PERIOD FUNCTIONS FOR VECTOR-VALUED MAASS CUSP FORMS
OF REAL WEIGHT, WITH AN APPLICATION TO JACOBI MAASS
CUSP FORMS

ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND ANKE POHL

ABsTrACT. For vector-valued Maass cusp forms for SL,(Z) with real weight k €
R and spectral parameter s € C, Res € (0,1), s # +k/2 mod 1, we propose a
notion of vector-valued period functions, and we establish a linear isomorphism
between the spaces of Maass cusp forms and period functions by means of a co-
homological approach. The period functions are a generalization of those for the
classical Maass cusp forms, being solutions of a finite-term functional equation
or, equivalently, eigenfunctions with eigenvalue 1 of a transfer operator deduced
from the geodesic flow on the modular surface. We apply this result to deduce
a notion of period functions and related linear isomorphism for Jacobi Maass
forms of weight k£ + 1/2 for the semi-direct product of SL,(Z) with the integer
points Hei(Z) of the Heisenberg group.

1. INTRODUCTION

For several hyperbolic orbisurfaces I'\$, with $ denoting the hyperbolic plane
and I" being a discrete subgroup of SL,(R) acting by fractional linear transforma-
tion on $, notions of period functions for Maass forms and associated isomor-
phisms have been established in the course of the last years. For I' = SL,(Z),
which is the seminal example, this has been achieved in combination of work by
E. Artin [1], Series [35], Mayer [23, 24], Lewis [18], Bruggeman [4], Chang—
Mayer [10], and Lewis—Zagier [19, 20]. Alternative proofs are given in [8, 25],
and most recently, by combination of [26, 28—30].

The variant of these proofs most relevant for our work proceeds roughly as fol-
lows, applying to Maass cusp forms. See also the survey [32]. The space of Maass
cusp forms for SL,(Z) with spectral parameter s is shown to be linear isomorphic
to the space of parabolic 1-cohomology of SL,(Z) with module being the vector
space of smooth, semi-analytic vectors of the principal series representation with
spectral parameter s. The cocycle classes can be characterized by real-analytic,
rapidly decaying solutions of a rather simple functional equation on (0, c0) that
depends on s. In this way, Maass cusp forms with spectral parameter s are seen
to be linear isomorphic to real-analytic functions on (0, c0) or, equivalently, holo-
morphic functions on C \ (—o0, 0] that satisfy the s-dependent functional equation
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and certain decay properties at boundaries. This isomorphism is given by an inte-
gral transform relation, and the solutions of this functional equation are the period
functions.

The functional equation can be deduced from the dynamics of the modular sur-
face SLo(Z)\H: A well-chosen discretization of the geodesic flow on SL,(Z)\$
gives rise to a discrete dynamical system on (0, o), more precisely to a finitely-
branched self-map on (0, co) \ Q, which is closely related to the Farey map. The
associated transfer operator with parameter s, called slow transfer operator, is
finite-term. The defining equation of its eigenfunctions with eigenvalue 1 is just
the function equation from above.

Furthermore, an induction on parabolic elements in the discretization gives rise
to a companion discrete dynamical system, an infinitely-branched self-map on
(0, ), closely related to the Gauss map and continued fraction expansions. The
family of fast transfer operators associated to this map represents the Selberg zeta
function via its Fredholm determinant and can be used to characterize necessary
decay properties of period functions.

Turning around the order of this presentation (as it is done for generalizations),
the geodesic flow by means of discretizations and transfer operator techniques
gives rise to a functional equation suitable for the notion of period functions. And
indeed the regularity and decay properties to be requested from period functions
as well as the construction of the cohomology theory can partly be motivated by
geometric-dynamical considerations. We refer to [32] and [9, Section 8] for more
explanations.

These results have been generalized to certain classes of hyperbolic orbisurfaces
of finite and infinite area. See in particular [9, 10, 26, 28-31]. With this paper we
reach out to establish first instances of analogous results beyond Maass forms of
weight 0 as well as beyond hyperbolic orbisurfaces. We provide such results for

(a) Jacobi Maass cusp forms of any real weight for the discrete (integral) Ja-
cobi group of level 1, which is the semi-direct product of SL,(Z) and the
integer points Hei(Z) of the Heisenberg group, and

(b) vector-valued Maass cusp forms for SL,(Z) of any real weight and any
unitary representation.

To survey our results in more detail, we start with a few preparatory comments
and explanations. We set throughout G := SL,(R) and I' := SL,(Z). We let Hei
denote the 3-dimensional continuous Heisenberg group and Hei(Z) the discrete
Heisenberg group, i.e., the subgroup of Hei given by restricting to the ring of inte-
gers. See Section 8 for precise definitions.

The space on which Jacobi Maass forms (and Jacobi Maass cusp forms) are
defined is the product space $ x C of the hyperbolic plane $ and the complex
plane C. On this space, the (continuous) Jacobi group G’ := Hei=G (of level 1) acts
by fractional linear transformations in the Hei-component and by a certain skew
product in the C-component. See Section 8. Endowing $ x C with a Riemannian
metric such that G’ acts by Riemannian isometries is not unique. Indeed, there
is at least a two-parameter family of such Riemannian metrics on $ x C (see [30,
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Remark 2.5]). Thus, if we wanted to proceed as for hyperbolic orbisurfaces starting
with a discretization of the geodesic flow, then we would face the difficulty of
the non-uniqueness of the choice of this flow. In addition, even if we settled on
one choice of the Riemannian metric, then we would need to handle the seven-
dimensional sphere bundle of $ X C in combination with a mixture of hyperbolic
and euclidean action behavior.

To circumvent this obstacle and to simultaneous stay close to the approach for
hyperbolic orbisurfaces, we use here another approach based on the theta decom-
position. Pitale [27, Theorem 4.6] showed that Jacobi Maass forms for r/ =
Hei(Z) = I' of integral weight and positive integral index are linear isomorphic
to certain spaces of vector-valued Maass forms on I'\ 9. Thus, this isomorphism al-
lows us to transfer the quest for a notion of period functions for Jacobi Maass cusp
forms to a question about period functions for vector-valued Maass cusp forms in
the more well-known realm of hyperbolic surfaces. This way, the request for a dis-
cretization of the non-unique geodesic flow on I'V\($ x C) is solved implicitly and
essentially avoided. However, via this isomorphism the integral weight of Jacobi
Maass forms gets converted into a half-integral weight for the vector-valued Maass
forms. Up to date, only weight-zero situations have been considered in the litera-
ture in this realm of research, and hence we are required to find a notion of period
functions for Maass cusp form for half-integral weight and establish the necessary
linear isomorphism. Indeed, we provide these results for arbitrary real weight as it
is no more difficult than half-integral weights. In turn, the generality of our results
for vector-valued Maass cusp forms then allows us to consider also arbitrary real
weight for Jacobi Maass cusp forms.

For the definition of vector-valued Maass forms of weight k € R we fix a one-
dimensional multiplier system vg, given in (2.6), and a unitary representation p
of I' on a finite-dimensional vector space X,. Maass forms of weight k, spectral
parameter s and multiplier system pv; are smooth eigenfunctions $ — X, with
eigenvalue s(1 — s) of the generalized Laplacian

Ay :=—y26§—y28§+iky (z=x+iye®)

with growing at most polynomial towards co and being invariant under the action
|ove.x on all of I', where

1 e—ik arg(cz+d)u(,yz)

o k(@) = p(y) " oy)”
foru: 9 - X,,yel,zeHandy = (‘; Z) The space of such Maass cusp forms is
denoted Ai(s, pvr). Asking for exponential decay towards oo instead of polynomial
bounds defines the space of Maass cusp forms of weight k, spectral parameter s and
multiplier system puvg, which is denoted ﬂg(s, pug). See Section 2 for more details.
This section also contains an alternative definition using the universal covering
group of G, which is helpful for our considerations.

The space FE{  of period functions for weight k, spectral parameter s and

PUL,Ss
multiplier system puy consists of real-analytic functions f: (0, c0) — X, that obey
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certain extension properties and satisfy the three-term functional equation

) 11 10
/= f|l)vkskT f|pvksk T’ WlthTZ=(01) and T’ :z(ll)’
where the action |pv sk is closely related to the action |, r. We refer to Section 3
for precise definitions. We emphasize that this functional equation can be deduced
from a transfer operator associated to a discretization of the geodesic flow on the
modular surface I'\$, and hence the same discretization as for the weight-zero
results is lurking in our considerations.

Theorem A. Fork € R and s € C such that Re s € (0,1) and s # +k/2 mod 1, the

vector spaces ﬂo(s pU;) and FE;’U s.x are isomorphic.

The isomorphism in Theorem A is indeed constructive, at least in the direction
ﬂo(s pvE) — FEpU sk It is given by an integral transform and uses a cohomo-
logical setting. The condition s % +k/2 mod 1 in Theorem A restricts the spectral
parameter s to the values for which the discrete series representation is irreducible.
We refer to the full statement of this isomorphism in Theorem 7.1, Proposition 4.2
and their proofs.

In our present consideration we restrict to I' = SL,(Z) for definiteness and sim-
plification of some steps. In particular, we may work with the Farey tesselation
of $, which is underlying both the transfer-operator-based deduction of the func-
tional equation above as well as some parts in the cohomological argumentations.
However, we expect that the tools we use here for the generalization of the weight-
zero results to arbitrary real weights can be adapted to non-cusp forms and other
discrete subgroups of G.

Jacobi Maass forms for T’ of index m € Z, weight k € R, eigenvalue parame-
ter s € C and multiplier system ¢,v; With ¢, being a character parameterized by
a € Z mod 12, are smooth functions $ X C — C that are eigenfunctions of certain
differential operators related to the Laplacian on $, that are of at most polynomial
growth, and that are invariant under the action |¢, okm? , which is an extension of the
action on Maass forms to include the elliptic variable space C. We refer to Sec-
tion 8 for details and an alternative definition using the universal covering group.
The space of such Jacobi Maass forms is denoted ﬂj (S @axi). Asking for quick
decay instead of polynomlal growth, defines the subspace of Jacobi Maass cusp
forms, denoted ﬂk’m(s, ©axk). We obtain the following generalization of Pitale’s
result, where p, , 1s a certain unitary representation of I' which is associated to ¢,
and m, defined in (8.36).

Theorem B. LetmeZ m>1,a€Z/12, ke Rand s € CwithRe s > 0. Set s’ :=
(s+1)/2 and k' := k—1/2. Then the vector spaces ﬂ]{m(s, Caxr) and Ap (8, PamVi’)
are isomorphic, as well as the vector spaces ﬂi’ﬁl(s, waXk) and ﬂg,(s’, La.mVk’)-
Theorem B provides a theta decomposition, which generalizes Pitale’s result. It
is based on working with the universal covering group of G’ and Fourier expan-

sions. Indeed, the proof provides more insights into the isomorphism. We refer to
Theorem 8.3 and its proof for full details.
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The combination of (the full versions of) Theorem A and Theorem B yields
period functions for Jacobi Maass cusp forms.

Theorem C. Letm € Z, m > 1, s € C and k € R such that Res € [0,1) and

s # tkmod 2. Set s’ := (s + 1)/2 and k' = k — 1/2. Then the vector spaces
ﬂ;{:&(& @axr) and FEY o are isomorphic.

amU >

This result is stated as Corollary 8.4 in Section 8. As for Theorem A, the isomor-
phism between Jacobi Maass cusp forms and their period functions can be provided
rather explicitly via an integral transform. We refer to Proposition 8.5 for details.

This article is structured as follows. In Section 2 we introduce Maass forms and
Maass cusp forms for arbitrary real weight, first as functions on $ and then as func-
tions on the universal covering group of G. We discuss their Fourier expansions,
and weight-increasing and weight-lowering between Maass forms, which yields
that only spectral parameters s with Re s € (0, 1) need to be considered (Proposi-
tion 2.5). In Section 3 we discuss principal series representations and discrete se-
ries representations in the presence of arbitrary real weight. We further provide the
definition of period functions and show some first properties. In Section 4 we in-
tensify the discussion of period functions, provide the integral transform including
the generalization of all necessary ingredients, present the cohomology setting, in
particular the parabolic cocycles, and establish an explicit linear map from Maass
cusp forms to period functions (Proposition 4.2). In Section 5 we discuss the rela-
tion between slow/fast transfer operators and period functions. We obtain that, as in
the classical results, slow transfer operators determine the functional equation (and
some parts of the regularity conditions) of period functions, and fast transfer oper-
ators help to characterize the necessary regularity conditions. In Section 6 we start
working on showing that the linear map from Maass cusp forms to period functions
is indeed bijective by indeed inverting this map, i.e., the integral transform. To that
end we provide a kernel function for the inversion, and a boundary germ construc-
tion. In Section 7 we complete these efforts by constructing the inverse map from
period functions to Maass cusp forms. In Section 8 we provide a generalization
of Jacobi Maass forms to arbitrary real weight, we establish a theta decomposition
for them, allowing us to relate Jacobi Maass forms and vector-valued Maass forms
for real weight, and we apply our result on period functions for Maass cusp forms
to obtain period functions for Jacobi Maass cusp forms. Throughout we attempt to
follow the proofs in the previous results mentioned at the beginning of this intro-
duction as close as possible, and we emphasize the new tools and steps needed for
the generalizations.

