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ESTIMATES OF KLOOSTERMAN SUMS FOR GROUPS
OF REAL RANK ONE

R. W. BRUGGEMAN anD R. J. MIATELLO

1. The sum formula of Kuznetsov

1.1. Introduction. In [10] Kuznetsov gave a sum formuia in which Fourier
coefficients of real analytic modular forms on the upper half-plane are related to
Kloosterman sums; see also [11]. This formula has been used in various ways. In
[11] it is applied to the classical Kloosterman sums S(n, m; k) = 3’} easiaxtadik|
where n, m, ke Z, n, m # 0, k > 0; in the sum, x runs over the integers 0 <x < k
that are coprime to k, and satisfy x% = 1 mod k. Kuznetsov shows that

! S(n, ms k) = O(X(log X)) (X = co); )
18kgX k
see Theorem 3 in [11]. This type of result is the main theme of this paper.
Kuznetsov's sum formula is concerned with automorphic forms on the group
SL,(R). It has been extended in various ways. Its extension in [17] treats auto-
morphic forms on Lie groups of real rank one. We use it to study sums of
Kloosterman sums for this class of groups.
The main structure of the sum formula is

L h(v) da(v) = J;R h(v) d5(v) + 3, SWA(E,). )

Here do is a measure with support & < i[0, c0)u (0, o0); this measure can be
described in terms of Fourier coefficients of automorphic forms for a discrete
subgroup T of the Lie group G under consideration. The y run over a subset of T,
the S(y) are generalized Kloosterman sums, and &, € G is determined by y. The
measure dd is supported on the line Re v = 0.

Before describing the sum formula more precisely, we remark that it can be
used in two directions. One way is to focus on the spectral term [ h(v) do(v). One
can get information concerning the measure do by taking a suitable test function
and estimating the two other terms in the sum formula; see Section 2. On the
other hand, for another choice of h, it may be possible to give an estimate of the
spectral term and the delta term &(k) and end up with an estimate of sums of
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106 BRUGGEMAN AND MIATELLO

Kloosterman sums. So it is essential to know how k and /i depend on each other.
This dependence is complicated. Ideally, one would like the transformation h — h
to be a bijection between two well-defined, not too small classes of functions. An
idea of Good [6] is not to try to invert h = h explicitly, but make do with an
approximate inversion. The purpose of this paper is to develop this approach for
groups of real rank one.

We obtain an estimate of sums of generalized Kloosterman sums; see Theorem
1 in 4.3. The bounds between which the sum is taken are smoothed with help of
a test function. In the absence of exceptional eigenvalues, this leads to a good
bound. In the case considered by Kuznetsov, G = SL,(R) and I" = SL,(Z), the
bound is O{(log X)?). It is O(X*) for G = SL,(C). To obtain an estimate of sums
with sharp bounds we need an assumption on the growth of the Kloosterman
sums; see Proposition 4 in Section 4.7. A variation of this assumption is satisfied
in the case considered by Kuznetsov, and leads to the estimate (1). We study in
some detail the case G = SL,(C) and I" = SL,(®), with @ the ring of integers in
an imaginary quadratic number field, to show that this assumption is satisfied. To
do that we extend classical estimates of Kloosterman sums to those defined over
a number field; see Section 5.

The estimate with smooth bounds shows clearly that there is much cancellation
in or between Kloosterman sums. The step from smooth to sharp bounds is done
by estimating individual Kloosterman sums, so it does not take cancellation be-
tween Kloosterman sums into account. This leads to an error term that is consid-
erably larger.

The authors wish to thank the referee for several useful comments on an earlier
version of this paper and, in particular, for calling to their attention the results in

[21].

1.2. Description of the sum formula for real rank one. In the description of the
sum formula in [17], we restrict ourselves to the aspects that we need for the
purpose of this paper.

We work with a real, connected semisimple Lie group G of R-rank I and a
discrete subgroup I of G such that I'\G has finite volume but is not compact.
Moreover, I is supposed to satisfy the assumption on p. 16 of [13].

The test function h has to be even and holomorphic on some strip |Re v| < g,

on which
e —nrflm v|
h(v) =0 (ﬁm,) ' (3)

with a > 2. In some versions of the sum formula, but not in the version in [17],
the support of de protrudes out of the strip. In that case the domain of 4 should
be larger, and one may need an additional growth condition. The number o is
slightly larger than a positive quantity p depending on the group; see §1 of [17].
We take o ¢ (1/2)Z. In the version of the sum formula under consideration, %, the
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support of dg, intersects (0, o0) in a finite number of points contained in (, p).
Note that p ¢ &

On the spectral side we have to know that do depends on the choice of two
percuspidal parabolic groups P and P’, and nontrivial unitary characters y and y'
of the associated unipotent groups N and N’. So do = da;:;I. If P # P, they are
assumed to be not I'-conjugate. We shall use that do}'X is nonnegative, and that

1/2 . 172
< (L lftv)lda;::(v)) (L If(v)lda:.:g-(v)) @

if f is integrable for both do}- and do}X..

The measure dd vanishes, unless P = P’ and x = x". In that case it is of the
form [h(v)dé(v) = iA Jrev=0 h(¥)v sin 7v dv. The constant A depends on y and P,
but there is a bound valid for all P and y; see part (i) in Proposition 1.2 of [17).
We shall see that 4 > 0.

Let K be a maximal compact subgroup of G such that P = NAM is the decom-
position of P in unipotent subgroup N, R-split torus 4, and centralizer M of 4 in
K. Let a be the corresponding simple root. We write haif the sum of the positive
roots as pa, with p € R. All characters of 4 are of the form a i~ a™ with v eC.
Often we write a" instead of a™.

The big cell of the Bruhat decomposition is Ps*N, with s* a representative
of the nontrivial Weyl group element. Each ge Ps*N has a decomposition
g = n,(g)a,m,s*n,(g), with n{g)e N, a, e A, and m,€ M. Denote I’y = NnT and
Iy = N’ T. The unitary character y of N is trivial on Iy, and y' is trivial on [y.
Write P’ = kPk™!, with k € K. Then ) ns ¥'knk ') is a unitary character y,
of N,

The y occurring in the Kloosterman term of the sum formula are elements of
the set ' N Ps*k™'N' = '~ Ps*Nk™*. The corresponding m,,a,, form a discrete
set Z in M A. For a given y e '~ Ps*k~' N’ the set {yY eTAPs*)IN": M@y =
mya,} consists of finitely many double cosets I'yY'Ty.. The generalized Klooster-
man sum is

’ J J) da:5.(v)
L4

SG) = Sp.p(t, '3 9) = ; x(n, (0k))x' (kn, (Sk)k™1), (5)

where § runs through representatives of those double cosets. S(y) depends only on
the corresponding S =mua,eX So we may as well write S(¢,). The Kloosterman
term in the sum formula is }, .z S(E)A(¢).

Write ¢ = mga,. For a given £ € &, let So(&) be the number of terms occurring
in the definition of the Kloosterman sum, (5). The convergence of the Eisenstein
series implies that the series nggso(é)(ag)"*" converges. This implies that the
a; stay under some positive bound B. Note that [S(€)] < So(£) for all characters
%X

- —— e ——
S IR T ,t.&f..._..»:~..., g 4g\‘p.‘-.v--n«.\w:_‘_-.—--‘l--‘. RENT e = LB Sy SA YR
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* ® 1 x
1.3. Examples. Take G = SL,(R),[ =SL,(Z),P=P = {(0 *)}. Z(O 1)

0
= e?™m= with m,, m, e Z\{0}. We have A = {((; l/t):

0 a
t> 0}, (‘ ) =1 p=1/2, and k= I. Take K = SO(2), then M = {+I}.

1 x
= pinimx ’

0 1/t
a b 0 -1 1 afc _ (1 dfc
For (c d)e]‘nP(l O)N' we have n,(y)=(0 1 ), nz(y)—(o { ),
: 1 0 1 0 17k 0\ .
m, = sugn(c)(0 1)’ and g, =( /(l;-‘l ICl). For € = i( (l) k) with ke N, we

find the classical Kloosterman sum S(&) = S(m,, m,; k). Note that af = k™2 < I;
so the a§ form a bounded discrete set of positive numbers. Instead of estimating
Y 1<kex S(n, m; k)/k as X — oo, we shall consider 2,;,,058(&) asx10.

Another example is G = SL,(C). We take I"' = SL,(#), where 0 is the ring of
integers in some imaginary quadratic field extension F of Q. We take P = P' =

G (o D)= x(g ) vt m merrfo

Let Tr be the trace of F over @Q; to have the characters trivial on '\ N, the

0
condition Tr(m;x) e Z for all xe @ is needed. We have k=1, A = {(t ):

0 1/t
t> 0}, and ((; l(/)t) = t%. As « occurs in N with multiplicity 2, we have p = 1
e . _yfr 0y a b
in this case. Take K = SU(2); then M = {(0 l/t)' [t| = 1}. For . d)el‘n

= -1
P((l) (1)) N, we have n,(y) = ((ll a{c), n,(y) = (l d/c), m, = (u 3) with

0 1 0
u= (—Z), and a, = (l/écl lgl). For & = (lc/)u : with u € 0\ {0}, we find S({) =

Y. e(Tr({m, 5 + m,v)fu)), where v runs over representatives of @/(u) for which i e O
can be found such that iv € 1 + (u); here (1) denotes the ideal u® and e(y) = e**".
We shall return to these examples. We indicate them by (R), respectively (C).

