorem 2.1; Chap. VII, Theorem 4.8,
Theorem 4.3, Theorem 3.9, and Remark 4.22.)

Afller a gluing procedure as indicated in [5, 9.2.8] we can assume that V; is a
neighborhood of (—=12,12) in C, and VN R = (-12,12).
What docs this mean for families of cusp forms? Lel A : (—12,12) —» R be an
cigenvaluc of the family » — °A(r), and let ¢ : (=12,12) — %/ be a corresponding
cigenfamily. For y = Imz € (5, a), the Fourier expansion has the form:

e(r;z) = bo(r)u(r,s(r);y) + co(r)u(r,1 = s(r);y)

+ Z cy(r)e2wiu:wu+rll2(r, .S(T); y),
v#ED
W, 5y) = W, ign(Ren)/2,0-1/2(47ny sign(Ren)),

w(r,siy) = oy --rry/slr. [ —r/2 w;y] i

ks _, -wry/GZ (zs)nn| (“ﬂ'r‘l) ‘

where (a)o =1

and (a)n = a(a+1)---(a+n—1) =T(a +n)/T(a).
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(For convenience I assume that A(r) = s(r) — s(r)?, with s : (=12,12) — C rcal
analytic.) The term of order zero vanishes above y = a, the other terins are given by
the same formula. Furthermore, from () € D we can show that by(r)p(r, s(r); a) +
co(r)u(r,1 = s(r);a) = 0 in the same way as we proved ®(a) = 0 in 3.L1. All
coefficients lo(r) and ¢, (r) are real analytic in r.

Define ¢(r) as the Iyoqa-invariant functioh given by @(r;z) = p(r;2) il z € I,

y < a, and by the Fourier series given above if z € F,y > a. Then v - et o(r)
is a family of modular forms of varying weight, with in general exponential growth.
Only if by and cq are the zero functions, the resulting fam{ﬁy is a family of cusp lonns.
The value al r = 0 is a cuspidal Maass form of weight zero. I do nol know whether
families with by = ¢y = 0 really exist.
Other truncation schemes. In the construction of the family °4 we have given a special
treatment Lo the Fourier term with e™=/6, If we truncate more Foutier terms, then
we obtain a family of operators on a larger interval. For example, truncation of all
Fourier terms with |v| < 5 gives a holomorphic family of operators on a neighborhood
of (=72,72). This leads Lo eigenvalues and associated families of eigenfunctions on a
neighborhood of (—72,72) as well.

We can also apply the reasoning sketched above without any truncation at all.
Then r = 0 is a dangerous point. We obtain the existence of a family A of operators on
neighborhoods of (0,12), and of (~12,0). For r € (—12,12), r # 0, the operator A(r)
corresponds Lo the self-adjoint extension A, of L, (see page 8). This mcans that the
eigenvalues and basis vectors of #, (r # 0) given by Theorem 1 occur in hulomorphic
families on neighborhoods of (0, 12), and of (—12,0).

Further results. With a more complicated analysis, [3] gives the following results. In
staling the results I restrict myself to (0,12), and use the fact that rcal analyticity
on (0,12) is the same as holomorphy on a neighborhood of (0,12).

Theorem 3 There are a countable sel A of real analytic functions (0,12) = R and
for each X € A a real analytic function Py : (0,12) x H — C such thal z — Palr, )
is @ nodular cusp form of weight v, with multiplier system v, and cigenvaluc A(r) Jor
each v € (0, 12).

{#¥xr(r): A€ A} is u complele orthonormal system in H, for each r € (0, 12).

Agir i L — % is an clement of A and Py, (r) is a mulliple of y.. For all other
elements A € A, we have A >+ on (0,12).

For A € A, A # A, exactly one of the following stalements holds:

i) A and 1y have no analytic exlension across r = 0, and lim, o A(r) = % The
Fourier tevm 15 0pA(r) is non-zero for some r.

ii) A and ¢ have an analylic extension to (—12,12). lor each r € (—12,12) the
value 1y is @ modular cusp form of weight r, with multiplier syslem v, and
eigenvalue A(r). The Fourier term F,j12hx(r) is zero for all r.

The elements of A are all different. The theorem implies thal generically all
spaces of modular cusp forms that are not related to holomorphic modular forms
have dimnension 1. Spaces with higher dimension may occur at points where the
graphs of elements of A intersect each other. 1 do not know whether that really
happens.

Those A € A and 3, that come under case ii) of the theorem are precisely the
eigenvalues and eigenfamilies that the families of operators A and °/A liave in common.
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4.3 Continuation of the Eisenstein series

Let us return to the family r +— %A(r) on a neighborhood of (—12,12), discussed
in Subscction 4.2. It has been obtained by truncation ol one Fourier term. It is
a holomorphic family of type (B) in the sense of [13, VII, §4.2]. That is a quite
complicaled concept of holomorphy.