Acknowledgement. The research of AP is funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) — project no. 441868048 (Priority
Program 2026 “Geometry at Infinity”). YC is partially supported by NRF2022R1-
A2B5B0100187113.
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2. MAASS FORMS

We consider in Subsection 2.1 Maass forms first as functions on the complex up-
per half-plane that are eigenfunctions of a generalized Laplace operator, satisfy an
invariance relation and a growth condition, and we discuss their Fourier expansion
in Subsection 2.2.

For our purposes it is useful to consider Maass forms also as functions on a Lie
group covering SLo(R). We discuss this in Subsection 2.3. Further, the action of
the Lie algebra of SLy(R), in Subsection 2.4, can be used to relate Maass forms in
weights that differ by a multiple of 2. This leads to Proposition 2.5, which reduces
the set of eigenvalues of the Laplace operator that we have to consider.

2.1. Maass forms on the upper half-plane. We first discuss the concepts in-
volved in the definition of Maass forms, working with functions on the complex
upper half-plane $ = {z€ C : Imz > 0}.

Differential equation. Maass forms of weight k € R should be eigenfunctions of
the differential operator

(2.1) A = -y 0y -y 8, + iky 0, .

Here and further on we will tacitly write z € Has z = x + iy with x € R, y > 0.
For k = 0, the differential operator Ay is the hyperbolic Laplace operator on $. For
any k € R the operator Ay is elliptic, and all its eigenfunctions are real-analytic.
The operator Ay makes sense on vector-valued functions by applying it on each
coordinate component. We follow the practice of parametrizing eigenvalues as
s(1 — s) with s € C, and call s and 1 — s spectral parameters. Maass forms satisfy
the condition

(2.2) A = s(1 = s)u
for some s € C.

Invariance under the modular group. For each g = (f Z) € SLy(R) =: G we use
the operator

—ik arg(cz+d)

(2.3) uulg, (ukg)) = e u(gz) ,
az+b

where we take —7r < arg(cz + d) < 7. By gz we mean £=;. The operators can be
applied to vector-valued functions. The operators |yg commute with the operator
Ag.

For k € R\Z the operator |rg depends on the choice of the argument. This has the
consequence that for g = k() = (_CS?SZ 5(1)23) and z = i the factor e~k arg(cos#—isin )
is right continuous in @ = —x, but not continuous if k ¢ 27Z.

If k € Z, then g — |g is a (right) representation of G in the functions on $:

2.4) ukgrga = (ukgn) |, 92 (91,92 € G).

For k € R \ Z this relation holds only up to a factor with absolute value 1. The
operators |xg with g € G = SL,(R) generate a group, which depends on k. This
group is a homomorphic image of the universal covering group of SL,(R), which
we will discuss in Subsection 2.3.
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It is impossible to add a factor in the definition in (2.3) such that we arrive at a
representation of the group G. However we can turn y +— |y into a representation
of the discrete subgroup I' = SL,(Z) by writing

-1 —ikarg(c . ab
(2.5) Ul k¥(2) = v(y) e D () w1th7’:(cd)

and the function v;: I' —» C* given by

n*(yz2)
(Cyz + dy)k 772k(z) ’

Ph() = Tkl l_[(l _ eZﬂ'inz)Zk ,

n>1

wu(y) =
(2.6)

where 7 is the Dedekind eta function. For the multiplier system v, we have in fact
an action of PSL»(Z) = I'/{xL,} with I, = ((1) (1)), since |y, kY = ly x(=y) forally € I'.

We let X, = C" for some n = n(p) € Z»1, and consider a unitary representation
p: I = U(X,) with respect to the standard inner product (x, y), = >, x;ij; of C" =
X,,. We obtain a representation on the X,,-valued functions on $ by

2.7) Ulpo kY = P tly iy -

When dealing with the Jacobi group we will obtain examples of representations
with these properties.

Growth conditions. On functions u that are invariant under |, ([" we impose
growth conditions at co. A function u has polynomial growth if

(2.8) u(z) = O(y") asyl o

for some a € R that may depend on u, uniform for x in compact sets in R. A
function u has exponential decay if for some a > 0

(2.9) u(z) = O(e™) asy T oo, uniformly for x in compact sets in R .

Definition 2.1. Let s € C, k € R, and p: I' — U(X,) a finite-dimensional unitary
representation of I'. The space A (s, pux) of Maass forms of weight k, with spectral
parameter s and multiplier system puv consists of all smooth functions u: $ — X,
that satisfy uly, vy = u for all y € I, the eigenfunction condition (2.2), and the
condition (2.8) of polynomial growth. The stronger condition (2.9) of exponential
decay determines the subspace ﬂg(s, pvy) of Maass cusp forms.

1 0

The presence of —1I, = (_0 -1

) in I requires attention. We have

(2.10) vp(=h)e e =

from (2.6). Hence we get p(—1I)u(z) = u(z). So functions that are invariant under
loue. kI have values in the 1-eigenspace of p(—1). We might avoid this by requiring
that p is a representation of PSL,(Z). However, the representation p might arise
naturally, and it might be inconvenient to tamper with it.

The concept of Maass form in the scalar-valued case for more general groups
than SL;(Z) is due to H. Maass, who called them non-analytic modular forms; see
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[21] and [22, p. 185]. For vector-valued Maass forms we may consult Roelcke [33,
34].

2.2. Fourier expansion. Let the function u: $ — X, be equivariant under |o,, T
with T = ((1) } ) The operator v (T)p(T) is unitary, and X, has an orthonormal basis

of eigenvectors {¢; : 1 < [ < n(p)} of v(T)p(T). We take k; € [0, 1) such that
p(Tv(T)e; = ek ;. Writing u: $ — X, in the form

@.11) u@) = Y w@er,

[

we get n(p) component functions u;: $ — C.
Ifue ﬂg(s, pUg), then the functions u; have a Fourier expansion

(2.12) u(z) = Z 1(m)e™™™ W /2.5-1/2(4xlnly) ,
n=k; mod 1,
n#0

with e(n) = Sign(n). We note that »n runs through a set of real numbers, not neces-
sarily integers. Since the W-Whittaker functions and their derivatives have expo-
nential decay, all derivatives of u with respect to x and y satisfy condition (2.9) of
exponential decay. Under less strict assumptions than the unitarity of p there still
is a Fourier expansion in which W-Whittaker functions are involved; see [13]. The
exponential decay of derivatives of Maass cusp forms goes through.

The Fourier terms of components #; of a function u: $ — X, satisfying only
(2.2) and (2.7) are more general. For Re s > 0 any term with order n # 0 is a linear
combination of

(2.13) MW inns-12@nly)  and ¥ Mygrs2.5-1/2(4alnly) .

The W-Whittaker function has exponential decay, and the M-Whittaker function
has exponential growth. The term of order O is for s # % a linear combination of
y* and y'~*, and for s = % a linear combination of y'/? and y'/? log y.

Fourier terms inherit growth conditions. A consequence is that if we replace the
condition of exponential growth of Maass cusp forms by u(z) = O(y™*) asy T o
with a > max(Re s, 1 —Re s), then we have Fourier expansions of the ; as indicated
in (2.12). This is the condition of guick decay. It is weaker than exponential decay,
but for Maass forms quick decay implies exponential decay.

2.3. Universal covering group. The weight £ of a Maass form as defined in Def-
inition 2.1 is a parameter in the transformation behavior by elements of I'. The
concept of Maass forms on a Lie group separates the weight and the ["-invariance.
In the context of arbitrary real weights the Lie group to be used is the universal
covering group of SL>(R).

Description of the universal covering group. The Iwasawa decomposition of SL,(R)
writes each element of SL;(R) uniquely as p(z)k(#), z € $ and ¢ € R mod 27Z,
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with
12 =172
p(x +iy) = (yo yy_l/z) X+iyeH,
2.14
( ) k() = cos ¥ sin JeR
~ \~sin® cos ¥ '

The universal covering group G of G = SL,(R) is based on the covering
H9XR - HxXR/27Z,

with the natural map R — R/2zZ. There exists a unique Lie group G consisting of
the elements p(z)k(#) with z € $ and ¢ € R with a group structure such that

(2.15) pr : p(2)k®) - p(2)k(®)
is a surjective Lie group homomorphism pr : G — G with kernel
(2.16) 7, = {k@mn) : nez).

One finds a description of the group operations in [3, §2.2.1].

The map pr in (2.15) is a group homomorphism. There does not exist an inverse
group homomorphism, but we can choose a section g +— £(g) from G to G of the
homomorphism pr : G — G by

b &by
2.17) f(jd) _ f)(j:d)k(— arg(ci + d)).

We stress that the map pr o € is the identity on G, but pr is not invertible. Further
for all (‘C‘ Z) € G we have

az+b
cz+d

b\ - _
(2.18) f(j d) Bk®) = b VK@ — arg(cz + d)),

where we use the argument convention —x < arg(cz + d) < 7.

Weights and equivariance. A function f on G has weight k € R if it satisfies

(2.19) f(@Gk)) = ¥ (@) forallge G, 9 eR.
The representation of G by right translation in the functions on G is defined by
(2.20) (RGN = f(G31)-

Hence the function f on G has weight k if the subgroup K = {k(#) : 9 € R} of G
acts according to the character k(%) — ™7 of K. The representation of G by left
translation of function on G is given by

(2.21) (L@GDN@G) = fG:19).
As we do not apply é;l in (2.21), this is a right representation:
L(§192) = L(§2)L(g1) .

Since left and right translations commute, left translation does not change the
weight of functions on G.
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Discrete subgroup. The discrete subgroup I' = SL,(Z) C G has an inverse image
[ = pr~'T'in G. The group I is discrete in G, and it contains the center

(2.22) 7 = {k(mn) : nez)
of G. The group I" is equal to Z £(I'). The group I" is generated by
(2.23) T =pi+1) and S = k(-n/2),

which implies that

. . 11
T = €T) with T=(01),
(2.24)

U

= €(S) with S = ((1)_(1)).

The relations for I are determined by

(2.25) ST = 78§82 and(TS)* = S2.

Suppose that a function f € C*(G) is left-invariant under I and has weight k.
Since §2 is central in G we have

@) = f(8%9) = f(@GS?) = ™ £(@).

Hence we have f = 0 if k € R \ Z. Thus, for general real weights, functions on
G cannot be left invariant under T, and hence we have to be content to work with
functions that are left equivariant for a suitable character of T, for instance for the
character y determined by

(2.26) xe() = ™0 a(§) = e

Then we deal with y,-equivariant functions of weight k that satisfy

(2.27) fG9) = xi®f@ 7€l §eG.

Functions on $ and on G. For any u € C*($) and any weight k € R we define
Yu € C(G) by

(2.28) F) (k@) = e u().

The function Wiu has weight k. Moreover, the operator [zg in (2.3) corresponds to
left translation on G:

(2.29) Y (ulkg) = L(L(g))Pu  forallgeG.

The operator ¥} works for vector-valued functions as well as for scalar-valued
functions. We have vi(y) = xx(€(y)) for all y € T. If p is a representation of I in
C", then we define p(%) = p(pr¥) for all ¥ € I'. With (2.7) we get

(2.30) Wiulpu k) = pO)™ L) P
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2.4. Lie algebra and differential operators. The groups G and G have isomor-
phic neighborhoods of the unit element, and hence they have the same Lie algebra
g, with complexification g, = C®g g. We use the notations of Berndt and Schmidt,
in particular for the basis {Z, X, X_} of the complexified Lie algebra. See [2, p. 12].

The Lie algebra g. acts on C*(G) by differentiation on the right. This action
commutes with left translation. This holds in particular for the following operators,
in the coordinates given by (x, y,?) < p(x + iy)E(ﬂ).

Z = _iaﬁ s
(2.31) Xy = eZiﬂ(zly 0, — %819) - e2i19(l-y 0, + 10, - éag)
X_ = e—w(_ziy 0z + éaﬂ) = e—Ziﬁ(_iy Or +yd, + %‘aﬂ).

The differential operator Z detects the weight of functions. With the commutator
relations in g. (see [2, p. 12]) we check that X, shifts the weight up by 2, and X_
shifts down by 2. We have the second order element

1 1 1 1
2.32 A=-XX,--7°--7Z = -X,X_--7°+-Z,
(2.32) £ 3 + 1 3

which is known to commute with all elements of g.. The operator A is called the
Casimir operator; it corresponds to the differential operator

(2.33) —y* (05 + 0;) + y 0x0y .