Kloosterman sums for groups locally isomorphic to SO(1, n)°, n > 3, are dis-
cussed in [3] and [1]. For SU(1, n} see [14].

1.4. Transformation. The test function / depends on h in the following way:

p 1
hima) = 5— _[ h(v)g(v)a"**z(x,, x, ma, v) dv, (6)

Rev=0

where g(v) is a product of exponentials and gamma functions without zeros on
Rev =0, and t(y,, 3, ma, v) is a complicated function. Of = and g we need to
know that g is holomorphic on [Re v| < 6, and 7 is so on —1/2 < Re v < g, that



ESTIMATES OF KLOOSTERMAN SUMS 109

they satisfy the estimates (8) and (7), and that g has a finite number of zeros in the
strip |Re v| < o, all situated in [—p, 0]. There is a simple zero at v = 0. The other
zeros may have an order larger than one. Always, g(—p) = 0.

The function g satisfies

Re v, s|im v
gtlimvi

Ig(v)i — (constant) (l + |Im vl)z Revtx

(Revi<o) - ™

for some k > — 1/2 depending on the group and some M > 0 depending on P, P,
x and x'.

In Proposition 12, in Section 6, we shall give an asymptotic expansion for 1. As
a special case of it we obtain (38), which implies

al

fTIfm Vl) (a*10) (8)

(X, s ma, v) =1 +O(

on —t < Rev <o for each £€(0, 1/2). The implicit constant depends on the
choice of € and o.

The constant M depends on the characters in a simple way, but the dependence
of T on the characters is complicated. If one wants to make explicit the depen-
dence on the characters for all estimates in the paper, then the study of t is the
hardest part.

For case (R) in the examples of 1.3 we have p = 1/2, and

o (—4‘[[:""Il"'lz)kai
T(X:- X, ma' V) — ,‘Zo W

_ 2(4n’|Imymy|)"

g(V) 1!1"(2\!) *

hence M = 4n?|m,m,|, k = —1/2, and g has a simple zero at v = —p. Note that
can be expressed in terms of a Bessel function. We shall not use this fact.
In case (C), p = 1 and

tu O\** lu 0 )_ T (4n2 7, 1, 52) (An2m, myu?)™
( 0 ") t(xl,x’( 0 “)' v)=ul m.;éo mini(v + ),(v + 1),

(4n?|mym, )"

=4 T+ 0
s0 M = 4n2|m,m,|, x =0, and g has a double zero at v= —p. To check the
behavior of t, note that l(/)u 3) = ma, with a® = |u?, so a®** = |u|2"*Y,
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TasLE 1. Ingredients for the transformation function

Group P K g)
sotn® w22 | " ! p—1 PO T + )
! -2
SU(Ln (n32) n s ; r(»)"r(‘_y)
-2
sp(l,m) (n=2) | 2n+1 p—; (v+ 20— I)r(v)"r(";f)
9 13 5+ N7+ VO + 1)
] — Frpp— —_—
Fa O T + o2

In Table 1, one finds information on g for all groups of real rank 1. The quan-
tities in the tables are the same for Lie groups G that are infinitesimally isomorphic.
The function § in the table satisfies §(v) = g(v), where A(v) = B(v) indicates that A
and B are equal up to an entire nonzero factor bounded on vertical strips. As
g(v) = c(v)['(v)~2, where ¢ is Harish-Chandra’s c-function, the gamma factors can
be read off from [9, Chapter IV, §6, Proposition 6.4].

The cases (R) and (C) come under SL,(R) =, SO(1,2)° and SL,(C) =6
SO(1, 3)°. On a vertical strip, the asymptotic behavior of I'(2v) is the same as
that of T(W)T(v + 1/2).

1.5. Discussion. In this formulation of the sum formula, the function h appears
as the independent test function. The function h in the Kloosterman term depends
on it. If one wants to use the sum formula to get information on the measure do
or to get an estimate of a sum of Kloosterman sums S(y), one has to choose h in
such a way that k, as well as h, have properties appropriate to the task at hand.

In both example cases g(v)a"**z(x,, x, ma, v) can be expressed in terms of Bessel
functions. For case (R) there are several forms of the sum formula. In all of these
the measure dg contains information on the continuous spectrum of the Casimir
operator, and the discrete spectrum, as far as it corresponds to representations of
G of the principal and complementary series. One may include the discrete series
type spectrum, or not. If one does, the support & of do protrudes out of the
strip |Re v| < o, and the transformation h — i has a comfortable image (i.e., it
contains the compactly supported functions), as has been shown by Kuznetsov. If
one does not include the discrete series type spectrum, then the h are orthogonal
to the Bessel functions J, with odd positive k, and the Bessel transformation is
more complicated to handle.

If the image of the Bessel transformation is large enough, it and h play a sym-
metric role. Both can be viewed as the independent test function. This gives more
leeway in applications. But the Bessel transformation and its inverse are compli-
cated. Good has remarked that one does not need the precise inversion of the
Bessel transformation; see [6, p. 113]. Goldfeld and Sarnak [5] use similar ideas,
but do not use the sum formula at all.
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We work with (P, x) and (P, ') fixed. Our understanding of z(x, x,, ma, v) in
the general case does not suffice to estimate h(ma) for large a®. This would be
necessary to make the influence of (P, x), (P', x') explicit in the estimates. So we do
not go into the direction of generalizing the beautiful results of Deshouillers and
Iwaniec in [2].

2. Estimation of the measure. Our first aim is to estimate the mass of {ve &:
jv] < X} for the measure do. From inequality (4), it follows that we can first
consider the case P = P' and y = x'. In that case the measure is nonnegative.

To study do on v € i[0, c0), we take the test function h,(v) = e**p(v)/cos av with
p an even polynomial. A cosine or sine in the denominator seems to be the right
thing to have; we choose a cosine. Its zeros in the strip |Re v| < ¢ should be
cancelled, so we take the polynomial p(v) = [[}=L((1/2 + j)* — v?), with [ large
enough. In this way h is positive on & < (iR U IR). The factor '’ approximates 1
as t | 0; this will lead to'an average value for the mass of do.

First we look at the terms in the right-hand side of the sum formula. The delta
term satisfies

o(h) =iA J. e"zfin—ﬂvp(v) dv

Rev=0 Cos ny

=24 r e™(1 + O(e™2"))p(iy)y dy
0

24 (= _ 10 (1
=g | eV Ly +e{5+i) Jydy+0()
7" Jo =0 2

=AM 4 007Y).

In the integral defining f(ma), we move the line of integration to Re v = a; this
is clearly allowed under our assumptions. We get, for a* bounded from above,

- @ el Mee™|p(a + iy)l
i 1t~ y?)
LGRS J W& T F D cos ala + i)

!
<« t"'l’z"ﬂﬂﬂ(J-l ————(t it yz) dy + fm e"z—_(t + yz)' dy)’ap'*a
0(\/E+yx+2¢ 1 (\/E+yx+20

npto

« i Pgrte

With the convergence of ) ;.2 |S(E)(a,)°*° < Y zezSo(€)(af*, we obtain for the
Kloosterman term the estimate O(t"27'). If one would want the explicit depen-
dence on the character y, one would not only need a factor M?, but also the
dependence of  on y.
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Now we apply the sum formula and conclude that the spectral term is
A7t + O(e™'""2). The test function h, is nonnegative on &, and the measure
do is also nonnegative (assumption: P = P', y = x'). This shows that 4 > 0.

ForX >0

) ‘
J‘ vl do(v) < e* J‘ h,(v) do(v) < '** .[ h,(v) do(v).
v vei[0,X] L'

eifo,x) COS 7V

Take t = X~2, Then l,’,‘,o (y*¥/cosh ny) do(iy) « X***? as X — co. By partial sum-
mation, this implies j,-o do(iy)/cosh my « X* + M°X.

Indeed, put 1,(X) = [X., (y"/cosh y) da(iy). Suppose we have shown, for some
m 2 1, that I_(N) = O(N™*2) as N - oo, N € N. Then

| i -1
L1 (N) = Z doiy) < ¥, (n{n) — In(n — 1))

n=2 Ja—y cOsh y nea n

]""(N) & l"'(") m=1 m—1] m+1
\N-l+,.Zzn(n—l) < Nm“1 4 N™7! = Q(N™*).
For general large X the interval [[X], X] does not change the estimate. The
interval [0, 1] always has a contribution O(1).

The intersection & (0, p) consists of finitely many points, so do has finite
mass on this set.

Use (4) to see that for a general measure do = do}: X that may occur in the sum
formula

. 1 5
J.ve Farex mm(l’ |cos nv|)|da(v)| « X (X — 0). 9)

3. Choice of a test function. In Sections 3 and 4 of this paper, we aim at an
estimate of Zm?;,ag.?(f) as x | 0. We include the factor af. In case (R) this leads
to sums of S(m,, m,; c)/c, that are traditionally considered in this context.