A more simple concept is a bounded holomorphic family of operators. Let 8 ¢ C*
be an open sel. A map B from 1 to the bounded operators in a Hilbert space is a
bounded-holomorphic family if for each (v;,...,vx) € Q there is a neighborhood 2, C
2 of (v1,...,vx) such that for each (wy,...,w;) we have a power series expansion

B(wy,...,w) = Z (wy —v)™ - (wr — vE)™ Cay, o

n 20,..nx >0

with bounded operators C,, . ., converging absolutely in operator norm. A family
of operalors is bounded-meromorphic if on a neighborhood of each point it can be
written in the form -'%B, with B a bounded-holomorphic family of operators and ¥ a

holomorphic function that is not identically zero.
A nice property of the family %A is that its resolvent

R(r,s) o (CA(r) —s +5%)”"

is a bounded-meromorphic family in (r,s). With some work, that I do not show
here, we can cxtend to this situation the method of Colin de Verdiére discussed
in Subscction 3.4. We work in I = Hy, and transform R(r,s) o a meromorphic
family of bounded operators in this space. We replace ¢, on page 11 by a suitable
linear combination of u(r,s) and p(r,1 — s) (see (4)), and follow the reasoning in
Subscclion 3.4. We obtain a meromorphic family in Hy that corresponds to a family
with varying weight (after multiplication by ¢'"*). The rcasoning is carried out in [5,
§9.4, §10.2] in a more general context. In this way we obtain the following continuation
of the Eisenslein series in two variables:

Theorem 4 There are a neighborhood Vy t;f(—12, 12) in C and a meromorphic fam-
ily E of modular forms on Vo x C. The Fourier expansion is

E(r,s;2) = e (u(r,s;9) + Co(r, s)u(r, 1 — 57p))

+ 3 Culr, ) 2 g, i),
v#0 .

with the C, meromorphic on Vo x C. These conditions delermine E uniquely.

There are functional equations Coy(r, s)Co(r,1 — s) = 1, E(r,1 — s) = Co(r,1 —
s)E(r,s), and E(r,s; —z) = E(—r,s; 2).

The family s +— E(0,s) ezxists as a meromorphic family of modular forms of
weight 0. On Res > 1 it is given by the Fisenslein series in weighl 0.

By a holomorphic family of modular forms f on V4 x C I mean an real analytic

function f on V4 x C x H that is holomorphic in the first two variables, such that
z — f(r,s,z)is a modular form of weight r, multiplier system v, and eigenvalue s—s?.
('The analyticity in (r,s,z) and holomorphy in (r,s) means that locally there are

power series expansions in r — rg, $ — 8g, 2 — Zo and z — zg. A family f of modular
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forms is meromorphic if it has locally a representation of the form [ = ih, with A
a holomorphic family of imodular forms, and (ry8) > (7, s) a non-zero holomorphic
[um':ll“ifgléxisl.encc of the restriction s — FE(0,s) to the complex line r = 0 is not
trivial; this line could have been contained in the set of singularitics.

Singularities on the critical line. The Fourier expansion on page 7 shows thal s —
(0, s) is holomorphic al all points of the line Res = % This does nol mean that I
is holomorphic at the points (0, s) with Res = J. In fact, singularities al these points
are related to the possibility of extending cuspidal eigenvalues, [3, Theorem 2.19):

Theorem 5 Let ¢t € R. Denote by M(t) the space of cuspidal Mauss forms of
weight 0 with eigenvalue ll + 2, and by M_.(t) the subspace of M(t) spanned by
the values ¥1(0) where A runs through the X € A satisfying ii) in Theorem 3 and
M0) =1 + 2. The following stutemenls are equivalent:

i) M.(t) # M(1).
i) The family E is nol holomorphic at (0,3 + it).

I do not know whether the equivalent statements i) and ii) are true for all, soine
or no values of ¢ for which M(t) # {0}.
Poincaré series with exponential growth. On page 3 I have mentioned quickly growing
Poincaré serics. Let h(z) = ¢™™=/8y(r, 5;y). For Res > 1, r € (0,12), the series

Z vr(,y)—le—irarg(c,z+d.,)h(7 . z)

‘Tel‘z?nd\[‘llmd

converges absolutely, and defines the Poincaré series P.(s; z), which is a modular [orin
of weight r, multiplier system v, and eigenvalue s — s*. This is the Poincaré series
associated to the term with ¢™*/¢ in the Fourier expansion. One can build similar

exponentially growing Poincaré series for all Fourier terms.
The Maass-Selberg relation enables us to relate these Poincaré series to the famn-

ily E. Let v(r,s) := (%) I'(1 = 2s)/ (1 = s —/2). Define for r € ¥y, Rer > 0:

g} v(r,1~3) B s
P(r,s): 'v(r,l—s)—v(r,s)Co(r,s)E( »8)-

This gives a meromorphic family P, such that P(r, s} = P.(s) for r € (0,12), Res > L.
(See [5, §10.3].)