On functions of weight k the operator A acts as

(2.34) —y* (0% + 07) + iky O,

which is the operator Ay in (2.1).
Now we are ready to use the operator ¥y to transform Definition (2.1) into an
equivalent definition of Maass forms as functions on G. We put

1/2
I Yy 0
a(y) = p(ly)=€[ 0 y_l/z]-

Definition 2.2. Let s € C, k € R, and p: I' — U(X,) a finite-dimensional unitary
representation of I'. The space Ax(s, pxr) of Maass forms on G of weight k, with
spectral parameter s and representation ype consists of all smooth functions

f:G— X,

that satisfy

(@) RKk@)f = & fforall € R,

(b) L) f =pF@) " xx(@) f forall y €T,

(© Af = s(1 - 9)f. )

(d) f(a(rg) = O(*) ast T oo uniform for ¥ in compact sets in G for some

acR.
If we replace condition (d) by f(a(r)g) = O(+™*) as ¢t T oo, uniform for ¥ in

compact sets in G for all @ € R, then f is a Maass cusp form.
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Weight shifting operators. The operator A preserves the weight of functions on G,
and corresponds to the operator A; on $.

The operator X, transforms functions of weight k into functions of weight k + 2.
It corresponds to the operator X, ; = 2iyd, + % on $, which we can see with the
following computation:

X (Yiu)(z, 9)

(21 0, - 5 0y) u(e™)

2ly @(Z)ei(k+2)l9 + u(z)ﬁei(kﬂ)ﬂ
0z 2
ou k .
_ (n:,0U K i(k+2)9
= (25 @+ Fu@)e

= (Wrea(2io: + g)u)(z, ).

We leave to the reader the analogous computation for X_ to see that X_ corresponds
to X_x = —2iy0; — 15‘ The operators X, x and —X_ correspond to the operators in
[33, (3.1), (3.2)]. Working with Maass forms on the group we have the following
results.

Lemma 2.3. The weight shifting operators satisfy
(2.35) Xt s, x00) = Ay (5, 000)

We note that the weight changes, but that the representation y o of I stays the
same.

Proof. We apply the operator X, ; corresponding to X, to the Fourier expansion
in (2.12). This leads to an expression in the Whittaker function and its derivative.
The contiguous relations for Whittaker functions allow to show that we get a mul-
tiple of the expression for the Fourier expansion in weight k + 2. The absolute
convergence of the Fourier expansion gives an estimate of the growth of the coef-
ficients ¢;(n) that is strong enough to show convergence of the sum of derivatives,
and it leads to exponential decay of the resulting sum. O

Lemma 2.4. The operators X. Xz act in ﬂg(s, XiP) as multiplication by the factor
(sFk/2)(s—1xk/2).

Proof. The operator Z acts in A%, (s, yxp) as multiplication by k’. The operator A
acts as multiplication by s(1 — s). A computation based on (2.32) gives the actions
of X, Xz. O

If s # % mod 1 and s # —% mod 1 the product (s ¥ k/2)(s — 1 £ k/2) is non-zero,
and hence

(2.36) X g (s, pur) = T, (s, pvr)

is a bijection. (Note that the multiplier system puvy is preserved under X, .) This

shows that if we know one space ﬂg(s, pur) with s # i% mod 1, then we know

A, (s, puy) for all K = k mod 2.



PERIOD FUNCTIONS, MAASS FORMS AND JACOBI MAASS FORMS 13

Proposition 2.5. Let s € C, s # +5 mod 1. Define v € [0,2) by v = k mod 2. If
the space ﬂg(s, pUy) s non-zero, then

se%+(iR\{0}),

237 Los<1-% ifvel01),
or
1—§<s<§ ifvell,2).
This follows from [33, Satz 3.1], which implies that
kK kK
(2.38) —-s(2-5) < —5(1 + 3)

for all ¥ = k mod 2. For k' = v this equality is stronger than for all other ¥’ =
v mod 2.

3. PRINCIPAL SERIES REPRESENTATION

In [7], the representation of G underlying the modules used in the cohomology
of I is the discrete series representation. Handling arbitrary real weights requires
some care.

Operators on the real projective line. The action of G on $ by fractional linear
transformations extends to an action on the projective line P!, which is the bound-
ary of 9.

By an open interval in P]é we mean an open connected subset / C Plé that is not
equal to Pﬂé and has more than one point. The set R is an open interval in P!, and
intervals (o, ) in R with @ < § € R are intervals in Pﬂé as well. If @ > B, then we
have the open interval (@, 5), = (@, o) U {oo} U (=00, ).

Letse Candk € R, and let g = (‘C’ Z) € G. For functions ¢ on an open subset
IcC Pﬁ we define cpIE’Skg on g~ 'I by

(<P|5fkg)(t) = (a—ic) "2 (q + ic) k2 (,_t—g—lll)s k/2
t+1i s+k/2
(=)
where we use — < arg(a —ic) < mand —r < arg(a + ic) < . (In this way gol?fkk(ﬁ)
is right-continuous in ¢ = —m, like we have in (2.3).)

(3.1)
w(gn),

. \s—k/2
)
is well-defined on Plé. In fact it determines a holomorphic function on ]P’é mi-
nus a path from i to g~'i in $. Similarly, the other factor is holomorphic on ]P’é
outside a path in the lower half-plane. These two factors are real-analytic on Pﬂé.
So |Tkg sends real-analytic functions on / to real-analytic functions. It also sends
CP-functions to CP-functions for p = 0,1,...,00. Tensoring C with X,, we get
operators

(3:2) (el D = p ™ )™ (@)

The function t — ¢(gt) is again a function on Pﬂé. The function ¢t — (



14 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND ANKE POHL

for each y € I, and have

(3.3) el oy = (el i)l 7

for y1,y, €T
In this way we arrive at the [-equivariant sheaf (V[‘;’)k . of analytic functions on

P! with values in X, and on larger equivariant sheaves V”  of p times continu-
R P PUk,S,k

ously differentiable functions, with p = 0,1,2,...,c0. The action of y € I' is given
by

ps -1
(3'4) Ok, S, ky pvk S, k(l) vk S, k(y 1) .

The space of global sections (V;‘;k S k(]P’R) is [-invariant for this action. This is the
principal series representation twisted by pvg. Similar remarks hold for the larger
sheaves V” sk of p times continuously differentiable functions.

—nik

We note that IE (—I2) is multiplication by e~™*, independent of s. From vy (—1>) =

ek we conclude that |£Zk ox(—I2) 1s just application of the operator p(=I)™! =
p(—1). (We use that p is a representation of I', and 12 € I is its own inverse.) For
any set [ C ]Pl the 1-eigenspace of |> (=) in V (1) is independent of s and

k.

Pk, 8,k pv s,k

3.1. Period functions. The period functions that we want to relate to Maass cusp
forms in ﬂo(s pvy) form a subspace of V¢ s, (0, ) with several additional prop-
erties.

Action of —I. Like for Maass cusps forms, we want period functions to have values
in the 1-eigenspace of p(—/). This implies that

(3.5) (PoesicS Mo skS = f
for a period function f, for § = ((1) _(1)).
Three term relation. We want the period functions to satisfy the three term relation

(3.6) f = sk + kT

where T’ = (} (1)) = ST!S. This relation goes back to the three term relation in
Lewis’s paper [18].

For f € (V“’ k(O o), the terms on the right hand side of (3.6) are elements of

pvk .. (=1 oo) and pye o, k((O —1).). In the relation these two terms are understood

to be restricted to (0, oo)

Continuous extension.  The period functions attached to Maass cusp forms by
Lewis and Zagier [20] determine real-analytic functions on (0, co) that satisfy the
three term relation (3.6) with pvy = 1, Re s € (0, 1), and k£ = 0, and have estimates
at the boundary points of (0, c0). By [7, Theorem B and Proposition 14.2] these
functions have, in the projective model used in this paper, a smooth extension f to
Pﬂé satisfying f’ |Iffs,OS = —f. In particular, lim,}o f(x) and lim,po f(x) exist and are
equal, and analogously for the one-sided limits at oo.
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Here we require that the limits

3.7 as(f) = liTm f(® and ao(f) = lil%l (@
1Too t

exist, and satisfy

(3.8) ao(f) = —p(S)ac(f).

We note that f Igik’s’kS is defined on (oo, 0).. We have for t < 0:

(fzzk,s,ks )(Z) (3£1) p(S )_1 vk (S )_1 (_i)k/Z—s i—s—k/Z f(—l/l)
p(S) 1 (=) ™R f(—1/1)

(256)
T p(S)an(f).

So (3.8) ensures that the real-analytic function — f' |sz oS on (o0,0). has the same
limit for ¢ T O as the real-analytic function f on (0, oo) for ¢ | 0. This implies that

(3.9) o f@® forr>0,
‘ —(f® S)r) fort<0,

J N
extends as a continuous function on R.
Applying [*° S gives a similar continuous extension across co. One can check
pUk,é,k . . . .
that the three term equation on (0, co) implies that it also holds on (oo, —1), and on
(=1,0).

Holomorphic extension. A real-analytic function on (0, o) is locally on (0, co)
given by power series, and hence extends holomorphically to a complex neighbor-
hood of (0, 00). For period functions we require that the extension is possible to a
wedge of the form

(3.10) Ws = {te C\ {0} : |argt]| < 6}.

We note that the extensions of the three functions in the three term relation (3.6)
may extend to different domains. The relation extends only to a connected neigh-
borhood of (0, o).

Definition 3.1. The space FE® of period functions is the linear space of ele-

PV, S,k
ments f € (v;;k’s’k(o, o0) that

(a) f has values in the 1-eigenspace of |£Zk’s’k(—12).

(b) f satisfies the three-term relation (3.6).

(c) f has limits at 0 and oo as indicated in (3.7) and (3.8).

(d) f has a holomorphic extension to a wedge W; for some 6 € (0, 7/2).

The period functions in [7, p. 85] are characterized by a boundary condition,
equivalent to O(1) at O and oo in the projective model used here. It is equivalent
to the existence of asymptotic expansions at O and co. The existence of limits in
part (c) is easier to handle, and leads to the same space of period functions.

Our aim is to establish a relation between Maass cusp forms in ﬂg(s, pu;) and

. . ©
period functions in FE s
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The properties required in parts (b) and (d) in Definition 3.1 allow us to apply
the bootstrap method method in [20, Chap IIL.4, p. 240].

Proposition 3.2. Each period function f € FE®

sk has a holomorphic extension
toC' = C\ (—0,0].

Proof. Condition (d) implies that f is holomorphic on a wedge
Ws={zeC : |arg(z)| < d}
for some small 6 > 0. For each z € C’ we can use the three term relation (3.6)

to express f(z) as a finite sum of translates f|,, sxy(z) with y in the semigroup
generated by 7 and 7’ such that f(yz) is in Ws. O

In the following result we use the orthonormal eigenbasis e; of X, for the scalar
product (-, -),, and the parameters k; € [0, 1) introduced in §2.2.

Lemma 3.3. Let f € FE% . Ifx; =0, then (o(T") " oe(T")™' £(1), e;)p = 0.

Proof. We take the limit as ¢ T oo of the three term equation, and project it to the
line in X,, spanned by e;:
aw(f) = p(D)~ o)™ 1721772 4 ()
+p(TI)—lUk(T/)—1 (1 _ i)—s+k/2 (1 + i)—s—k/l 15—/(/2 1S+k/2 f(l) ,

(@o(f)rer), = €7 (ao(f)rer), + 275 i (p(T) (T f(1), 1),
For k; = 0 this gives the assertion in the lemma. O

We do not know how p(T”) acts on the eigenbasis for p(T), and further simplifi-
cation seems hard.

4. PERIOD FUNCTIONS

In this section we show that we can associate a period function to each Maass
cusp form. We follow the approach in [7] for weight O, and adapt it to arbitrary
real weights.

4.1. Poisson kernel. The function R(#;z)* in [7, §2.2] can be generalized as the
scalar-valued function on ]P’Ié X 9

st INS—Kk/2 /T + T \s+k/2
@.1) Rt = (—) (=)
As a function of ¢ it is real-analytic on B!, and as a function of z it is real-analytic
on 9. It satisfies

4.2) AR i(t,+) = s(1 — ) Rox(t,) .
Forge G
(4.3) (Rsily @l-kg = Roplkg)5 19 = Ry -

To see this we note that the operator Ii’skg acts on the variable ¢, and the operator |_;g
on the variable z. Hence these operators commute. We carry out the computation
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for (“ Z) near the unit element of G. Then the handling of powers of complex

quantities is not hard. The relation extends by analyticity. The action of ( ! 01)
is multiplication by e for IE’k and multiplication by ¢™* for |_;; so there is no
difficulty on the region of discontinuity

We write jx(g,2) = (c,z+d,)™* and Jpg (g, 1) for the factor before ¢(gt) in (3.1).