To obtain such an estimate we choose a test function h, such that £+
az*® ,(mgag) approximates the characteristic function of af € [x, 2x) We start with
a compactly supported smooth function ¢, approximating this characteristic
function. The definition of i, and the properties of g and t suggest that we could
use the Mellin transform .4y, to define h, (v) = A (—v)g(v)~'. But h, has to be
even, so we have to symmetrize this. Moreover, the poles of the factor 1/g(v) may
cause singularities. These have to be cancelled by zeros of .#,. At first this
seems an impossible task. But the af occurring in the Kloosterman term all stay
under a positive value B. (In the examples (R) and (C), we have B = 1. This
depends on the discrete subgroup I', so other values of B are possible, even if
G = SL,(R) or SL,(C).) We subtract from ¢, another smooth function f#, with
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compact support in (B, co) without changing the Kloosterman term. Of course,
the choice of #, will influence h,, and hence the other terms in the sum formula.
So our task is to find B, that produces the right zeros and does not add notably
to the growth of 4,.

3.1. Test function on (0, 00). In our choice of the test function ¥, we will use a
large parameter Y. The larger Y, the steeper y, will be near x and 2x. The depen-
dence on Y we leave invisible in the notation. In all estimates we tacitly assume
Y>4and0<x<B.

First we fix some smooth function @ on [0, 1]. 1t is increasing on [0, 1], it is
equal to 0 on a neighborhood of 0, and equal to 1 on a neighborhood of 1. We
define y € C2(0, o0) by

1 0 ify<st-yy
w(l — Y + yY) ifl1-1/Y<y<g1
Y(y) = < 1 if1<y<2-2/y

l—w(l —Y+pY2) if2-2/Y<y<?2

0 if y>2.

\.

In this way supp(y) < (1 — 1/Y, 2] = [1/2, 2], ¥ =1on[l,2~2/Y], and we get
a partition of 1:},,.z¥(y2") =1 for all y > 0. Furthermore, 15 1O ()dy =
O(Y'"')for I > 1; the constant in O depends on /.

Let I € IN. The Mellin transform .4y (v) = {2 y"¥(y)(dy/y) satisfies

(AY)(v) = 02" "Ylog 2))

(use a direct estimate ({§ y***|log yI'"(y)(dy/y)). Partial integration gives
AY) = (= 1v(v + 1) (v + | = 1)).4%v + 1), and hence

MY(v) = OQR MY 4 Im v
for |Im v| > 1.

As approximate characteristic function of [x, 2x) we take () = ¥(y/x). The
Mellin transform satisfies .y (v) = x"#Y(v).On|Rev| < oy, [Imv| > 1, we get

AW (v) = O(x**(1 4 [Im v|)'Y*1) (10)
for I > 1. The full dependence on  and oy is left implicit. The derivatives are given

by (MY )P =x"Y"! o (r::) (log x)™(#y)*"™(v). Hence, for |Rev| <, and
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v
o

(A, ) () = O(x""(1 + |log xI)'). (11)

3.2. Getting rid of the zeros of g. We shall take

MY (V) = MB(—V) | A (v) — AB()

hal?) = g(v) g(—v)

(12)

TABLE 2. Information concerning the
zeros of the function g

Group {o ke,

SO(1, 2)°

SO(1, 3)°
SO(l,n)® n=4
SuU(l,n) n=22
Sp(l,n) n=22
F,

— b
—— e = N -

with B, € C2(B, o) still to be chosen. The holomorphy of &, at v=10 is no prob-
lem; the simple zero of g at 0 is cancelled. Let 2 be the finite set of zeros of
v i~ g(—v) in (0, p], and denote by k, the order of the zero at e . Let{, be the
minimal element of 2, Hence 0 < {, < p; see Table 2. So x%(1 + |log x|)*=~" is a
small quantity; we denote it by x%. We have to take B, in such a way that
MP, — M, has a zero of order k; at each { e Z.

The functions y — (log y)'y%, { € 2, 0 < I < k;, are linearly independent on any
open interval contained in (B, 00). Fix Y; 0, «-+» Xgk-1 € C®(B + |, B + 2) such
that §§ (108 3V na(Y)dY/Y) = 6,cb1m for 1, L€ 2,0 <1 < k;, 0 < n < k. Take

Hea(x) = E‘jo (;) (log x)"x* ()™ ().

Then B, = Yoz Tabo Hei(X)g. satisfies (AP )(C) = (#B,)"(C) for each { € Z,
[=0,..., k,— L. This p, leads to a test function h, that is even and holomorphic
on the strip.

The estimate p ,(x) = O(x*(1 + |log x|)') leads to

(A BY™ () = O(x )

for |Re v| < o, m = 0. Here we have used (#x;,,)™(v) = O(1); this leaves implicit
the dependence on m and B. By partial integration, we get estimates for the A ;.1
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and finally
MB(V) = O(x(1 + [Im v])™) (13}

on|Rev| < a,|Imv| 2 1, foreach! > 0.

3.3. Estimates of h,. We have arranged the holomorphy of h_ on the strip
|[Re v| < 0. For [Im v| = 1, |Re v] < o, we have

h,,(v) — O(e-:llm v](l + “m vl)x+2|Re -I-lx—[Rc vlyl—l) (14)

for each 1> 1. To get this we have used that x%> = Q(1) and Y >4. For
I> Kk + 20 + 2, this gives the growth behavior of a test function to which the sum
formula can be applied.

For |Re v| < g, |Im v] < 1, but +v staying away from the zeros of g, we obtain

hy(v) = O(x~Re ). (15)

Near the zeros of g, we have to look more precisely. Suppose that g(0) = 0. On a
neighborhood |v| < £ of 0, we can estimate h,(v) in terms of |.#y,(v)|, |.#B.(v),
|(#4.) (v)], and |[(AB.)(v)] on this neighborhood. This leads to

ho(v) = O(x""*(1 + |log x{)) (16)

for |v| < 5. This &, we keep fixed in the sequel. We take it smaller than the
minimal element of & N (0, p), if this set is nonempty, and also smaller that {,.

Now consider one of the finitely many points ve & n(0, p). If v¢ 2 we have
h(v) = AP (—)g( ' x™" + O(x") + O(x?). If v happens to be an element of 2,
this makes no difference for the term .4y (— v)/g(v) — A (—v)/g(v) in the defini-
tion of h,. In the other term, we have to take into account derivatives of the
Mellin transforms. This leads to

h(v) = “”—z((v{—v)x”' + O(x“*” + x*(1 + |log x|)*), (17)

forve ¥ n(0, p). Take k, = 0if v ¢ 2.

3.4. Comparison of h, and y,. Put a, =y, — f,. On (0, B) the functions ¥,
and «, coincide,
We conclude from (6), the properties of t, and (12) that

- 1 a
hofma) = 5 L M- v)a‘”'(l n o( lﬁ)) dv
evSd,

1 g .
+.ﬁ o~ v”ﬂx(")g(—_v)'ap O(l) dv,
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for each o, € (0, o]. To estimate the latter integral, we take g, = 6. We obtain

J. (x7 + x€OW1 + |y])"*a?*? dy « aP*ox o,

=

In the other term we employ the line of integration Re v = o5 for .y, and
Re v = g, for #f.. As we use the estimates (8) and (7) of r and g, respectively, we
have to take care that o3, 04 & [ ¢, o] for some ¢ e (0, 1/2). We use Mellin inver-
sion and apply (10) with I = 1 and (13) with / = 2 to obtain

) 1 ap+a;+l
hx(ma) - aplllx(au) = Zﬂf .[R Vllwx(—v)o (1 + un; Vl) a

+-L MHB(—V)O(a"**4) dv + O(x0)gr+)
27“ Rev=o,

3} :
<<j X791 + |y))"2artestt gy

~“m
o .
+ J x((o)(l + |y|)-2ap+tu dy + O(x‘“’a""")
&« x")a9+l+¢3 + x((o)aﬂ""d + x<{0>aP+ﬂ.
The choice o, = ¢ is optimal. We want x~* to be small. But in the next section
we shall need that the exponent p + 1 + g, of a, be larger than 2p. This we

arrange by taking g3 = o — 1. (As ¢ > 1/2 this satisfies the condition —¢ < g, for
some ¢ close to 1/2, needed to apply (8).) We have obtained

h.(ma) = a®.(a®) + a”*°O(x'~® + x¢o?), (18)

4. Sums of Kloosterman sums. We estimate the quantity Ay(x) =
Y eez afS(E)W,(ag) as x | 0. This sum is finite for each x > 0.