Singularities at integral points. The Eisenstein series of weight 0 is holomorphic on
Res > 1, but the continuation £ in two variables may have singularitics al Lhe points
(0,s) with Res > 1.

In [5, §12.3] one sees, in a much wider context than the present one, that singular-
ities of families like (r, s) = E(r,s) al points (7, s) with » € R can arisc in two ways.
The first is the most essential one. If for (r, s) there are cusp forms wilh weight r and
cigenvalue s — s, the resolvent will have a singularity at this point. ‘This singularity
often propagates through the construction of lg','
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The other cause is more trivial. The family E has been characterized by the

special form of its Fourier term of order ;5. When we express the Fourier term in

the basis pe(r,s), p(r,1 — s), the first coeflicient should be 1. This is nol a sensible
condition at points where ;zgr,s), £(r,1 — s) do not form a basis. So we may expect
singularities at (r,s) = (0,3), ! € Z. We can analyze these singularities by using
a more suitable basis of the space of Fourier terms. [5, Proposition 12.4.2, part iii)]
gives a general result. For the family £ one can prove that for { € N, > 3, the family
! given below is holomorphic on a neighborhood of (0,1/2) with the Eisenstein series
E(1/2;2) as its value at (0,1/2).

1
ol L
Er.s) 1 —w(r, s)Cg(r,s)E(r’ sh
wry -1 (1 — 2s)

wy(r,s) = (3) m(l-—s-—g =

Note that the meromorphic function (r,s) — w(r,s) has restriction 0 to the line
r=0.

4.4 Distribution results

The singularitics of the family E at points (0,!/2) at first secem to form an annoying
property of the continuation of the Eisenstein series in two variables. But it turns out
that they can be used to get distribution results for various quantities. I give a short
indication how to obtain the distribution results for Dedekind sums in {4]. There are
many explicil formulas; I give only a few of these. See [6] for a generalized version,
with more side remarks, Matthes has obtained distribution results related to Fourier
expansions along periodic geodesics, see [23].
Fourier coeflicients. The restrictions s — C,(0, s) of the Fourier coeflicients in The-
orem 4 lhave an explicit description in terms of gamma [unctions, the zeta func-
tion of Riemann and divisor functions; see page 7. The interesting factors are (
and g2,-1(|v|). To single out the interesting part of the C, I define in [4, 2.6} func-
tions ¥, by dividing out gamma factors and exponentials. Corollary 2.9 in [4] gives
the behavior of ¥, at points (0, s) with Res > 1. (Note that sihere = Shere — %)

Al points (r,s) with r € (0,12) and Res > 1 we use the relation between the
famil]y IY and exponentially growing Poincaré series on page 18 to get the following
resuli:

W,(r, s)
- Ea— e 1
L Z Z e21r|r5(d,c)+21rwd/ccl—2:01;-1 [; 2s; —§7I'2T(V + T‘/12)C-2
c=1 d mode ;

+0 (r”‘”"’) as r | 0, for Re s large,
where of'([; ;) = 3220 2™/(c)an!, and S(d,c) is the Dedekind sum given by

swa = 3 (%) ()

zmode

((u)) = {‘U.-—[u&-l/z :£22%<1
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See [4, Coroliary 2.15, Proposition 2.16].
Taylor expadsion. The functions ¥, have a Taylor expansion al r = 0 of the form
U, (r,s) = Yoo 70, (s). The coefficients ¥,,,(s) are meromorphic in the vari-
able s. It tutns oul thal each ¥, ,(s) with n > 2 even is holomorphic on a right half
plane, with an explicitly known right-mmost first order singularily al s = 2t see [4,
Proposition 3.3.].

Proposition 3.5 in [4] gives, for Res large, an expression for ¥, ,(s) in terms of
Dirichlet series of the form

0 k

. am= S(d’ C) Tivafc

Bty = 3 3 e (H) e
c=1 dmodec

Thal expression is complicated, but it can be used to find the rightmost singularity of

the A, (k, s). See Proposition 4.2 in [4] (replacen < 2in part ii) by n > 2). Techniques
of analytic number theory lead to the following distribution results. (See [4, §5].)

Theorem 6 Let f:[~1,1] x (R mod Z) — C be continuous. Then

N . C 1
i3 (494) 8 [ o

c=1 dmodc

Take g(o,7) = of(o,7). Then

L [(Sdye) d\ == (k1)) +1 k
dm Y T (100.5) - 2 He 5 (1.0).