With (4.3) we see fory € I':
o) P Do) (D Rox(yt,v2) = Realt,2),
o) I D) Rek 8, Mo 47)@) = Rex(t,2),
o) I D Rex(y1,2) = Rog(t o vy (2),
(4.4) RoxC ) o @) = Rog(t, Moy~ @)
2. Green’s form. The generalization of the differential form [u, v] in [7, (1.9)]
is
ouy k ouy k
[ul,uz] = \—uy+ —u1u2 dz + Uy — — —uiy dz
4.5) = (% 4iy )+ - 4iy )
= 2K pur)o de + uy (X —v2) dZ)
for uy, up € C*(9) (or for smooth functions on an open subset of $).
Some properties are
(4.6) duiuy) = ur, uz), + [uz, ur]-,
dzdz
4y
If u, is an eigenvector of Ay and u; is an eigenvector of A_; with the same eigen-
value, then [uy, us], is a closed 1-form. For all g € G we have

4.7) dlur, ule = (w1 Aguz — up Aguy)

(4.8) [t1lkgs ual-xgl, = [ur,u2]; o g,
where og means the substitution z — gz. We can write it as [u;, u2],log.

These properties go through if one of u; and uy is vector-valued. Then the
products involved in the formulas make sense, and the relations hold for each com-
ponent of the vector-valued function.

Let u; be vector-valued with values in X,,, and let u; be scalar-valued. Then we
have fory e I’

(4.9) (1 puy s w2l k] = PV [ur,ua] 0y

Disk model. The upper half- plane is isomorphic as a complex variety with the
unit disk by the map z — w = Z; with inverse w — z = ll+w In the proof of
Proposition 6.3 it will be convenient to use the formulation of the Green’s form on
the unit disk:

da k(1 — @)
<%b D)
ob k(1 —w) _
+ (a(% + 0= a1 = |w|2)ab) dw

la,b], = ab) dw

(4.10)
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4.3. Differential form. For smooth functions u: $ — X, we have a differential
form of degree 1 with values in the real-analytic functions ]P’]é - X,:
(4.11) ns,k(u) = [u, Rs,k]k .

This is a differential form on $ with values in the functions on ]P’Ié. If we want to
stress the role of the variables, we write 7, (u;2,1) = [u(2), Rox(t, 2] If Agu =
s(1 — s) u, then n, x(u) is a closed form. (Use (4.7) and (4.2).)

For Maass cusp forms u € ﬂg(s, pug), we have for z;,z0 € Hand fory e I

vz 20 s
(4.12) f nsx(u) = f O]
Y

’1Z1 21

as can be checked as follows:

22 22
f nex @l oy =pm " uy)™! f . Rx [0 ¥], by B2
Z

1 21

= o ™ [ ke, by (4.4)

22
= p() " uy)™! f |tonky™ Rox |, v™],  since u € ALs, pur)
21

= f lufe v R | v, by (2.7) and
oy ™" = (o)
= f [ Roxlgoy™! by (4.9)

y‘lzz
f Nsau)
Y1z

4.4. Cocycles attached to Maass cusp forms. For u € ﬂg(s, PU;) we put

¥é)
(4.13) (z1,22) = f Nsx(u) forzi,z2 € 9.

|
This function on $ X 9 has values in the I'-module (Vp“;k s k(Pﬂé), and it does not
depend on the choice of the path from z; to z;. It satisfies the homogeneous cocycle
relations

c"(z1,22) + (22, 23) = "(21,23) forzi,z,z3 € 9,
4.14) w -1 _1 o ps
Oy ) = Cnnly, oy forzzmed yel.

So ¢* is a cocycle in Z'(T; ‘ngjk Sk(P]é)). (See the discussion in [7, §6.1].) This
definition does not need a growth condition, and it works for more automorphic

forms than cusp forms.

Parabolic cocycles. If u is a cusp form, then it has exponential decay as y T oo, and
the same holds for its derivatives. This implies that fz To 1.k (u) converges absolutely
and does not depend on the path from z; € $ to oo.
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The cusps of I' = SLy(Z) form the set P(é C P]é. Each cusp € is of the form
& = yoo for some (non-unique) y € I'. The invariance of u under |, " implies that
15k (1) has fast decay when approaching any cusp of I'. So we can form integrals

fz T ns.x(u) for any cusp &, and also integrals between two cusps. In this way we get

2
(4.15) o E1,6) = f; i) for&y.& € B
1
The function ¢y, on Pé X Pé has properties analogous to (4.14). It requires some
work to determine its regularity properties. Working out [u, R, (t, )], we see that
par(f 1,&2) is real-analytic at all points of Pl {&1, &)

The behavior at t = &) and t = &, has to be considered. By the transformation
behavior under I' we can reduce the consideration to integrals f Nsk(u). Pro-
ceeding in the same way as in [7, Proposition 9.7] we can show that itis C* in a
neighborhood of oo in Pl Here we are content to have continuity.

In a notation analogous to the notations in [7], we define the I'-module (V“’ 0 k( 1)
as the space of functions in the space (VO - «(Pr 1) of continuous functlons that re-

strict to an element of (Vg;k,s,k(PIé \E) for a finite set £ C Pé). For cgm(fl, &) the

set E can be taken as {£], &)
The index par in

(4.16) b € Zh (L V20, (B)

indicates parabolic. For each & € Pé there is an infinite subgroup of I fixing &. For
& = oo this is the subgroup generated by T and —I,. This has the consequence that
cocycles on P(é X P(é do not compute the usual cohomology groups H'(I'; -), but the

parabolic cohomology groups par(F ).

4.5. The period function of a Maass cusp form.

Proposition 4.1. Letu € ﬂo(s pv). We put P(u) = cgar(O, 00).

(a) P(u) has values in the 1-eigenspace of Ipvk . (D).

(b) Pw) = ~P@P S = P@ T +Pwl T

(¢) P(u) is real-analytic on (00, 0).U(0, 00), with a continuous extension across
0 and co.

(d) P(u) has a holomorphic extension to C \ iR.

(e) If&1,& € Pé, then there is a finite number of elements y; € I' such that

(4.17) h€1,6) = > P> |y

J

Proof. Statements (a) and (c) are specializations of properties already observed for
integrals cp, (&1, &) with general & and £ in ]Pé.

We can take the path of integration from O to co for P(u) as the positive imaginary
axis. Then we obtain part (d).
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~ Y Yay D

-2 -1 0 1 2

Ficure 1. The Farey tesselation.
This tesselation of $ consists of all I translates of the hyperbolic
triangle with corner points 0, co, and 1.

00 0 00
f n‘s,k(u)lzzk’s’ks = f Nsk(u) = _f Nsk(U) .
0 00 0

This gives the first relation in (b). For the other relation we use

00 00 —1 00
fo M@l (T +T) = f ) + fo M) = fo M),

We use the well-known Farey tesselation (sketched in Figure 1). The endpoints
of the edges run through P(l)z‘ Each edge is the translate yeq , for some y € I', where

By (4.12)

€0, denotes the path from O to co. We note that e = S -1 €0,. Each vertex is
connected to oo by a path along finitely many edges of the tesselation. (Use a Farey
sequence with bounded denominators to see this.) In this way we get for each pair
(¢1,&) € P(é a finite path ;v €p o from £} to &. We use this to obtain part (¢). O

Proposition 4.2 (Period function of Maass cusp form).
(i) For P(u) as in Proposition 4.1, its restriction to (0, o0) defines pf(u) by

(4.18) pf(u) = P(u)|(0,)

This determines a linear map pf : ﬂg(s, pUE) — FEZ’% sk We call pf(u) the
period function associated to u.

(ii) For each f € FE;"Uk’S’k there is a unique element p € (V;‘;Z:g’k(P]é) for which
properties (a), (b) and (c) in Proposition 4.1 hold, with restriction pl(o,c0)
equal to f.
Proof. Definition 3.1 of the space FE;"Uk’s’k of period functions has been arranged
in such a way that the restriction of P(u) to (0, o) is a period function.
Conversely, any period function f has a unique extension p € (V;"’k(R \ {0}) sat-
isfying ploy.skS = —p. The limits in condition (c) in Definition 3.1 imply that p

. . 1 w0 ol
extends as a continuous function on By, hence p € (vak’s’k(PR). Separate compu-

tations on (oo, —1), and (-1, 0) show that p satisfies the three term relation. The
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extension to C’ given in Proposition 3.2 shows that f extends holomorphically to
the right half-plane. Then the action of S gives the holomorphy on the left half-
plane. O

The cocycle ¢y, on Pé X Pé has the property that cp,(0, e0) cannot be changed

by adding a coboundary db where b: Pé — (V;‘l’i:g,k is equivariant under I', as the
following lemma indicates:

Lemma 4.3. Let s # 0. Each f € (V;’zzok is analytic on (@, o) for some a > 0. If

FosiT = f on (@, 00), then f =0.
Proof. The first statement follows from the fact that f is real-analytic on Pﬂé except
at finitely many cusps of I'.

Let f; be a component function of f in the decomposition in (2.11). Forall t > «

 omimig( FTE \SK2Z o tH T \sHh/2
H=e — r— t+m formeZ

~ P (4 1) fi(eo) as m — co.
If s # 0, then this implies that f is the zero function. 0

Role of k. At least for s # % mod 1 we know that all spaces ﬂg,(s, pug) with
k' = k mod 2 are related by the weight shifting operators; see (2.36). We do not
know the effect of the weight shifting operators on the associated period functions.

5. TRANSFER OPERATORS

Proposition 4.2 shows we can associate period function to Maass cusp forms. In
the introduction we indicated that discretization of the geodesic flow on the sphere
bundle of I'\ $ leads to transfer operators. Here we discuss such transfer operators,
and show that their eigenfunctions with eigenvalue 1 lead to period functions.

5.1. Slow transfer operator. We denote by C;(/) the space of real-analytic func-

. . . . . S
tions on the interval I C ]P)Ié with values in the 1-eigenspace of |fwk,s,k(—12)-

The transfer operators that we will discuss act on functions in C;"(O, 00). Let
I be the semigroup in I generated by 7 and T’. Since 6~'(0, ) > (0, ) for
each 6 € I, the operator Izzk’s’ké followed by restriction to (0, o) is well defined on
C;;‘(O, 00); it is not a bijection. The restriction is understood in the formulas.

Definition 5.1. The slow transfer operator is

‘Epvk,s,k: C,ZJ(O? OO) - C;J(O, OO) s f — flps

pug,s,

(T+T).

The period functions in Definition 3.1 are 1-eigenfunctions of the slow transfer
operator. Since in the definition of C‘; (1) there are no conditions on the behavior
near the boundary points, there may be many more 1-eigenfunctions of the slow
transfer operator than period functions.



22 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND ANKE POHL

5.2. One-sided averages. We need results concerning the Lerch transcendent in
(5.1) below. Proposition 5.2 below was shown in [5], starting from results of
Kanemitsu, Katsurada and Oshimoto in [15] and Katsurada [16]. See also [12,
Proposition A.1]. Lagarias and Li [17] give further going information on the Lerch
transcendent.

Proposition 5.2. The Lerch transcendent

(5.1) H(s,.0,2) = Y (" z+m)”
n>0

converges absolutely fora > 0, Res > 1, |{| < 1.

(i) Meromorphic extension in (s, z)
(@) If £ = 1, then (s,z) = H(s,1,2) has a first order singularity along

s =1
®) IflZl = 1, £ # 1, then (s,2) — H(s, 1,z2) is holomorphic on C X
(C N\ (=00,0]).
(i) Asymptotic behavior. For |{| = 1 and s € C and N € Zsq there is an
expansion
N-1
(5.2) H(s.(.z+1/2) = )" Cul&9)2" ™ + O
n=-1

onany region 6 —m < arg(z) <m—-06,0<d <
Furthermore, if { # 1, then

(5.3) C_1Z,s) = 0.

The following lemma defines so-called one-sided averages, which we will use
to define the fast transfer operator.

Lemma 5.3. Let a,fB € R satisfy B < a.
(a) Forall s € CwithRes > % the one-sided averages

(F0 A = D (fE T,
(5.4) m=0
(oss D = = D T, (T
m<—1

converge absolutely for all f € C;((a,p).) and define

flgzk’s’kAer € CY(a,) and flgik’s’kAv‘ € CY((00,B+1).).

(b) The operators P> AV and P° AV commute with |©° T
Pk 8,k Pk, S,k P

Uk, S,k °
() For f € Cy((@.p)) the function fI)) AV (1 =T)is equal to the

. . . S —1PSs .
restriction of f to (a, ), and the function f |gvk,s,kAV |Evk’s,k(1 —T) is equal
to the restriction of f to (o0, 3)..