4.1. Sum formula. From (18) it follows that
M) = SORE) < (77 +x) 3. Sof¢)ag*.

{eB

The convergence of the Eisenstein series implies the estimate YeesSol)agte =
O(1). That gives

Ayx)= ¥ S(E)h,(E) + O(x% + x17°), (19)
§eZ

The main term in the right-hand side occurs in the sum formula, it equals
[ h(v) d6(¥) = frevmo he(v) dB(v).
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4.2. Delta term and spectral term. 1f the delta term A |2, h.(iy)y sinh ny dy is
nonzero, we use

(1 + |log x| for |y| < & see (16),
| foreg <yl <1 see(15),
h(iy) « <
e ™(f + |yt for1 <|yl<Y, see(l4),
Le™™(1 + 1yl)'Y*! forlyl > Yy see (14),

with ¥, >1 and I>2+«x to be determined. This leads to the estimate
e3(1 + |log x) + 1 + YF*! + Y'YF* 2! for the delta term. Y, =Y is the best
choice for Y,; it does not matter what [ > 2 + « we take. This gives

I h,(v) d6(v) = O(Y*** + |log x}). (20)
Rev=0

To estimate [, 0, ) #:(v) do(v), we use the same decomposition. The first and
the second contributions are

I"’ hyliy) dafiy) < o1 + log xI),

I l h(iy) do(iy) < 1.

For the region [Y, co) we use partial summation. Let S(u} = [;,1 do(iy)/cosh ny;
so S(u) = O(u?). With > k + 2

Im h.(iy) da(iy) « Jlm (1 + pytytt dt:(:;y}

Y 1 4

« (Y + ny =Y NS(Y + ) — S(Y +n — 1))

n=1

€V B 4 nr (Y 4= DS 4 )

QYUY (Y 40— 1Y 4 )2

n=1

<YLY (Y4 n— 1)« YR

n=1
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For [} h(iy) do(iy) « [T((1 + y)*""/cos niplldo(iy) « (1 + Y)Y« Y*¥, we
also need partial summation in the case k < 1.

For this part of the spectral term, supported on i[0, o), we obtain the same
estimate as in (20). Let & = &(x, ') = £\i[0, ) = ¥ N (0, p). This part of the
support of do consists of a finite number of points. Let o, denote the mass of do
at v e & In view of (17), we obtain

(0,-/{'!/('—1’) -v

_[ h(v)do(v) = 3 X+ O(x®? + x*(1 + [log xl)"v)). (21
(0.5} g(v)

ved

4.3. Estimates with a smooth boundary

THEOREM 1. Let i, be the smooth approximation of the characteristic function
of [x, 2x) defined in Section 3.1. We have

e 4oy 4 x4 (log x]) (x10).
22)

T as@wan= ¥ L

fes vedry 9V}

The sum is over the ve & = & n (0, p), corresponding to exceptional eigen-
values. g, is the mass of do at v; see Theorem 9 in [17] for a precise description.
The quantity x depends on the group. The parameter Y governs the steepness

of ..

Proof. Collect the results in (19), (20), and (21). The term x%? is absorbed
into |log x|, and so are the terms x*(1 + |log x|)**ifve & # Q.

Trivial estimate. The convergence of the Eisenstein series gives for allg > p > 0
the estimate Z“E,,“Eqang(ﬁn = 0(p ), and hence Ay(x) = 0(x"") as x]0.

The estimate (22) is definitely better. There is a considerable cancellation in or
between Kloosterman sums.

PROPOSITION 2. Let y € C®(0, o) satisfy x(y) =1 for y = 1 and x(y)=0 for
y < 3/4. Then

x4+ 0(x'7"7% 4 llog x|?)  (23)

Y, afS@rain = 3 o, M x(—)

Ze . x) _"9(")

as x | 0, for each & > 0. The implicit constant in O depends on y.

The sum estimated here is a smoothed version of ) ;.= .5 a:5(¢). The error
term is O(|log x|?) if p = 1/2, and O(x'~*"%) in all other cases (p > 1).

Note that .#y(—v) is well defined for Re v > 0.

Proof. On the test function ¢ in Theorem 1, we put the additional condition

w(y) = x(y) for 3/4 < y < 1. This determines { completely. Moreover, we have
arranged the choice of ¢ such that x(y)= Yo oW(y/2"), hence Ay(—v)=
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MY(—v)/(1 —27"). The sum of Kloosterman sums to be estimated is equal to

Yoreo Y rez aES(EWn(ag), with N, = [log,(4B/3x)]. Indeed il n > log,(4B/3x),
then a$/2"x < (B/x}(4B/3x)™" <1 — 1/Y, 50 Yn,(af) =

Ny

2 4SQ@uaz/x) = 3 3, aiSEmilaf)
oA x(—V) v) ~(Ng+1)vy ~v
- vz'c gl = )

Ny
+ Y O(1 + 2 %1 4 4 |log x}).

n=0

We have applied Theorem 1 and used that Y is fixed. We obtain the sum in the
right-hand side of (23) and are left with the error term estimated by

[+ -/ﬂX( V) X~ ~(Ng+1) 1 — 2(1—oliNet1) B
v Ix v N 325 4TI 1—a NZ N .
';‘( g(v) 2 s g | —2i—e % + N; + N.|log x|

As N, = —log, x + O(1), we can absorb N, 4+ N2 + N,|log x| into O(|log x|?),
and use for each v € & that 27+l x~" = O(1).

To handle 2 ~9MW=*1h(1 — 2%~) we first consider the case p > 1. As o > p, we
have 20 ~oKNx+1) = O(x~1) = O(1), and ((1 — 20 ~oMN*D)(] — 2179))x! 2 = O(x ).
Takeo =p + 4.

Finally, for p = 1/2, we take o € (1/2, 1). This gives (1 — 2'~oKN+1)(| — 21-9) =
02" ~Mx) = O(x"~!). Together with the factor x' ¢, this gives O(1) = O({log x|?).

Smooth version of Linnik's conjecture. In case (R), introduced in 1.3, there are
no exceptional eigenvalues. We obtain

kﬂl

Z S(ml,mz, k)x( )=0(I108 x|?) (x10) 24)

for any pair (G, I') with G locally isomorphic to SL,(R), and I a discrete sub-
group for which & = @&.
Linnik’s conjecture for the classical Kloosterman sums is

Y S(,,m;k)=0(x""?"%)  foreachd > O0;

1ek<i)/x

see [15, p. 277]. This is equivalent to Y ; ¢, <y, JxS(1, m; k)fk = O(x %) for each
é > 0. Up till now this conjecture has not been proved. Proposition 2 can be
viewed as a smooth version of it.
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In case (C) we have p = 1. We get

- 1y o A(=NTWT(v + 1) s
Yyl S(u)x(W)—Zx O e, m, ) +0(x7% (x10),

ueO,u#0 ved
(25)

foreach 6 > 0.

4.4. Estimate with a sharp boundary—discussion. Equation (22) gives an esti-
mate for the sum of the afS(f) with a, approximately in the interval [x, 2x);
the contribution near the end points is weighted by the smooth function ¢. We
now would like to use a sharp cut-off function.

Good's argument on p. 119 of [6] is not clear to us. He puts the characteristic
function of the desired interval between two functions with the role of our ¢,.
This would work if the S(¢) were nonnegative.

Denote A(x) = Z“E.,“Cq, afS(£). We do not see another way of comparing
A(x) and A 4(x) other than by trivially estimating the difference. Let us define

swy= Y S©&
¢65.¢?=v (26)
Ty(u) = ) v?|s(v)l,

v>0,u(1-1Y)Sv<u

where v runs over the values of a for & € . Clearly [A(x) — Ay < Ty(x) + Ty(2x).
The problem is to get a reasonable estimate of Ty(x) as x | 0.

In Example (R), Weil's estimate of Kloosterman sums [22] gives S(n, m; k) =
O(k'2d(k)), with d(k) the number of divisors of k. The dependence on n and m of
the implicit constant does not matter here. Now we can proceed as indicated
by Kuznetsov in [11, (7.7)]. We use Yiagdm)=nlogn+(2y = n+ O(\/r_r) as
k — oo; see [7, §18.2). Let a + a'? « b « a + a**. Then

Y ;{lS(n,m;k)l <<\}; Y d(k)

agk<h a ask<b

<<—1 ((b——a){loga+2y—l)+blogg+\/5+\/5)
a

‘/_

% (b - a)(loga+ 2y — 1)+ b(b — a)/a + a'?
Ja

« (b —a)(loga+1) « (b —a) loga‘

Ja Ja

(Kuznetsov states this estimate with a'® « b — a « a*?)
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This amounts to Ty(u) = O(@u™*Y !|log uj) for w8 « Y « u™'*, Theorem 1
and this estimate of Ty give

Y L S(n, m; k) = O(Y'? + Y ' x7'#|log x|).
1 J2x<k<11 /= k

The estimate O(x~'*?|log x|'?) is obtained from the optimal choice Y =
x~¥6|1og x|2?. This leads to Kuznetsov's result (1).

4.5. Assumptions. In general it seems impossible to get an estimate of Ty(x)
that does not overwhelm the other terms in (22). We need some assumption to be
able to proceed.

The Linnik-Selberg series Z(s) = ¥ ;e S(E)af** converges absolutely on the
halfplane Re s > p. In several cases it has been shown that there is a larger
halfplane of convergence. So it is worthwhile to discuss the consquences of the
following assumption:.

(LSC) The Linnik-Selberg series converges absolutely on the halfplane Re s >
oy, witha, < p.