4.5 Annihilation of cusp forms

Theorem 5 gives some informalion on the question whether cusp lorms are annihilated
under perturbation of the weight: Given a cuspidal Maass form of weight 0, docs it
occur as member of a family of cusp forms with varying weight?
Perturbation of the group. The modular group I'peq is rigid in SLy(R) (all continnons
deformations are given by conjugalion). But there are many subgroups that occur
as a member of a continuous families of discrele cofinite groups. Consider a family
t = T, of such groups. Given a cuspidal Maass form ¥ for ['y, the question is whether
it is the value 1 of a family of cuspidal Maass forms ¢ — ;. This is discussed iu
[29] and [30]. Phillips and Sarnak say thal ¢ is annihilated under the perturbation
if such a family does not exist. They give a necessary condition for annihilation: a
certain L-function (depending on 1) should be non-zero at a certain point (depending
on the eigenvalue). Deshouillers and Iwaniec, [8], show that this condition is satisficd
for infinitely many cuspidal Maass forms. Wolpert, [38], discusses more complicated
deformations of the group, in which the topological type of the quoticent changes.
There seems to be the feeling that cuspidal Maass forms are annihilated under
“general perturbations”.
Perturbation of the multiplier system. For subgroups of the modular groups the
space of multiplier systems has in general dimension larger than 1. So in general
trlere are continuous families of multiplier systems suitable for weight 0, i.e., families
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of group characters. Phillips and Sarnak, [31], discuss families of characters of the
subgroup I'(2) of T'jmed, and give a non-vanishing condition for the annihilation of a
cuspidal Maass form (for the trivial character) under this perturbation. Again, the
resulls suggest that annihilation is a common phenomenon.

For the modular group there are no non-trivial continuous families of characters.
‘or the family r = v, of multiplier systems with varying weight a non-vanishing
condition like that in [31] is possible. As far as I know no density result like that
in [8] has been proven.

5 Representational point of view

On page 5 I have indicated that modular forms of integral weight can be viewed as
functions on SLy(R).
Lic algebra action. If one views modular forms of integral weight as functions on
(i = Sl.o(R) (see page 5) one can let the complexified Lie algebra g of G act by
differentiation on the right. In this way the focus of attention moves from individual
modular forms to subspaces of C®°(I'mod\G) in which g acts. Let f be a modular
¢ form with eigenvalue A, and take X € g. Then X f is a lincar combination of modular
forms with the same eigenvalue A of the Casimir operator. If we start with a form of
weight ¢, the result is a sum of modular forms of weights ¢ — 2, ¢ and ¢ 4+ 2. One has
also an action by right translation over elements of the maximal compact subgroup
It :=80,(R) of G. The action of K preserves the weight.

For non-integral weights similar statements hold for the universal covering group
ol G, which has the same Lie algebra.

In this way the restriction of the weight to a neighborhood of the interval (—12,12)
in Sections 3 and 4 can be removed. One finds a more general formulation of the
results in [3]: Propositions 2.14 and 2.17, and Theorem 2.21.

Automorphic models. For general values of (g,A) a modular form of weight ¢ and
eigenvalue X generates an irreducible g-module that is isomorphic to the space Hf{'" of
K -finite veclors in a principal series representation. The parameters ¢ and v depend
on A and ¢ mod 2Z. So one has a representation of the g-module H$" in C%°(Tmoa\G);

Lhis is called an automorphic model of Hf('". (The name modular model would be
more appropriate in the context of these lectures, but I do not like its sound in
English.) For non-integral weights, we have to work on the universal covering group.
To incorporate the multiplier system, we do not work with left-invariant functions,
but with functions transforming according to a character.

This is the point of view one finds in [24] and [14). The operator M is a map from

Ilf‘!" to C*°(I'\G). The actual Poincaré series we discussed on page 17 are obtained
by applying M to a weight vector in Hjy".

In {24] the domain of the operator M is larger than Hf('". It contains the space
I of analytic vectors in the principal series representation H¢". The group G
itself acls in /I%¥, and the automorphic model M intertwines this action with right
translation in C%®(I'mea\G).

[ moa-invariant vectors. For the Poincaré series it is not very important to work
with H%" instead of H%”. But an automorphic model of H* can be described by

a T'mod-invariant vector in the contragredient representation HY“™. In this way
the whole g-module of modular forms is described by one [j,0q-invariant object,
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which is a hyperfunction on P\G, for the standard parabolic subgroup I’ of (. (A
hyperfunction is a linear form on the real analytic functions. This generalizes the
notion of a distribution.)
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