(d) For each f € C®((a,p).) the functions (s,1) — ( f|£zk’s,kAvi)(t) are real-

analytic in (s, t) and holomorphic in s on the region of (s, t) with Re s > %,
and t € (a, 00), respectively t € (00,8 + 1)..
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Proof. Similar results are proved earlier, in slightly differing contexts; see e.g., [5,
§4] and [9, §7.6].

We note that oo € (@, 8).. The function f is bounded on a neighborhood of oo in
Pﬂé. Absolute convergence follows directly from

t—1i )s—k/Z( t+i )s+k/2 .

—mimk/6 7" f+
ritm p(T")f(t+m)

(55 (T = (5

and the fact that the eigenvalues of the unitary operator p(T') in X,, have absolute
value 1. The other statements follow by rearranging the order of the infinite sums,
and the observation that the absolute convergence is uniform for (s, f) in compact
sets. O

—i+m

Proposition 5.4. Let f € C“((0,-1).).

(i) The functions (s,t) — (f |5 ls)M’kAVi)(t) extend as real-analytic functions on
{(s,1) € Cx(0, )}, respectively {(s,t) € Cx(c0,0).} that are meromorphic
in s with at most first order singularities in s = 5 withn € Z<;.

A singularity at s = % occurs if and only if there exists an eigenvector e;
of p(T) with k; = 0 and (f (o), el)p #0.
(i1) The assertions in (b), (c) and (d) in Lemma 5.3 stay valid for the extensions.

(ii1)) We apply to f the decomposition (2.11). There are asymptotic expansions

of the form
N-1
(/i Ezk,s,kAV+)(f) ~ Z Cpi(s)t™ + or™) ast? oo,
n=-1
(5.6) o
(ﬁ|,gzk,s,kAV_)(t) ~ Z Cri()t™" + O(t_N) ast | —oo,
n=-1

for each N € Z3o.

Proof. The general approach in [5, 7, 9] goes through with some adaptations.
We have to work with the components f; in the decomposition (2.11), and if
k; # 0, the factor e~2" lead to the Lerch transcendent instead of the Hurwitz
_ _ \s—k/2 - \s+k/2 )
zeta function. The factors ( ; _tl. Jr’m) and (H’l%’m) have a more complicated
expansion in terms of powers of # + m. Taking this into account, we can follow the

approach in [5, §4.2] to prove the theorem. O

5.3. Fast transfer operator. Let f € C%(0, o). Then the function f |E‘Zk 4T isa
function in C*“((0, —1),). So this function satisfies the condition in Lemma 5.3, and

we can form the fast transfer operator

(57) ‘£fasts’kf — (f|PS T/)|PS AV = Zflps T'T" .

POk, OVk,S,k OVk»S,k PV, S:k
n>0

Proposition 5.5. The series in the definition of L

s k f in (5.7) converges abso-

lutely for Re s > %
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(1) The family s — f Izik o x €xtends meromorphically to s € C with at most first
order singularities at points of %Zsl-
A first order singularity occurs at s = % if and only if there is an eigen-
vector e; of vg(T) p(T) with k; = 0 for which

(5.8) (oY () f(1). 1) #0.

(i) For all values of s for which L;z;it,s,k f is holomorphic it defines a function
in C¥(0, 00) with an asymptotic behavior as indicated in (5.6).
(iii) Forall f € C;j’

(59 (LB AP (=T = [T = (LosaHIE, (=T

(iv) If f is a 1-eigenfunction of Lf;it’s’k then f is a 1-eigenfunction of Ly, s k.

Proof. Most of these assertions follow directly from Proposition 5.4. The relations
in (5.9) and part (iv) follow from Definition 5.1 and assertion (c) in Lemma 5.3. O

Proposition 5.6. Let s € C \ %Zgo- If f e FE®

e then f is a 1-eigenfunction of

fast
the fast transfer operator Lpum v

Proof. Let f € FE? . Lemma 3.3 and part (i) of Proposition 5.5 show that the
PUL,S,
fast transfer operator Lf)avit,s’ ./ 1s holomorphic at s = %

By part (b) in Definition 3.1 and (5.9) we have
fas
(Lt = F)l (1 =T) =0,

So the difference p = Lg‘;it’s’k f — f is invariant under |£Zk’s’kT. Like in the proof of

Lemma 4.3 we have, now for ¢ € (0, o),

t—i )s—k/Z( t+1i )s+k/2

(5.10) p(t) = Uk(T)qP(T)q(t_i+q t+i+gq

pt+q),

for all g € Z. The limit as ¢ T co of f exists by condition (c) in Definition 3.1, and
the expansion of L;“Uits ./ can have a term with t', see (5.6). Thus, if p # O then it
satisfies p(f) ~ A,,t™ ast T oo for some m € Z<; and some A,, # 0. We go over to
the eigendecomposition (2.11). Taking #y € (0, co) such that p;(f9) # 0 we have

; fo—1i \s—k/2, to+i \s+k/2
_ 2nigk; 0 0
1 =€ Ee— S E— fo+m
pilto) (to—i+q) (t0+i+q) pilto +m)
A1 o 5— . ik, —
(5 ) ~ (to _ Z)S k/z(t() + l)S+k/2627rlqK1q 2s Am (IO + q)m
~ (t() _ l-)S—k/2(t0 + l')s‘+k/2 Am eznqu] qm—zs‘ as q T 0.

m

This is possible only if s = 7 € %Zsl. In the statement of the proposition these

values of s are excluded. Hence p = 0 and L;iskt,s’ S =1 O
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6. ANALYTIC BOUNDARY GERMS

The step from parabolic cohomology to Maass forms in [7, §12] is carried out
by going over from principal series modules of analytic functions of Pﬂé to isomor-
phic modules of analytic boundary germs. The latter modules allow us to use the
geometry of the upper half-plane to construct Maass forms from cocycles.

6.1. Kernel function. In the construction of period functions associated to Maass
cusp forms we used the Poisson kernel R defined on PH}{ X $. We need to replace
it by a kernel function on $ X $ with similar properties.

Here it is useful to work on the universal covering group, discussed in §2.3.
We first describe a function Q4 on G \ K, where K = {k(#) : ¢ € R}. We
have the polar decomposition G ~ K = KA,K, with A = {4(y) : y > 0} and
Ap = {a() : y> 1}, 4@y = ply).

Lemma 6.1. Let s € C and k € R satisfy s ¢ %Zsl U (—% + Z) U (% + Z). There is
a function Qs € C*(G \ K) satisfying

(@) Qux(k(@aWk@2) = e 170 (awy)).

(b) AQsk = s(1 —5) Qs

(©) Osx(a) = O(y™°) asy — oo.

(d) Osx(a(y)) = —log(1l —v) hi(v) + ha(v) forv = (yi_yl)” with C®-functions hy
and hy on a neighborhood of 1 in R, and h(1) =1.

(@ Qsilg™) = Qsi(g) forge GNK.

Proof. Functions on G satisfying a generalization of condition (a) are needed to
describe the polar expansion of scalar-valued Maass forms at the point i € $. They
are given in [3, 4.2.6 and 4.2.9] in terms of u = %. Condition (b) imposes a
hypergeometric differential equation, with a two-dimensional solutions space. For
the expansion of Maass forms we need a solution that is C* at y = 1. Here we
need a solution with a singularity at y = 1 that is small for Re s > % asy T oo and
y | 0. A multiple of the solution u(i, ks + 1/2) in [3, p. 4.2.6] is the one that we
need here.
Using (a) and (b) we obtain

I'(s—k/2)T(s +k/2) kD1 +02)
I'2s)
s—k/2,s+k/2| ] 4y
|, V= ———.
2s (y + 1)?
The singularities of the solution are avoided by the condition on s and k in the
lemma. Since the hypergeometric function is holomorphic at v = 0 with value 1,
we get property (c). There is a logarithmic singularity at v = 1. The gamma factors
have been chosen such that the hypergeometric function is —log(l —v) asv T 1.
This leads to assertion (d).
The function Q;x(a(y)) is invariant under y — 1/y. With

(RODAWK®) ' = K98 /pk(-01)

O,k (k@)awWk®»)) =
(6.1)
S SF [
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this implies assertion (e). O

Proposition 6.2. Let s € C, ke R, and s ¢ %Zsl U (—% + Z) U (% + Z). There is a
kernel function g with the following properties:

(1) gsk € Cw({(zuzz €9’z # Zz}),
(i) Argsi(z1,) = s(1 = 9) qsi(z1, ), and A_gqsi(-,22) = s(1 = 5) s (-, 22),
(i) gsi(z2,21) = qs,-k(21,22),
(iv) gsk (l_k X |k)g = g forall g € G. Here |_g acts on the first variable
and |g on the second variable.

Proof. Wetake forz; #z20 € 9
(6.2) 45x(21,22) = Osx(B(z1) ' P(22)),

with p(z) € G as discussed in §2.3. This satisfies assertion (i). Relation (iii) follows
from Lemma 6.1(e).

The differential operator A in (2.32) commutes with left translation, and corre-
sponds to Ag in (2.1) on functions in weight k. This implies that Argsx(z1,-) =
s(1 = $)qs.x(z1,-). With (iii) this implies A_xgsx(-, 22) = s(1 — $)gsx(-, 22) as well.

We have for all § € G

Qux(P(z1)'P(2)) = Qui((GP(21)'P(22)).-

Hence assertion (iv) follows from (2.29). O

Use of the disk model. Let z; € $ be near to i and z, = i. Then w; = ? is near to

22+
0. Taking ¢ = % arg(wy) and ¢ = 9 — ’% + arg(z + i) we can check that
(6.3) p(z1) = k(@DaMk(,),
with £ = {24 Then p(z1) = K@DAOK(W,) with 9y + 9, = § — arg(z + i).
Hence
. N i 1+ |w|
(6.4) g5 1) = Qs a(p@)D) = e I 9 (1 |wi|).

6.2. Integration with the kernel function. We generalize the integral formula in
[7, Theorem 1.1], proved in [6, Theorem 3.1] (quoted in [7] as Theorem 2.1).

Proposition 6.3. Let C be a piecewise smooth positively oriented simple closed
curve in  and let U be an open region in  containing the curve C and its interior.
Ifu € C*(U) satisfies Ayu = s(1 — s)u, then for z; € H\ C

2riu(zp)  if 2o is inside C,
6.5 gz =
(02) L[M 454 22)ly {O if 20 is outside C .

Proof. With (4.5) we have a differential form [u, g x(-,z2)], on U \ {z2}, which is
closed by (4.7) and Proposition 6.2(ii). The integral

f[”’ qsi(s ZZ)]k
C
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does not change if we deform the path C continuously in U \ {z;}. In particular,
the integral is zero if 7z, is outside C. We proceed under the assumption that z, is
inside C.

1/2

Let us take g = p(z2) € G, with p(x+iy) = prp(x+iy) = (0 1)(y0 - 1/2) Then

72 = gi, and C; = g~ C encircles i once, contained in the open set g~ ! U containing
i. With (4.8) we obtain

(6.6) f[ueQS,k(',ZZ)]k = f [Ulegs @s G5 D]y -
C Cy

We shrink the curve C; to a small hyperbolic circle around i.
We use the disk model, with coordinate w = ﬁ—;i Then we can take C; as

a circle around w = 0 with radius O(g) and let ¢ | 0. We use the description
(4.10) for the Green’s form. The function a corresponds to u, and the function b to
21 = qsx(z1,1). By Lemma 6.1(d) we obtain

b= (1-w(1 - @) *(=h (1 - wid) log(wid) + hy(1 - wib)) = O(loge),
dab = (1= wy 21 - )2 (ka1 — fui?)
2w
— (1 = [w?) (kv log |wl* + 2@ — 2)

= 2wl*(1 = (R} (1 - i) log lwl® = Ky(1 = [w]*)))
-1 _
=50 (2 + O(slogs)).
We write w = ge¥. The first term in (4.10) is
k(1 —w
(-2 ab)
2(1 = wy(1 — |wl?)
and does not contribute to the integral. The second term is
k(1 —w)
2(1 = @)(1 = |wl?
= ( ae'e® + a0(loge) + O(log e))(—ie)e‘i“’ dy

6.7) (Gwa) b+ dw = O(log &)ig € dp = o(1),

(a (Ozb) + ab) div

This gives in the limit £ | O for the total integral the value
27 a(0) = 27 (ul;p(22))(0) = 27i e Ou(zy). |

6.3. Boundary germs. In Proposition 4.2 we associated to a Maass cusp form
in A° (8, pv) a 1-cocycle Cpar on Pl X Pl with values in the module V¢ b vk( 1),

which contains (Vlj‘l‘)k s k( 1) and is contamed in (VO s k( . To go back from period
functions to Maass cusp forms we go over to modules of boundary germs that are
isomorphic to the principal series modules V pv s B )

Sheaves related to eigenfunctions of Ay. For each open set Q C $ we put

(6.8) Esk(Q) = {f €C™(Q) : Af =5(1-3)f}.
This defines a sheaf & on 9.
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We turn to subsets Q C Pé that have a non-empty intersection with $. We put
B k(Q) = Ep()if QC H,andif QN Plé # (), then we put

B i) = {f €& (2 NH) : the function F(2) = Dyx(2)f(2)
(6.9) on Q N $ extends to a real-analytic function on Q} ,
Oop() =y~ @+ D2 @ - )T

The argument of z + i is in [0, 7(] for z €  UR, and the argument of Z — i is in

[—7, 0]. In the coordinate w = ?—;i

(6.10) O, (w) = 422 (1 —w)y M2 -2 (1 —|wP?) .