This is well known to hold in case (R) for o, = 1/4. It holds in case (C), with
o, = 1/2; see Proposition 3.4 of [20]. For congruence subgroups of SO(1, n)°,
n > 3, and infinitesimally isomorphic groups, one finds Assumption (LSC) valid
with o, = n/2 — 1 in Theorem 5.1 of [1], and Theorem 7.17 of [3]. This case,
with n > 4 and T a congruence subgroup of the Vahlen group considered in [3],
we shall denote by (V). The Vahlen groups are covering groups of SO(1, n)°.

In 4.6 we shall see that Assumption (LSC) itself does not suffice to get a non-
trivial estimate of sums of Kloosterman sums.

In all cases in which Assumption (LSC) has been proved, it is based on two
facts: the set {a;: & € E} is parametrized by N in a natural way, and many or all
Kloosterman sums can be nontrivially estimated. A strong assumption of this
type is:

(KLE) There are positive numbers y and B, B < 2pfy — 1. such that the a;7,
¢ € E, are positive integers, and s(n™"") = O(n”).

The quantity s(v) has been defined in (26).

Assumption (KLE) has two parts. The integrality assumption seems sensible
if T is an arithmetic group. It is satisfied in case (R) with y = 1/2 and in case (C)
with y = 1. For case (V), we also have integrality withy = 1.

The estimate of s(n~/7) is more delicate. Weil's estimate gives it in case (R) for
each § > 1/2. In Section 5 we shall prove that Assumption (KLE) holds in case
(C) for any § > 1/2.

Assumption (KLE) implies Assumption (LSC) with o, = (8 + 1) — p. In the
proof of the absolute convergence of the Linnik-Selberg series in [20] and [3],
not all Kloosterman sums are estimated nontrivially, but only those corre-
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sponding to prime numbers. If one extends the estimates in [3] to squares of
primes, one can prove a weaker version of Assumption (KLE) that can be used to
estimate sums of Kloosterman sums in case (V) with a sharp boundary.

Table 3 gives a summary of what we know for the example cases.

TasbLE 3. Values of the parameters in the assumptions for the

example cases

case K p Y 2 B 2pfy—1
Wl b hh
() 0 t 1 ;_ >; 1
9] "2'3 "2'1 - -2

4.6. Results based on Assumption (LSC). Assumption (LSC) seems realistic only
if ¢, is not too far below p. In the sequel we assume ¢, > 0and o, > p — 1.
Take o, slightly larger than g,. Under Assumption (LSC) we have the estimate

Y, afS(E)« v,

{eE..uia"E<u

In particular, it gives the estimate A(x) = O(x™°2) for each o, > a,. Il we combine
the resulting estimate Ty(u) « u™°*(1 — 1/Y) 7?2 « u "t with the error term in
(22), we find Y**! 4 x!7% + x7%2, Take Y = x"? with p=a,/(k + 1), and g€
(p, p + 0, — o) to obtain an error term that satisfies O(x~2).

Consider ve & The difference between #yY(—v) and its limiting value
(1 — 27%)/vis O(Y ™). It is easily absorbed into O(x™"?). Thus we have obtained

(1-2" _ 2
A(x) = g, x7¥ 4+ O(x™2) (x]0)
&) Ea vg(v)

for each 6, > o,. The error term here is the same one as obtained by the trivial
estimate of A{x) based on assumption (LSC). This gives the following.

PrROPOSITION 3. Under Assumption (LSC) with g, >0 and ¢, > p — 1, the
support of the measure do is contained in iR U (0, o, ].

This does not mean that there are no exceptional eigenvalues smaller than the
bound corresponding to &,, but only that the corresponding eigenfunctions can-
not be detected by looking at the Fourier coefficients corresponding to (P, x)} and
(P, ¥'). In Theorem 10 of [3], it is shown that for case (V) the absolute conver-
gence of all Linnik-Selberg series on a halfplane Re s > g, implies the absence of
small eigenvalues.
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We conclude that under our choice of test functions, the sum formula does not
give better estimates of sums of Kloosterman sums than can be obtained directly.

4.7. Results based on Assumption (KLE). As in 4.6 we restrict our discussion
to values of f that seem realistic. We assume 8 > p/y — 1.

Assumption (KLE) gives directly Ty(u) « ., n**"", where the integer n runs
between u~7 and u~?(1 — 1/Y)™". This gives the estimate

a’
Ty(4) < u?™* (u“'(l - -l—Y) —ur+ 1) K uPmeriy (%, + u’) .

For Ty(x) + Yy(2x) plus the error term in (22), we get the estimate
O(Y™*! 4 x'~° + |log x| + xP~+ihry=t 4 xe=hr),

The difference between .#y(—v) and (1 — 27")/v is O(1/Y) = O(1). This can be
absorbed into Of(llog x|). The optimal choice for p>0 in Y=x7 is p= -
((B + 1)y — p)f(x + 2). This leads to the estimate

O(x!~% 4 xP~8r 4 x~UB+DY—pH+1)(x+2) |log x|}

for the error term. The assumption f > pfy — 1 implies that ((f + 1)y — r)
(xc + 1)/(xc + 2) > 0, so we can absorb |log x| into the third term.

PROPOSITION 4. Suppose Assumption (KLE) holds with f > pfy — 1, then

L (1 —27)
CEE.:§¢g<2x agSe) = vezl vg(v)

x"+ 0k (x|0) (27

Jor each A > 0 satisfying the inequalities
K+ 1
? = T — 1, ? — .
Az((B+ 1)y mx+2 A>p—1 AzPy—p

Under the additional condition f> (2p — 1)fy — 1, all ve &(x, x') satisfy v <
B+ 1)—p.

Proof. We can choose o > p as near to p as we want. So the condition A >
p — 1 takes care of x'“ in the estimate. So the estimate of the error term
obtained above leads to the first part of the proposition.

We have noted that Assumption (KLE) implies Assumption (LSC) with
6y = ¥(B + 1) — p. The conditions 8 > p/y — 1 and § > (2p — 1)/y — 1 suffice to
apply Proposition 3.

Remarks. The v e & with v < A can be removed from the sum.
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Let f>p/y—~1and f>(2p—~1)/y— L Thenp—1<(f+ 1)y —p, and x >
—1/2 gives ((B+ 1)y — p)(x + 1)/(x + 2) < (B + 1)y — p. This means that the
error term in the proposition is better than can be obtained from the trivial
estimate based on Assumption (LSC) with o, = (8 + 1)y — p.

In case (R) we have Assumption (KLE) with § = (1/2) + & (Weil estimate). The
conditions on A are 4> 1/12, 1> —1/2, and 1> —1/4. Thus we get the error
term O(x~''2%). We have seen in Section 4.4 that a slightly more complicated
form of Assumption (KLE) holds in case (R), yielding a slightly stronger result,
namely Kuznetsov's estimate (1). For more general discrete subgroups I' =
SL,(R) we get under Assumption (KLE) with 0 < § < 1 an error term O(x~#/%)
and an upper bound f/2 for the v corresponding to exceptional eigenvalues.
Goldfeld and Sarnak obtain in Theorem 2 of [5] the error term O(x~#/%-%), for
each & > 0. Hejhal refines their method in Theorem I in Appendix E of [8, p. 694]
to arrive at the error term O(x~"|logx|); he takes into account the dependence
on the characters y and y'.

In case (C) we have Assumption (KLE) for each § > 1/2; see Theorem 10 and
Section 5.3. The conditions in the proposition are A > 1/4, A > 0, and 1> —1/2.
This gives the error term O(x™#~¢) and a bound v < 1/2 for the elements of
&(x, x'). In the theorem on p. 308 of [21], Sarnak gives this error term for the
number field Q./—2).

In comparing our result for the cases (R) and (C) with those in the literature, we
have carried out a computation like that in the proof of Proposition 2, and we
relate the small variable x to the large variable X = x~.

5. Estimates for certain Kloosterman sums. The goal of this section is to ob-
tain some estimates for certain Kloosterman sums naturally associated to a num-
ber field F. We shall only use the results in the case when F is imaginary qua-
dratic. However, since the proof is not much more complicated, we let F be an
arbitrary number field. The estimates to be proved are generalizations of those of
Salié [19], Weil {22], and Estermann [4] for classical Kloosterman sums. Our
approach will be a variation of the treatment given by Estermann in the classical
case.

We first set some notation. Let F be a number field with ring of integers @ = @;.
If F is an ideal in @, let N(I) be the norm of I. Let i, ¢ be unitary characters of
the finite abelian group @/1. Define the generalized Kloosterman sum (as in [20])

Sy, =) elx™), (28)
xe(Of)*
where x~! denotes the inverse of x mod /.
If I =[]}, P with prime ideals P, | <j <r, then O/I =[]}, /P, and,
correspondingly, ¢ = x| @;, ¢ = x|y, with @, ¢; € (O/P/)*. It is clear that we
have the multiplicative property

S(@, v, I) = 11 S(0 ¥y PY). 29)
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Our main goal is to obtain estimates for sums of the form

i
S[r, s C] — elxi Tellrx+ex )fc)’ (30)
xe{Oic®

where Tr = Trg)q, and 7, 1 € F\{0} satisfy Tr(rx), Tr(rnx)eZ for all xe @. So
S[r, ris €] = SWhjer Yryger (¢), with ¢, (M) = L% Triar) We want to use the multi-
plicativity (29). That forces us to estimate the more general Kloosterman sums
(28).

5.1. Local estimates. We consider a prime ideal P and estimate S(e, ¥, P™) for
@, Yy €(O/P™)". By 0, we denote the localization of @ with respect to P. Then
Mp = POp is its unique maximal ideal. We have @/P™ = 0p/M§. So we can work
with the localized ring in this subsection. It has the advantage of being a principal
ideal ring.

We first prove the following lemma.

LeMMA 5. Lets€ Op\Mp, L € Mp forl<n<m Then

407 =5 (—sT (mod MF)- @31)

=1

Proof. Indeed,

m m i
(2 (—1)’“s"’z"'>(s py= 3 (= nse e Y (-
=1 =1

=1
—14(=Nsmm =1 (mod MP).

We note that if 0 <n<m and if s (respectively f) runs through a complete
system of representatives of 05/ M (respectively Mj3/MF), then s + t runs through
a complete system of representatives of Op/Mp. Furthermore, s + L € (Op/ME)*,
and only if s € (Op/ME)*. We may thus write

Sio, ¥, M) = Y, PWG™ L oOP(—s2t + 5722 — ). (32)
teM"',lM;’,‘

SE(GPIMFI‘

By the conductor of a character ¢ € (0p/Mp)", we mean the largest ideal in Op
on which ¢ is trivial. We have assumed that M® is contained in the conductors of
both ¢ and . We write MY for the conductor of ¢, and similarly for v.

Suppose that N, < N and N, < N, for 0< N <m Lettingn=N in (32), we
get

S(e, ¥ M) = S(o, ¥, M) NPT (33)

We claim that N, # Ny implies S(, ¥, MF) = 0. Indeed, if N, > Ny, letn= N,
in (32). Then ¥ disappears in the inper sum, so we get m MyMp oft) = 0, since ¢
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is a nontrivial character. If N, < N, we choose n = N in (32), and ¢ goes away
in the inner sum, and also the terms s~ %t and higher powers of t. Again the inner

sum yields 0.
So we fix our attention on the case N, = N, = m. We shall use the sets

Elp, Ui k,n) = {s € (Op/MEY*: Y(s*1) = o(t) Vt € MR/MF}
fork,nefl,m— 1] withk +n=m.
LeMMA 6. Letm > 2and N, = Ny = m. Then
|S(e, ¥, ME)|
|€(@, ¥; m/2, m2)|- N(P)"? if mis even,

<< 1€, ¥; (m — 1)/2, (m + 1)/2)|- N(P)*"*2  if m is odd,
%@, s (m — 1)/2, m + 12 N(BY"™®  if mis odd and 2} N(P).

Proof. Take n=m/2, if m is even, and n = (m + 1)/2, il m is odd. By (32) we
have

S, v, ME)= Y oGTWG) Y ey(—s).

se(GpIMp re MBIME
Thus
IS(e, ¥, MP)|
= |{s € (Op/MEY*: Y(—5"1) = @(—1) Vt € Mp/ME)}|- N(P)"™"
< [{s € (Op/MF™")*: (s*1) = p(t) Ve € MR/ME}|- N(PY"""N(P)"™"
= €@, ¥;m—n, )l N(PY.

Thus we get the first two statements.
For odd m we can take n = (m — 1)/2, and write

S, o, Mp) = Y o(sTW()S,,
se(Ep/ME)*
with S, = ZrM;'.m;;' e (—s%t + s>t?). We compute
IS,I* = (Z fp(t)w(—szt)lll(s%’)) (): @(—up (s> uh( —s3u2))

=) 2:: olt — W (=s*(t — WP - v?))
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(st +u) =3 P(OY(— 2O (s> + 2eu))

"

)T tp(t)\h(—szt)'ll(S’!z)( P 'Il(2tu83))-

te Mgmg' ue M{'JM',"

Now we assume 2} N(P). Since ¢ is nontrivial on MT™!/Mp, it is so on M3/Mp,

hence the inner sum is zero, unless t € M3*'. In this case Y(s*t?) = 1, so we get

IS,I2=( ) fp(t)\ff(—-szt))'N(P)"""-

te Mp*lmg‘

Here the sum is zero, unless Y(s?t) = g(t) for all t € M3+ /MP. 1 this is the case,
we get N(PY""-'N(Py™" = N(P". So we get |51 =0 if s¢ (@ ¥,mn+ 1)
and |S,) = N(P)™? if se %o, ¥, mn+1) For odd m >3, we conclude that
1S(e, ¥, MP) < |€(@, Y, m + D N(P)"2.

LemMMA 7. Suppose N,= Ny=m>2. Let k, n>1 and k+n=m, and let
v = vp(2) the valuation of 2 with respect to P, ie., veNuU {0} is such that
2 € P'\P"*'. Then

|€(@, ¥ k, m < 2N(P)".

Proof. Put € =%, ¥; k, n), and suppose that € contains at least one ele-
ment s,. Then —s, € € as well.

Consider s, € € We have 53 — 51 =(s; — 1){s2 + s,)€ Mk, ie,oneof s; 5, €
Mbforsomeh > k/2. 1t =5, F s, € M5, then

2=(ts, + =5tk 250 +17,  tTeMp,

forces 2s,t € M% or, equivalently, t € M., if k > v, and imposes no condition,
ie., t € Op, if k <v. (This works since we are in the localized O5.) Hence t € M7
with r = max(k — v, 0). This proves that ¢ = €' = {+s, + t: t € Mp/M3}. Now

NPy ifk>o
4 g r k P 7S
€'} < 2| M5/ Mzl = 2 {N(P)" itk <.

In all cases |€] < 2N(P)’ as asserted.

Remarks. (i) The special case vp(2) = 0, ie, 2} N(P), yields |4] < 2.

(ii) If m is large compared to v = vp(2) and to k = [m/2], then €| = 2N(P)"
or 0.

More precisely, assume m > 4v + 2, O k=[m/2] >2v+ 1. Let 5, €% Then
—s, €%, and —s, # s, mod M}, since otherwise 2s, € M}, or 2 € M}, and this is
not true since 2 ¢ My and v+ 1 <k Put @ ={is, +t:t€ ME"/ME}. Now
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€' = ¥ since

(s, + 1) =51 £ 25,1 + ¢
PeMFYe My Qk=k+[m2)2k+2v+1)
2s,t € M§.

We claim |%'| = 2| ME™"/M}| = 2N(P)", ie, if {t;} is a complete set of representa-
tives of M§~"/M3, then {+s, + 1;} are all distinct:

5 +tl=sl+[j¢t'—t"50m0dM§
5 +ti= —sl+t1@2$1+l,—£1=0m0dM§.

In the latter case, we get a contradiction: If i # j, then 2e M c Mp" . If i = j
we get even 2 € ME.

Thus we have obtained |¢| = 2N(P)" or 0.

(ili) If we specialize (ii) to the simplest case F = @, P =(2), then v=1, and
if m>6, we get, for k = [m/2] > 3, |¢| = 4, the number of solutions of s* =
1 mod 2,

LEMMA 8. Let m=>2 and N,= Ny =m. Define cp =2 if 2 N(P) and cp =
2N(P)*'2 if p = vp(2) = 1. Then |S(o, ¥, P™)| < cp N(P)™2,

Proof. See the previous lemmas.

Case m = 1. From Weil's result [22] we have |S(p, ¥, Mp) < 2N(P)'? if N, =
N, = 1 and 2} N(P). If 2| N(P) we use the trivial estimate by | N(P)|. This gives the
bound cp, N(P)'? in all cases, with cp as in Lemma 8.

Thus we have obtained the following.

ProPOSITION 9.  Let P be a prime ideal in @. If m = 1, let ¢, y € (O/P™)*. Then
we have

IS(e, ¥, P™)| < cpN(PY"N2,

where N is minimal such that P¥ is contained in both kex(¢) and ker(y), and c; is as
in Lemma 8.

Note that ¢, depends only on F and P, not on m.

5.2. Global results. Now we put the local results together and obtain an esti-
mate for the Kloosterman sums defined in (28).

Consider for g € F, g # 0, the character ,: x+—e?™ T of F. It is an extension
of the character of @ considered above. The conductor C, we define as the largest
fractional ideal contained in the kernel of y,. In the terminology of complemen-
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tary modules of Chapter 111, §1 of [12], we have C, = (0g)". So the conductor isa
fractional ideal of F. One can check that C, = 0'q™", where @' is the inverse ideal
of the different D, q.

To write ¥, as a product, consider first the character xt-e?*! of the adele
group Ay of F defined in (12, Chapter XIV, §6]. Let ¢ denote its restriction to the
finite adele group Af (i.e., AL is the restricted direct product of the completions Fp
at all finite primes P of @). Then §(¢) = e**™¢ for £ € F < Af. Furthermore,
¥ = x pp, and if p is the rational prime number dividing N(P), then Yp(x) =
e2"*#t0) with Ap(x) = A, Treg x and 1, the composition of the natural maps @, -
Q,/Z, — Q/Z; see [12, Chafyter X1V, §1]. This shows that the conductor of p is
the inverse of the local different D q,. If Dyjq = [T P?r, then the local differents
are Mi. The embedding F+ F; sends the localized ring @, into the completion
@p, and the different for @p is M#2. See [12, Chapter III, §1, p. 61].