Remarks.

(1) Any f € Ex(Q N H) is real-analytic, since Ay is an elliptic operator. It is
far from sure that for f € & (2N H) the function D, f has a real-analytic
continuation to €. The analyticity of the continuation is an additional re-
quirement. It determines f uniquely on all open connected subsets of (2
that contain Q N 9.

(2) An example is the function z — y*, which is in 8({z eC : Imz> —1}),
where the restriction Im z > —1 arises from the singularity of @ at —i.

(3) Another example, defined on the region |z| > 1, is f(z) = Im (-1/z)*, which
leads to F(z) = (1 +i/z)" (1 = i/3)".

Definition 6.4. The space of analytic boundary germs on an open set I C Plé is

(6.11) WD) = 1im Box(Q),

—

where () runs over the open sets in Pé that contain /.

For I = P]é the elements of (W;’k(Pﬂé) are represented by real-analytic functions

z=i
il < 1.

The use of the direct limit in (6.11) implies that for representatives f; € B (1)
and f € B;x(y) of ¢, the functions F| = Dy f; and Fr, = D f> have real-
analytic extensions that coincide on Q; N €. This implies that I — W (1) is a
sheaf.

on an annulus 1 — & < ‘§| <l+esuchthat Ayf =s(1-s)fonl—-e<

Definition 6.5. The restriction morphism ressy: W — V¢ is induced by as-
signing to f € B, x(€2) the restriction of F' = Oy f to QN Pﬁ.

For example the function A(z) = y® in Bx({z€ C : Imz > —1}) leads to the
restriction x — (x + i)"*%/2(x — i)**/2, which is analytic on R.

Lemma 6.6. For each g € G the operators |yg: B (Q) — BS,k(g_IQ) withQ D1
induce an operator ;g "Ws‘"k(l) - (Ws“’k(g‘ll). Furthermore,

(6.12) (ress k@)l f = ress(flkg) -
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We note that principal series action |, g on the sections res g of V' is related
to the action |rg on boundary germs. The latter action does not depend on s.

Proof. The existence of the operators |¢g follows from the direct limit definition of
W ().
s,k

For g = (Z Z) near to I, € G a check of (6.12) is a long but straightforward

computation. For the right hand side we know that the quantity F,(z) defined by
(6.13) Fy(2) = @yule) e ¥ f(gz)

for z € g7'Q N $ extends to g~ Q. For the left hand side we have

(6.14) F(z) = Os(2) f(2)

on QN $H, and we know that it extends to 2. We can eliminate f from the relation,
and end up with a relation in terms of z and Z. Working out this relation takes some
care with powers of complex quantities with complex exponents, but for g = I this
causes no problems. Then we substitute z = ¢ and Z = ¢ with ¢ € g~'I, and observe
that we get the factor in (3.1). The resulting relation extends as the equality of two
multi-valued real-analytic functions on G. We have chosen the branches for |zg and
[}g in the same way. O

The restriction morphism is not a morphism of G-equivariant sheaves. Tensoring

with X,, we get a morphism of I'-equivariant sheaves resy : (W,;,(,s,k - (V;;l’}k’s’k.

Proposition 6.7 (Kernel functions R and g x). For 2s # k mod 2

(ressxqsk(z1,))(®) = b(s,k)Rg(t,21),

(6.15) ik T = k/2)T(s + k/2)
b(s,k) = e T(2s)

Proof. In part (iv) of Proposition 6.2 the kernel function g ; transforms with weight
—k in z; and with weight k in z;. The Poisson kernel R;(t,z) transforms with
weight —k in z, and with a principal series action of weight k in #; see (4.3).
This shows that it is sensible to compare the functions zp — g,x(z1,z2) and ¢ -
Rs,k(t 21 )

The transformation behavior of both kernels implies that it suffices to take z; = i.
We denote the gamma factors in (6.1) by

_ T —k/DT(s +k/2)

(6.16) Gf o) ,

and obtain with (6.1)

.oy o k/2 1 iN—k/2 Y Yy
g0, 2) = (1+ ) (1= i) Gﬂk+m)ﬂwk+my

D) =y~ @+iy M@ -2,

F(z) = &2 Gf m(ﬁ) .
<
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The hypergeometric factor equals 1 for y = 0, hence we get F(x) = /2 Gf not
depending on x € R, and then also for x = co by analytic continuation. Thus,
(6.17) (ressagsili, (@) = ™2 G

We observe in (4.1) that R, x(, i) = 1, which completes the proof. O

Theorem 6.8. Let s € C \ Z<g, and 2s # k. The restriction morphism
ress s W = Vi
is bijective and (ress,kf)lgfkg = ressx(flkg) for all g € G for representatives f of
sections of W.
Ifresskp € W (D) extends holomorphically to a convex neighborhood Q in P(é

of the open interval I C Plé not containing i and —i and symmetric under complex
conjugation, then ¢ can be represented by [ € B (Q) for the same neighbor-
hood Q.

Proof. Lemma (6.6) gives the intertwining property of the operators |rg. Hence we
can work with sections over an interval / contained in R. Let f € B, x(£2) represent
a section ¢ € ‘W (I). Near I we have

(6.18) Oyp(x+iy) = y ' alx,y),

with a(x, ) = (x + iy + i)™ (x — iy — )* 2. Since the factor a is real-analytic
without zeros on the strip |y| < 1 in £, the function

(6.19) H(x,y) =y~ f(x.y) = F(x,y)/a(x,y)

is also real-analytic on €, and we can work with H instead of F.

For the injectivity we suppose that ¢ = 0 on /, and have to show that then H = 0
on a neighborhood of I in C. The differential equation Ay f = s(1 —s)f implies that
H satisfies

(6.20) —y*(9%H + GH) — 25y O,H + iky O.H = 0.

Since H is real-analytic there is for each x € I an expansion },-( @,(x)y" converg-
ing to H(x,y) for y in an open interval containing 0. (This interval may depend
on x.) Inserting this into the differential equation we get

Lap(x) ifn=1,
(6.21) an(x) = {ika’ (x)—a’ . (x
n1(0) = @) ifn>2.
n2s+n-1)

(We use that s ¢ Z<g.)
Since ag(x) = ¢(x), the function a,, can be written as

(6.22) an(x) = pue™(x),

with coefficients depending on s and k. If ¢ = 0, then H vanishes on a neighbor-
hood of 1. Hence the restriction map is injective. (In the case k = O there is a nice
formula for the a,, in [6, (5.15)]. We did not try to find a similar formula for general
real weights.)
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In [6, §5.2] the surjectivity of the restriction is shown in two ways: With a power
series expansion (Theorem 5.6 in [6]) and with an integral representation (Theorem
5.7 in [6]). Here we try to generalize the latter approach.

Let Q be a neighborhood of I with the properties indicated in the theorem. For

given ¢ € (V;fjk ) extending holomorphically to Q we put
(623) 10 = s [ R0 2
' O T sk J Y T
initially for Re s > %lkl. The corresponding function F in (6.9) is
1 v4
F(z) = @ _ 4 1)RI2 (5 pyski2
(2) ks(2)f(2) G ) tzz(z D"z - 0)
t—i\l-s+k/2 /t + i \1-s—k/2 dt
(— — t
(t—z) (t—‘) 9D()t2+1
1 i L astk/2 L s—k/2
= m t:_i(x +iy +1) (x—iy—1i
ty + X — i\—s+k/2 sty + X + i\-s—k/2 dt
A - +yt :
() ) e

It is clear that the integral converges absolutely for Re s sufficiently large, and that
it describes a real-analytic function in z = x + iy. We take the value at y = O:

F(x) = (x+ )2 (= i) (x)

1
225~ 1p(s, k)

Lx —iN-stk/2 X+ iy-s—k/2  dt
. - - = ¢(x).
L_i(t—i) (t+i) 1+ o)
Under the assumption that Re s is large, this shows that ¢ occurs as the restriction
of f. That is the surjectivity of res;x. Moreover, if ¢ is holomorphic on a set
Q as indicated in the theorem, then F is real-analytic on €, and furthermore f €
as,k(Q N 55)

The integral

' Yy + X — i\—s+k/2 jty + X + [ \—s—k/2 dt
6.25 Z -z - ot
©2 L—i( t—i ) ( f+i ) plx .’4)1+t2

(6.24)

is holomorphic in (s,k) € C2 on the region Res > |Rek|/2. We aim at a mero-
morphic continuation for (s, k) € C2. As t runs from —i to i the term 7y + x runs
—s+k/2

from r_ = Zto t; = z. The factor (% is holomorphic on Pé except for a

path from 7, = z to i, which we choose as indicated in Figure 2. The other factor is
well-defined outside the path from t_ = 7 to —i in the figure.

We replace the integration over [—i, i] in (6.25) by integration over the Pochham-
mer contour P sketched in Figure 2. For Q with the properties mentioned in the
theorem we can arrange that the contour P is contained in Q. The paths from z.
to +i are important only on the contour. A given choice of p. can be used for z
varying over compact sets.
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Ly

FiGure 2. Pochhammer contour

We conclude that

ty + x — i\—s+k/2 jty + X + [\—s—k/2
6.26 = - 2T +yt
(6.26) LP( =i ) ( (4 ) et

1+

depends analytically on (s, k, z) € C? x Q, holomorphically depending on (s, k).
To relate the outcome of (6.26) to the outcome of (6.25) we take Re s > %IRe k|.
Then we can compute the integral over the Pochhammer contour as a linear com-
bination of four integrals from —i to i. We take the arguments in such a way that at
t = 0 on part a the argument of 'y:r% = arg(1l + ix) € (0, m), and the argument of
% is equal to arg(1 — ix) € (-, 0). That is the choice of the arguments that we
use in the computation of (6.24). In this way the transition from (6.25) to (6.26)

amounts to multiplication by

1 4 o mis—mik _ ,=2mik  ,2mis—mik _ 4e—mk/2 SiIl(?T

k k

3 7TS) sin(ni + 7rs).
Hence f and F have a meromorphic extension in (s, k) with singularities occurring
only in s = J_rg. O
6.4. Restriction and one-sided averages. Let 8 < a. Based on a fixed function
¢ € Co((a, B).) we have the meromorphic family

_ 1 < dt
s f = s fe @) = s f Ry it 60
s =z
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Like in [7, Lemma 4.6] we can try to get the lower row of the following scheme:

A +
(6.27) @ . ol AV

-1 -1
l‘CSA & \ l‘CS&'k j

AVF?
fi " el AV)

We formulate the result that we will use later on.
Lemma 6.9. Let Re s > 0, and denote
_ ol . o
Q, = PC\{zec : ’Zi2’S
Y. ={z€C : tRez> 0}.

See Figure 3.

Suppose that h.. € X, ® B, () and that the associated real-analytic functions
H. = O hy on Q. satisfy (F (), el)p = 0 for all basis elements e; with k; = 0.
(See §2.2.) Then

T’n
(6.28) Folpivt = |20 i
- st—l f—lpvk,kT
are well-defined elements of X, ® B, (1) which satisfy
(6.29) ress(felpu kAV) = (resgifi) [, (o AV
Moreover, forl = 1,...,n(p):
(6.30) (felpu AV (x + iy), e1), = O(y™)

as y T oo, uniform for x in compact sets in Ty NR.

Q, T,

Ficure 3. Domains 2, and Y, in Lemma 6.9.

Proof. The definition of Ipvk,kAvi follows the same scheme as the definition of
sz .- Only the power series F. at oo is in the variables z and z. In the region
of convergence the correspondence (6.29) is clear. It extends by analytic continua-

tion in s.
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In (6.30) we are interested in the asymptotic behavior as y = Imz T oo, whereas
part (iii) of Proposition 5.4 concerns expansions for # approaching co through R.

It suffices to consider the component f ;(z) = (f+(2), ;) ,, and the corresponding
component F.; = Oy fi;. The function F, ; is given by a power series in (z + i~!
and (z™! — i)~! that converges on a neighborhood of co in Pé.

If F. (c0) = 0 we have

Foi(2) = O fei(@) = O (y + 1 + x)™712),

This gives in the + case for x > 0 and y T oo

Z o~ 2mimKi feiz+m) <y’ Z:(y2 + (x+ m)z)_s_l/2

m=0 m>0
<y’ f A+ = oy™).
1=x

For the — case, replace },,50 by — >,u<_1-
We treat the constant term of F.; at oo separately. This needs to be done only
for x; # 0.
ZeZHimKI (Ds,k(Z + m)—l — Z e—erim:q ys (Z +m+ i)—S—k/z (Z +m— l')—s+k/2

m=0 m>0

=y > ez 4 my (14 O+ m) ™).

m=0

The O-term gives a convergent sum for Re s > 0 with the estimate O(y~*) like
above. The main term is y* times the Lerch transcendent H(2s, ek 7). see (5.1).
We apply the asymptotic behavior in Proposition 5.2(ii) to z = x + iy with x in a
compact set, and y T co. Since £ = e~ 2" # 1, the expansion starts with z72*. This
gives the desired result.

The individual terms in the sum (6.28) correspond to the individual terms with
ressrf. In the region of absolute convergence the relation in (6.29) is clear. This
relation extends analytically in s. O

7. FROM PERIOD FUNCTIONS TO CUSPIDAL MAASS FORMS

In Sections 2—4 we carried out the following steps

u i ns,k(u) i Cgar i Cgar(oa Oo)l(O,OO)
0
e A(s, pur) see (4.11) (%)2 - (V;’}k:g’k(Pﬂé) € FE“

In this section the aim is to go from a period function to an automorphic form,
using cocycles with values in the boundary germs, instead of in analytic functions
on intervals in P]é. We state the main theorem.

Theorem 7.1. Let k € R and s € C such that Res € (0,1) and s # +k/2 mod 1.
Let p be a finite-dimensional unitary representation of I' = SLy(Z). Then the linear
map ﬂg(s,pvk) - FEg)vk,s,k given by u cgar(O, 00)|(0,00) With cgar(-, ) as in (4.15)
is bijective.
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We emphasize that the proof of Theorem 7.1 provides the inverse map. How-
ever, the statement of the inverse map is rather involved; it involves a transition
to boundary germs. The proof is split into a number of steps. At the end of this
section we give a recapitulation. In this section we use s, k and p as indicated in
the theorem.

Use of the Farey tesselation. We use the Farey tesselation Ft illustrated in Figure 1.
By X('):t we denote the set of vertices, by X'f‘ the set of edges e¢, in the tesselation,
and by X7" the set of cells. The group I' = I'/{1,} acts on these sets, and X{' = I oo,
X lFt =T1"¢e) ., and X2F t— I'Cp .01, where Cy o —1 denotes the cell with vertices 0, co
and —1. For each e € X 'I:t we choose an orientation, and use e, ¢ = —eg;, to handle
the opposite orientation. Since S €p e = €0 = —€0.c0, all oriented edges can be
written as y~'eq . with a unique y € T.

Like in [7, §11.1, 11.3] the complex Ff' = C[XF!] forms a resolution of T-
modules that leads to the parabolic cohomology groups H/(FE'; M) = Héar(l:; M),
j=0,1,2, of I-modules M. (Here we do not need the mixed cohomology groups
used in [7].) Furthermore, Hgar(l_";M) = Hgar(F; M) for modules in which the
action of —1I is trivial.)

w°,0 1 w?,0 1 . .
Lemma 7.2. Let ‘Wp Uk’s’k(PR) correspond to (vak’S’k(PR) under the isomorphism
resgx in Theorem 6.8. There is an injective linear map

. 1/ oFt. 00 ol
Bsk: FE;;’Uk’s,k — Z (F, ,‘l/Vp“;k,s,k(PR)).

Proof. A period function f € FE;’

w5k 18 a real-analytic function on (0, co). The
definition in (3.1) implies that

o o) - { f(z)ps for ¢ € [0, o],

—fpvk’s’kS(t) for t € [0, 0],
is a continuous function on B} that has values in the 1-eigenspace of |Eik’s’k(—12)
and satisfies flizk,s’kS = —f. We can check that f = f|£zk,s,k(T + T’) on P]é.
We determine cry € Z'(F f‘;Vﬁjzg’k(Pﬁ)) by cri(eg) = f» and extending this

by cr(y lepw) = f Izik’s’ky. To see that cry is a cocycle it suffices to show that
.. . r ~1ps
dcri(Co0—1) = 0. That is just the relation f = fl,gvk,s,k(T +T7).
Since res; x is an isomorphism of I'-equivariant sheaves (Theorem 6.8) there is a
cocycle

(7.2) bt = res;}cht
in Z'(FfY, W:;Z:S’k(lpﬁ)). It is the zero cocycle only if f = 0, and hence f = 0. So
taking S« f = brt gives an injective linear map. O

The boundary germs in w0 k(Pﬂé) are represented by elements of B;;(Q)

PUKS,
where Q C Pé is a neighborhood of Pﬂé \ E, for a finite set E of cusps. We define a
module of functions on $ containing a special choice of these representatives.
By Epuy.s.k(U) we denote X, ® Ex(U) with the action |y, x of T'.
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Definition 7.3. Let Q;‘;Z’(S) ‘ be the space of functions f € &y 5k (H\ Ey) for a

finite set £ C X 1Ft of edges of the Farey tesselation; this set may depend on f. The
finitely many connected components C of $ \ E; can be of the following types:

(1) The closure C of C in Pé has finite area. In this case we require that the
restriction fc is in &y, sk (C) = X, ® B 1 (C).
(2) The closure C of C in ]Pé contains one or more intervals /; in P]é. We require
that fc € X,®8, (L) for an open set Q C ]P’((.lj containing C and the intervals
I;.
Let E C P(é be the finite set of endpoints of the geodesics in E£;. The functions
res, k@« fc determine an element ¢ € (prvk,s, k(PIé \ E). We require that this element
extends continuously to PJ.

€ ¢ n

Ficure 4. Decomposition of $ by a finite number of edges in the
Farey tesselation.

In Figure 4 the components indicated by a and 8 are of type (1), the other com-
ponents are of type (2). The closure of the component indicated by § contains two
intervals in Pﬂé.

0 . . . . . .
We note that Q;‘;k’(; . 1s invariant under the action |, x of I'. This I-module is not
equal to the module G ** in [7, Definition 9.21], but we use it in a similar way.
~ 0 ~
Lemma 7.4. There is a cochain bry € C'(FY; gp“;k"s) .) such that bgy(e) represents
0 0 ~ ~ ~ .
bri(e) € W:;k:s’k(Pﬁ) forall e € XlFt. Moreover, bri(e) € Bpuk,s,k(Pé \ &) where € is
the closure of the union of e and its complex conjugate.

Proof. bri(eg ) 1s related to cri(e,,00) by res bri(€o,c0) = cFt(€0,00), and cri(€p,c0) =
f is holomorphic on C\iR. Theorem 6.8 implies that bri(ep ) has a representative
in By, s x(C \ iR). Take bri(eo,) as this representative, and extend the definition
-~ 0
in a I'-equivariant way. This results in by € C'(FFY; gp‘“ka;’k). o
The cochain b represents the cocycle br;. So we have

dbri(Co,c0-1) = bFt(€0,00 —€-100 —€0-1) = 0,
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Fiure 5. The cell Cp -1 in the Farey tesselation.

which corresponds to the three term relation (3.6). In Figure 5 this means that
dbri(Co,0—1) vanishes on the components 8, y and 6. On the component a the
function dbr(Cp 1) can be any s(1 — s)-eigenfunction of Ag.

Lemma 7.5. Given the cochain b representing the cocycle br, there exists a
Sunction v € Epy, 5 (D) satisfying vlpy, xy = v for all y € I'. This establishes a linear

map agx: FES = Epu sk (D).

Proof. Let p be a positively oriented simple closed path along edges of the Farey
tesselation Ft, as illustrated in Figure 6. Evaluating bry(p) gives a function on
$ \ p. Since b represents the cocycle dr, the function bri(p) is equal to zero on
the components outside p. On the open region U(p) C $ enclosed by p we obtain
a function v, € &, s x(U(p)), which depends on the path p.

Ficure 6. Closed path along edges of the Farey tesselation. (The
boundary lines of the wide sector meet each other at c0.)

If py and p, are two paths for which U(p;) N U(p2) # @ we have v,,, = v), on
U(p1)NU(p2). Indeed, the difference between p; and p, can be obtained by adding
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or subtracting successively a cell y~!Cp .1 to or from the region. This changes
only the value of dr(p1) on ¥ ' Coco-1, and Yy ' Coco -1 N (U(p1) N U(p2)) = 0.

In particular, by making p wider and wider we obtain v(p) on larger and larger
regions. The limit as p tends to Pﬂé gives v € Epy 5 k().

Let y € I'. For a given relatively compact open region V C $ we can take the
path p encircling it sufficiently wide such that y~! p encircles V as well. So on the
region V we have

u(p) = dri(p) = dri(y ' p) = dre(P)lpueiy -

So if z,y7'z € V then v(p)(z) = Vlpoe k¥(2). In the limit this implies that v €

apuk,.v,k(g))r~ B
The map S, in Lemma 7.2, followed by bry +— bri is linear. Also the depen-
dence of v on br is linear. The composition gives a linear map

. I
Ak - FEZ)U,{’S’]( - puk,s,k(g) .

We now have the following situation:

Bsk 1 pFt. a0 (pl
FEZ)vk,s,k z (F° ’(Mé)ka,s,k(PR))

(7.3) Lok lwith Lemma 7.5

apuk,s,k(g))r
In Proposition 4.2 we associated a period function to a Maass cusp form.

FEZ)vk,s,k

f

(7.4) X
AL (s, por)

The following lemma states that a4 is proportional to a left inverse of pf.

Lemma 7.6. If f € FE“

sk U5 the period function of the Maass cusp form u €
&Zlg(s,pvk), then

2ni
b(s, k)
with the meromorphic factor b(s, k) from (6.15).

(7.5) agif =

Proof. Now f in the proof of Lemma 7.2 is given by

(7.6) cr(eoe) = [ = fo Nsk(u) = f(; [, Ry »

and hence for each edge e € X'I:t

(7.7) cri(e) = f[u’RS,k]k'
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See Proposition 4.1, (4.15) and (4.11). With Proposition 6.7 and the bijectivity of
res,x in Theorem 6.8 we obtain

(7.8) [, Ry (2, )]y [, G5z, )]

= b(s.k)

and for e € X'

- 1
(7.9) be) = 5o f [, 452, -

The exponential decay of u and its derivatives implies the absolute convergence of
these integrals. We have

(7.10) dbrt(Coc0-1) = br(eoeo + o1 +e-19).

Now we would like to apply Proposition 6.3. However the closed curve dCq o —1
is not in contained in $. We can truncate the cell Cp ;1 at its vertices, and apply
Proposition 6.3 to this approximation of dCy « 1. The exponential decay of u and
its derivatives implies that the truncation error goes to zero in the limit. The result
is

- 2mi
7.11 dbri(Co.co—-1) =
(7.11) Ft(C0,00,-1) ) u
on the interior of Cy 1. By analyticity this gives the lemma. m|

Lemma 7.7. The function v = a,f associated to a period function f € FE;’Uk’S,k

isin ﬂg(s,pvk).

Proof. We have still to show that v has exponential decay. The equivariance of v
implies that it suffices to give an estimate of v(x + iy) as y T oo for x in an interval
of length at least 1.

Let f € FE®

OVk,S0 ~
we built v € Epy, 50 4(H)! as in the proof of that lemma. Let h = bp(ep.w). SO
resgph = f.

Proposition 5.6 implies that £ = (f|>  7/)”  Av". With (6.29) in Lemma 6.9

« and denote by brt the cochain in Lemma 7.4 with which

PV, 8,k PV, 8,k
this implies that & = (Al & )|on AVT. With (6.30) this implies that
(7.12) h(z) = O(y™) asy T oo

uniform for x in compact sets contained in (0, o). We use the closed path
p=-T 00T 'T" " g0 —T " epe + €00,

sketched in Figure 7, encircling the union of two cells in the Farey tesselation. We
aim to estimate v(z) for z in the region bounded by dashed lines. For z inside the

path p

u(z) = _hlpvk,sz(Z) - h|pvk,kT,T(Z) - h|pvk,kT’(Z) + h(Z)
_ _ —ikar Z+ 1
(7.13) = —p(T)20(T) 2h(z + 2) — x &~ FHEEHD h(m)

_ —ik arg(z+1) <
ve W)+ @
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Ficure 7. Closed path used in the proof of Lemma 7.7.