Let us restrict Y, to @. If the ideal I =[], P" is contained in the kernel of
this restriction, then Y, (x + I) = e ¥p(gx) gives the decomposition of ¥, corre-
sponding to 0/ =[], 0/P".

In the definition of Kloosterman sums (30), we take ¢ = r/c, with ce 0, ¢ # 0,
re @, r # 0. The decomposition of ¢, used in (29) corresponds to the decompo-
sition tf,,(x) = I1 p¥slrx/c). Denote by v, the valuation corresponding to the
prime P of F. For each factor the minimal ap such that P is contained in the
kernel is given by a, = max(0, —vp(r) — dp + vp(c)).

For r, r, € (', both nonzero, we find

S[rri; e1=]] S(fis(r- fc), Yp(ry - fc), P*P9), (34)

with almost all factors equal to 1. From Proposition 9, we obtain the estimate

IS[r,riicll < [l caN(PyHO~NeR, (35)
p

L uplc)> 0
with Np = max(0, —vp(r) — dp + vp(c), —vp(r,) — dp + vp(c)). This gives

ISCr 7y €1l < VNAOIND) [T cpN(Pymintor=dpepinopraniz,
Puple)>0

The norm of the different is an ideal in Z. This ideal is generated by the
discriminant Dy of the number field. The norm N((c)) of the ideal (c) is equal

to the ideal in Z generated by the norm Nf,q(c). We have obtained the next
global estimate.

THEOREM 10. Let r, r, € O' be nonzero. For all c € O\{0}:

IS[r, 3 €1l < 2492 /1Dl /N, (€027 /INg glc),
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where

d = [F:Q]isthe degree of F,and f =Y p y ) fp the sum of the
residue class degrees of the primes of F above (2),

Dg is the discriminant of F,
pr(c) is the number of prime ideals dividing the ideal (c) ,

N,, ()= HP',P“po N(Pymintoplo)vpleshopted=dp) spieh y, the valuation
associated to the prime ideal P; the d, describe the different: D = [1- P**.

Remarks. (i) N,,, (c) can be viewed as the norm of a kind of largest common
divisor of r, r, and c.

(ii) In the case F =@ we have r, r,eZ and N, ., (€)= (r,r,c). The norm
Ng;qlc) is c itself. Thus we get 2

IS(r, ry; )l s)ﬁ"‘"c“’(r, r, )2,

The result of Estermann, [4], has the number d(c) of divisors of ¢ instead of 27",
So Theorem 10 is slightly stronger. Estermann remarks that d(c) can be replaced
by def(r, ry, c).

(iii} This refinement is possible in the general situation. Note first that if N =
Np =0 in Proposition 9, then S(g, ¢, P™) = N(P)"(1 —~ (1/N(P)). So in (34) and
(35) we can take cp = 1 if Np = 0. In the statement of Theorem 10, we can replace
pr(c) by the number of primes for which vp(c) > dp + min(vp(r), vp(ry)). That
extends Estermann’s refinement.

(iv) 2P"© = O(|N(c)[*) for each ¢ > 0.

To see this, put a = pr(c) and x = |N(c)|. Then x = N(P,)-+- N(P,} ior different
prime ideals Py, ..., P,. Take a rational prime number q; dividing N(F). Then
each prime p can occur at most d times among the q;, where d =[F:@].
Let p, =2, p, =3, ... be the rational prime numbers in increasing order. We
conclude that logx >dlogp, +dlogp, +--- + dlog p, + b log p,,, with | =
[a/d] and b=a—Id From p;>j it follows that logx>df'"'logtdt >
d(l + 1)(log(I + 1)—1). So for all a that are sufficiently large, we have
a <d(l + 1) < elog x; hence 29 < x*'e82,

3.3. Assumption (KLE) for case (C). In case (C) the number field F is
imaginary quadratic. The set = corresponds to the ¢ € ®\{0}. The Kloosterman
sums S(§) are the S[r,ry;c] for a fixed choice of r, rye @'\{0}. We have
ag =[c|™> = N(c)™. So the integrality in Assumption (KLE) holds with y = 1.
Furthermore;

s(n™!) = Z S[r, ;]

ced, Nic)=n
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For fixed r and r, Theorem 10 gives S[r, ry; ¢] = Of..,,..{|N(c)|'***?) for each
¢ > 0. The number N, of elements c € @®\{0} with N(c}) =n is 0,(n*?). Indeed, the
unit group @* is finite; hence N, is bounded by a multiple of the number of ideals
in @ with norm n. Now apply Lemma 4.2 in [18] to get the desired result. Thus
we obtain '

s(n-l) — o(nlIZﬂ)

for all &> 0. This gives Assumption (KLE) for case (C), with y=1 and f=
1/2 + &. A trivial estimate of the Kloosterman sums would lead to f=1+c¢

6. Estimate for the function r. The goal of this section is to prove estimate (8)
on the function 7(v) (see Lemma 12). Although the methods and many of the
results are already present in Appendix | of [16], we give a rather detailed expo-
sition for the benefit of the reader.

6.1. Notations and definitions. Let G be as in the rest of this paper, a real
semisimple Lie group of real rank one and finite center. Let K be a maximal
compact subgroup of G, with corresponding Cartan involution 6. Let G = NAK
be an Iwasawa decomposition of G and let g = 1 @ a @ n be the corresponding
decomposition at the Lie algebra level. Denote by M the centralizer of 4 in K, let
P = MAN and let m, p be the Lie algebras of M and P respectively. If a is the
simple root of (P, A) then n =n, @ n,, where n, (resp. n,,) is the root space
associated to a (resp. 20). Set r = dim(n,), g = dim(ny,), p = (r/2 + g)a.

Fix H, € a such that a(H,) = 1, and let B be the multiple of the Killing form of
g such that B(H,, Ho) = 1. With this choice H, = Ho. If X, Y e g, let (X, Y)=
—B(X, 0Y). Then  , ) defines an inner product on g which coincides with B on
a. We will also denote by ¢ , ) the bilinear extension of B to a, = a®g T, and
its dual form on a}.

Choose {X;: | <j < n} an orthonormal basis of n such that [Ho, X;] = a;X;
with a; with a;=1, (1 <j<r) and g=2, (j>r). Set ¥;= —6X; Then {¥;
1 <j < n} is an orthonormal basis of i = #n. If y is a unitary character of N, let
Y, € fi be such that dy = iB(-, Y,). The basis {X,} above may then be chosen so
that one furthermore has Y, = cY; with c € R. Then dy(X,) = ic and ker(dy) =
span{X,, ..., X,}.

6.2. Verma module and Whittaker vector. If I=(iy,i,,...,0,)eN" (N =
{0,1,2,...}), denote by I'=[[i i, Ml =210, wll)= 1§+ )7 2i and
Y(I) = Symm(Y;"... ¥/n). By the Poincaré-Birkhofi-Witt theorem {Y(I): I € N"} is
a basis of #(f). Under the adjoint action of a, the space #(fi) decomposes into
weight spaces #(ii) = D2, %(T);, where %(fi)_; is the weight space associated to
—ja. Clearly #(f); = span{Y(/): w(I) = j}. We extend the inner product on @
to an inner product on %(f) by setting (Y(I), Y(J)) = §; ;I1. Then {Y(I)/ﬁ I
I € N"} is an orthonormal basis of #(7)). Moreover, { , ) is Ad(M)-invariant.
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Now consider the Verma module M(—v) = %(g) @y, C,, where T, denotes the
p-module € with m, n acting by 0 and a acting by —v — p, v € a*. Then M(—v) is
an #(g)-module with a basis given by {Y(J) ® 1: I € N"}. There is a decomposi-
tion of M(v) into weight spaces, corresponding to that of (i),

M(-v) = 12) M(—v)_; = span{¥(1) ® L: w(l) =},

with a acting by —v — p — ja on M(—v)_,.

Let M(—v) denote the w-adic completion of M(—v) (see [GW]). This com-
pletion allows us to work with infinite sums of the type )" ;.o v; with v;€ M(—v),.
Let

th(M(" V)[m) = {U € M(— v)m: Xv= dx(X)v, YXe ﬁ} ,A

the subspace of x-Whittaker vectors. The function (v) to be studied is closely
related to the canonical Whittaker vector u(v) on M(v)y, discussed in the follow-
ing lemma.

LEMMA 11. There is a unique u(v)e Wh,(M(—v)g) that has an expansion
u(v) = Z}'Lo uy(v) such that u(v)e M(—v)_; (jeN) and uy(v) = 1 @ L. If w(v) =
Y =18 (WY(I) ® 1, then each a,(v) is a rational function on o with poles, for
all 1 e N", lying in Z,, a closed discrete subset of (—co, —1/2]-a. If b;, b, € R,
t>0, let S, ,,={veat: b, <{Rev,ad)<b,}). and let S} ,, =8, p,n{veak:
IIm(v)| > }.

() If [b,b;1NnZy= A, there exist positive constants & = d(b,, b;), C=

C(yx, by, by), such that for all j ke N,j >k,

Clk!
J12*2(6 + [Im(v)|)*

()l < VES,, b,

() If [by, ;1N Zy # B, there exists C = C(y, by, by, t) such that for all j,
keN,j=k,

C!Ckk!

140N < S TmF

with C, = /(t + 1)/2¢.

Remark. In the case that n is abelian, ie, if G is locally isomorphic to
SO(1, n)°, the factor j! in the denominators in (i) and (i) can be replaced by j!*2.
In the proof we shall indicate at which point this better estimate originates.

Ve S{h-bz .

Proof. We will need to recall the main steps in the proof of Lemma A.1.5 in

(16}
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Assume u(v) = Y 5o u;(v) is a x-Whittaker vector with u{v)e M (—=v)-p (jeN).
We now compute Cu(v) in two different ways, C the Casimir element of g. First,

Cu(v) = ({v, v> — {p, pO)u(y).

On the other hand, C = Cy + H§ + 2H, + 2(3.] Y:X), C,, the Casimir of M. We
now use this expression to compute Cu(v). If y € M is an M-type, let p,: M(—v) -+
M(—v), denote the orthogonal projection onto the y-isotypic component, and
let A, be the eigenvalue of Cy on y (recall that 4,>0). If jelN, set M;=
{ye M: p(M(—v)) #0}. Write g)(v) =), i1, 1;,,(v) with w, ,(v) € p,(M(=v)_). A
calculation shows that

(CM + Hg + ZH‘,)MJ(V) = Z‘ (ly + <v +jaa 4 +]IZ> = (Ps p))“j,r(v)°
1EM]

On the other hand, Xu(v) = dx(X)u(v) implies that 2(}’ ¥, X,)u)(v) = 2icY,u;_,(v).
Hence,

—2ic
u;{v} = —_— Y, w;, v ,
,(v) ,Ezﬂj CoiJn Y)p'(u6%_1 (Pt ( ))))
with C(v, j, y) = 4, + 2j¢{v, @) + j%, forye M, j > 1.

This formula gives a recursive way to compute u(v), starting from ug(v) =
1 ® 1. By iteration of the above, we obtain

= (=2ic)! i TR
o h,e»?;sm} [T Co s, P 1By Firm oy (R @ D). (36)

In order to estimate (36), we consider the function
. C ’ .’ v .
o(v) = mf{l—(‘;zj 7)!; yeM,j> l}.

In [16, A.1.4], one proves that ¢(v) is continuous. We shall check that the zero set
of p is equal to

y 1 i
ZD={za:z= —2—;— i,yeM;,J>l}.

As each Iﬁ, is a finite set, and as all 1, are nonnegative, it is clear that Z, is a
closed discrete subset of (—o0, —1/2]-a.

Suppose that ¢(za) = 0. Then there are sequences (j,) and () with 3, € M, .
such that 1, j;2 + 2zj," + 15 0. From 4, j,;2 + 1 > 1, it follows that j,,iy o0 18
impossible. So the jn stay in a finite set, and so do the ¥;,- So the infimum defining
@(20) is a minimum, and za = Z,,.
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Note also that if |¢,| < |¢,], then @(x + ity) < @(x + it,). Now let b,, b,, ¢t be as
in the statement.
Assume first that Z, n [b;, b,] = . Then, if 1 < 5 < k, we use

IC(v, 5, 3P 2 4s*(¢(Re v)*/4 + Im(V)) = 25*(p(Re v)/2 + |Im(v)])>.
Ifk+1<s<jweuse
IC(v, 5, 1)I? = s*o(Re v)*.
Thus

1 k12
< .
I[T1 € 5.7 = )P ™ 241* o(Re vV~ "(g(Re v)/2 + [Im v])*

On the other hand,

S ey (Nipy, Yo (py (Y ® 1))

{r,e My i1 5355))

<SCt T I, (e, Y (p (Y, @ 1))
(rse M1 €8€j-2)

< C¥j2,

Here we have used the inequality || Y,u]| < C,(j + 1)|lu||, for some C, > 0, valid
for any u e ¥(M)_, j 2 1, (see [16, A.1.1]). In the abelian case, one has || Y;u| <
Ci/j + 1|ufl (loc. cit.). That gives j! instead of j!? in the estimate above. This
yields the estimate indicated in the remark to the lemma.

Thus (36) implies that

(2cC, k1
2'j1 p(Re v)*U™"(@(Re v)/2 + |Tm v|)*

lI* <
uniformly forve S, ;..
Now let § = inf{@(x): b, < x < b,}/2; 6 > 0, by assumption. Thus

kt2cy
JP256 + [Im o)

1“1(").2 <

for veS,, ,,- Note that we can ignore 6°U"® in the denominator if § > 1. If
0 < & < 1, we take it into the definition of C, and ignore §~2%,
I Zyn[by,b,]# Fand | <s <k wehavefor|Imv| > ¢,

|C(, 5, 7)1* = 45*|Im v|* > 4s2C!(1 + |Im v])?

(with C, = t2/(t + 1)%).
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ITk+1<s<j,weuse
IC(v, 5, y)I2 = s*o(v)? = s*o(Re v + it)?
forve S, ,,- We get in this case,

(C)*CPk??
iPo(Re v + it)2U=022() 4 |Im v))#*

llay(v})* <

((t + 1)/20)*C¥k12
(1 + |Im v])?*

=

for ve S} ,,, as asserted. (We handle ¢(Re v + it}*U% in the same way as we
treated 62U in the previous case.)

6.3. Asymptotic expansion of t. Lemma 11 implies the following result on t(v).
The case k = 1 gives (8).

PROPOSITION 12. Let y, ¥ € N,ae A, me M, and let Z,, Shy.0,0 St,.5, be as in
Lemma 11. The series

Y. ay(v) dy'(Ad(mas*)~ Y(I)T)

fe N"

converges absolutely and uniformly to t(y, ', v, ma) on Styp, and on S, ., in
case Zon[by, b,] = @. If Zyn[by, b,] = @, there exists a positive constant § =
d(by, b,) such that for each k > 0,

(X, vwmay— Y a(v)dy'(Ad(ms*) ' Y(I)T)a™!=
wif)<k

% omakl e o) (37)
S 226 & [Im w|)ET

" uniformly for ve Sb,.b,» and uniformly for a® < B for each B > 0. Here y, is an
everywhere analytic function, depending on y, y', by, b,,and k.

In the case when Z, N\ [b,, b,] # &, we have a uniform estimate on Sh,.5, by

((t + D20tkla .
T fimyp )
with C = C(by, b,, t, 1, x') and \j,, similar to Y, but depending on t as well.

Remarks. y— yT is the transpose in the universal enveloping algebra. It is the
antiautomorphism that acts by X” = — X on X € g. Note that Y(I)" = (- 1"ty (J).
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The statement still holds with the factor k! in the numerator of the bounds
replaced by k!° for any £ > 0. In the abelian case, the factor k! in the numerator
of the bounds can even be replaced by k!™'2*¢,

Proof. We consider the case Z, n[b,, b,] = (&, and leave the other case, which
is completely analogous, to the reader.
Take one term of the series

a,(v) dy'(Ad(mas*)™* Y(I)T) = a*a,(v) dy'(Ad(ms*)™" Y(I)),

with [ € N", j = w(/). Note that Ad(m) and Ad(s*) do not change the norm, so
Ad(ms*)~' Y()T is an element of #{n); of norm || Y(I)T|| = | Y(Z)|l. As dy’ is a lincar
form on n, its multilinear extension to #(n); has norm bounded by v/ for some
constant v depending on y'. Thus we have

la,(v) dy'(Ad(mas*)"" YU)T)| < |a,(ia” [ YD) < o/ fu(v)la®.

We apply Lemma 11 with k = 0 to obtain

Zg |a,(¥)(dx’) (Ad(mas*)™" Y ()T
TeN?

© © . .
< IEO G+ v lila® < 120 (”C)l(_;""l)_ak < 00.

(We have used here that |{I: w(I) = j}| < (j + 1)") This gives the absolute con-
vergence of the series, uniformly on §, ,,.

(%, x', v, ma) has been defined in [16] as the sum of this series. We call ,{ma)
the left-hand side of (37). The estimates in Lemma 11 imply

ni(ma) < i (J + 1Yo ) o
2

- i (j + D"(vCYaY~"" a*k!
T\ A it (& + [Im v])*2*’

uniformly for ve S, 4,

Thus (37) holds as asserted with Y (x) = ¥ 150 0O (1 + k + 1)"x'/( + k)1,
which converges uniformly for x in bounded sets.

For the convergence of the series defining ,, it is sufficient to have (I + k)!* in
the denominator instead of (! + k)!. The remaining (I + k)! ~* can be used to re-
place k! by k. The better estimate in the abelian case (see the remark to Lemma
11) gives an additional factor k!™'2.

Remark. Since Z, c (—c0, —1/2]-a, this implies that z(v) is holomorphic on
strips of the form S_,,, with b> 0 arbitrary and ¢€(0, 1/2), and satisfies an
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estimate
tlv, ma) = | + — 2 (a) (38)
o+ v
in any such strip.
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