By = we indicate quantities with absolute value 1 that do not depend on z.
For the first and the last term we have the estimate O(y~*); see (7.12). In the
middle terms we have as y T co

h(z-i-—a) — q)s’k(“—a)_l o(1)

z+a+1 z+a+1
§ z+a \—s—k/2 , Z+a \—s+k/2
T ) g i)
lz+a+ 1> ‘z+a+1 Z+a+1
= 0(y™).

The conclusion is that v(z) = O(y~) as y T oo, first for % <x< %, and then for
all x by T-equivariance.

For all components v; = (v, e;)p this implies that the exponentially increasing
M-Whittaker functions in (2.13) do not occur in the Fourier expansion of v;. For
k; € (0, 1) there are no Fourier terms with order n equal to zero. Then all Fourier
terms are exponentially decreasing, and hence v; is exponentially decreasing.

For components v; with x; = 0 the Fourier term of order zero might contain
a linear combination of y* and y'~* (or a logarithmic possibility if s = %). For
0 < Re s < 1 this is ruled out by the estimate O(y~*). (To obtain this we have used
an assumption that holds in this case by Lemma 3.3.) O

We turn to the injectivity of the map «, from period functions to Maass cusp
forms.



PERIOD FUNCTIONS, MAASS FORMS AND JACOBI MAASS FORMS 41

Lemma 7.8. For each f € FE?fk there is a holomorphic function f. on C \
(i[1, 00) U (=D)[1, 00)) such that

f=Jfo- foolpwk onf{zeC : Rez> 0},
1
Jeo = foo |pvk s,k s,k(PR) :

Proof. Let Q) = C\(i[1, ) U (=i)[a,))and Q, = ]Pé\i[—l, 1]. Then Q1N =
C N\ iR and Q; UQ, = PL\ {i,—i}. We apply [14, Theorem 1.4.5] with Q = B}
and follow the reasoning in the proof of [7, Proposition 13.1], obtaining from the
holomorphic function f on Qi N Q,, holomorphic functions A, on £ and Ay on
Q, such that A, + Ag = f on Q) N Qp. (Hormander requires that we work with
open subsets of C. That is arranged by a holomorphic transformation of Pé sending
—1 10 00.)

Note that Ay is holomorphic on a neighborhood of co. Hence Ao, = f — Ag is in
(V;‘;O’? (R), and analogously A, € q/;;;o’? k(P]é \ {0}). In this way we can conclude
that A, and A are elements of "V“;k ? k( b).

We have

O_f+prHk = (Ao +A0pUkSkS)+(A0+A
Considering the singularities of the terms we conclude that

h = A + Aol

(7.14)

puk, skS)

UK, S, k |pvk s,k

represents an element of (V;‘l')k,s, i R). We put

1 1 ,

Olpuys.k
(7.15) 1 : poes
fo=Ao+zh = —(Ao —Awlpy 1)
These functions satisfy foo + fo = f on C \ iR, and folpvk S, W =

Since A, € (V“’ (R), we have pmlpv sk
¢ k(P]é N {0}). However,
fol (1 =T) = plT" - polpw a1 =T1),
which show that fiol} (1 -T) € VY k(P‘ N {=1,0)). Hence fol?, (1 =T) € V& (B, )

T e (V“’ (R) as well. Analogously, po €

Lemma 7.9. Let
(7.16) Fok = 1i§12n Ek(2N'H)

where Q runs over the open sets in Pé that contain Pﬁ. Then
(7.17) Fos = Esu(H) @ W (BY) .

Proof. This result generalizes [7, (3.3)]. In [7] the decomposition of boundary
germs is based on Proposition 1.1, which we have generalized to weight k as Propo-
sition 6.3. The reasoning leading to [7, (3.3)] generalizes as well. O
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Lemma 7.10. The map ay in Lemma 7.5 is injective.

Proof. Any period function f € FE“

Pk, 8,k
. w?,0
values in W~
PV, S,k

is represented by a 1-cochain brt on XlFt, which is determined by & = BFt(eo,oo) €

determines a cocycle S,xp on Xl':t with
(P]é) (Lemma 7.2), determined by its value on ep . This cocycle

0 . . . .
Qf‘)‘;k’? i~ Lemma 7.4 implies that H = @, h extends as a real-analytic function on

C\iR.
The function / is defined (and real-analytic) on $\ e . This implies that A, T
and hy,, T’ are defined (and real-analytic) on H \ e_; o and H \ e _1, respectively.

h| h h|T | h|T
h|T’

h|T"

0 -1 -1 0

Hence, the function [ = h — hlpy kT — hlpy 1T’ is in Eg i (H \ U), where U is the
union of the three geodesic boundary segments of the Farey cell. These geodesics
determine four connected regions in the upper half-plane. The cochain bg; with

. wY.0 . . w’.0 1 . .
values in gpvk’s’k represents the cocycle br; with values in (Wp vk’s’k(PR). Since bp; 1s
a cocycle, the value of

brt(eo.co — €01 — €-1.00) = 1

should be zero near Pﬂé\ {0, co, —1}. Since £ is real-analytic on $\ e¢ ., the function
[ vanishes outside the triangle with vertices 0, co and —1. On the other hand, inside
the triangle, / represents (a multiple of) @, f, by the construction in the proof of
Lemma 7.5.

Suppose now that @, f = 0. Then [ is zero on all four components, and extends
as the zero function on $. We note that /1 € E,p s k(D \ €0,00)s lpu kT € Eppy sk (H N
€_1,00), and hlpy (T" € Epy s i (D N e_10). We have h = hlyy (T + hlp, kT’ The
right-hand side of this equality is in &, ;x(U) for some open neighborhood U of
€0, in 9, hence h is in &,y ;1 (U). This implies that

(7.18) he &y k(D).

Theorem 6.8 states that the restriction resgy : (Ws“’k - ‘Vs“’k is bijective. More-

over, it states that the domain of representatives is preserved. Lemma 7.8 splits

f e FES as f = fo-— fm|§jk7x7ks. This implies that & = Ao — hoolpy S With

heo € Epu s i (H N\ i[1,00]) and heolpy kS € Epuy sk (H \ (0, 11). From the fact that
h € Epy, sk (H) we conclude that he € Epy o1 (H \ {i}). Lemma 7.8 implies that
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heolpuy k(1 = T) € Q:’,S’O(PIP}{) represents an element of Ws‘i‘k(P]é). The element A,
itself corresponds to the function f,, which is holomorphic on a neighborhood of
R in C. Hence h,, represents an element of (Ws‘f’k(R).

Lethe = 31 heoy ey asin (2.11), for an eigenbasis {e;} of X, for o(T'), asin (2.11).
The action hieo = heolpy, k cOrresponds to heo; = e~ ik heo il T .

The element /., ; represents an element of ¥ in (7.16). So we can write ho =

g1+ q; with g; € Ex(9) and ¢g; € Q:”:’O(Pﬁ) representing an element of "W;‘fk(Pﬂé).
Since the eigenvalue of |, T on ¢; is €21 we have

(7.19) hoot |, (1= €7MT) = g |, (1= e™T)+q |, (1-e>™T).

This is the situation which is treated in [7, Lemma 9.23]. Hence ho; € Esx(H\{i}).
Moreover, oo glk(1 — e~ ZriKT) represents an element of W;"k(]PIé). So the term with
g1 € E; k(D) is zero by the decomposition (7.17), and

(7.20) gilkT = €™ g;.
Combining the component functions to vector-valued functions we obtain

(721) heo = g+gq, glpvk,kT =49,

w?,0

Pk, S,k
0

Since heo € Epy sk (DN N NG ’_2(}&), the function g represents an element of

Uk, S,

(M/pka,s, k(R). The invariance of g ulll)dker louex T implies that it has a Fourier expansion
of the type discussed in §2.2. In this expansion the W-Whittaker functions do not
have the right behavior near zero to give a contribution in Wp“l’)k’s, (R). In the terms
of non-zero order we are left with multiples of M-Whittaker functions, and in the
term of order zero with multiples of z — y*.

Since ¢ represents an element of (Wp‘;k’s’k(Pﬂé), this implies that g(z) = O(y~*)
as y T oco. Each Fourier term inherits this estimate. The function z — y* and the
M-Whittaker functions have larger growth, and hence occur with coefficient zero.
Sog =0, and he = Goo-

We use i = hlpy k(1 =S) = Geolpy k(1 — §) to see that it represents an element of
we ’k(Pﬂé). We combine this with (7.18) to get # = 0 with Lemma 7.9, and also

PU,S

f=resgh=0. o

with g € &y 5 k(9), and g € (P]é) representing an element of "Wp‘*;k’sﬁk(PHé).

Recapitulation of the proof of Theorem 7.1. Lemma 7.5 gives the central step,
in which an invariant eigenfunction is constructed on the basis of the cochain b
representing the cocycle bri. Here it is important that we work with a cocycle with
values in the boundary germs. This allows a geometrical approach in the upper
half-plane.

Before Lemma 7.5 we have to construct a cocycle from a given period function.

. . . w’.0 ..
It is easy to get a cocycle with values in the sheaf (V;) sk based on the principal

series realized on the boundary Plé of . To go over to boundary germs we use
Theorem 6.8.
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After Lemma 7.5 we have to show that the resulting invariant eigenfunctions
have the desired properties. Lemma 7.7 shows that the invariant eigenfunctions are
indeed Maass cusp form. Lemma 7.6 shows if we apply the construction to the
period function associated to a Maass cusp form we get back (a non-zero multiple
of) this cusp form. The final steps, in Lemmas 7.8 and 7.10, show that a non-zero
period function gives a non-zero Maass cusp form.

8. JacoBI MAASS FORMS

Jacobi Maass form have been studied by Yang [36, 37], and by Pitale [27].

In this final section we extend the definition of Jacobi Maass forms of Pitale to
real weights, and show that spaces of Jacobi Maass cusp forms are isomorphic to
spaces of vector-valued Maass cusp forms to which we can apply Theorem 7.1.

8.1. Jacobi group and its covering group. The Jacobi group G/ = Hei=G is the
semidirect product of G = SL,(R) and the Heisenberg group Hei. As a topological
space, Hei = R3:

(8.1) Hei = {h(x.y.r) : x.y.r €R};

it has the group operation

(8.2)  h(x1,y1,r1)h(x2, y2,r2) = h(x1 + x2,y1 + y2, 11 + 12 + X192 — X241) -
The semidirect product is given by the following right action of G on Hei.
b
(8.3) g_lh(x, y,r)g = h(ax +cy,bx +dy,r) with g = (a d) .
C

We note that (ax + cy, bx + dy) = (x,y) g.

One can embed G’ in GL4(R). Berndt and Schmidt describe G’ by such an
embedding, see [2, §1.1].

The universal covering group of the Jacobi group is obtained as

G’ =HeixG,

with the universal covering group G in §2.3. The action of G on Hei is given by
projection to G in (2.15):
(8.4) g 'hg = (prg)'h(prg)  heHei, GeG.

Since Hei is simply connected, it is its own universal covering group.
A function F € C*(G”’) has index m € R,y and weight k € R if

(8.5)  F(gh(0,0, Nk(®)) = *mr+ikd p(g) forge G/, 9 eR.

It is essential to put k() on the right. The elements h(0, 0, r) are central in G’ and
can be put where it suits us. The index and the weight are not changed under left
translation L(gg) for g € G.

The Jacobi group acts on $ X C by

ab ar+b z ab
(Cd).(T’Z) - (CT+d’CT+d) for( )EG’

(8.6)
h(x,y,r) - (1,2) = (T,2+ xT+y) for h(x,y,r) € Hei.
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This induces an action of G’ on $ x C by
(8.7) hg - (t,z) = hpr(g) - (1,2).

In the previous sections we denote elements of the upper half-plane $ by z, in
accordance we the usual practice in the study of Maass forms. Here we follow the
convention to denote by T the modular variable in $, and use z € C as the name of
the elliptic variable.

Like in (2.28), there is a map

(8.8) Pim: CO(H X C) = C(GY)

determined by the following relation between F and f = ¥y, F:

8.9  f(h(p.q.NBOk@)) = " THHIEIIETD B, pr 4 g),
with inverse relation

(8.10) F(r,7) = e 7mem@/Im(@ p(h(m 7 1ims o)5(7)).

Im7° Imt°

The right representation of G’ by left translation L(g;)f: g +— f(gg) corre-
sponds under ¥y, to a right representation of G on functions on £ x C determined
by

(Fllfmf(g))(‘l', Z) — e—ik arg(ct+d) e—27rimczz/(cr+d)

- F(g(t,2)) forg=(ab)eG,
(8.11) cd
(FI,,O)@.2) = €™ F(7,2) for { = k(mn) € Z,

(FI],,h)(7.2) = 2mim(rp v+ 2p2409) F(p(r, 7)) for h = h(p, q,7).

For k € Z this is a representation of G’ which is trivial on Z,, defined in (2.16).
Hence it is a representation of G”. It is the action used by Pitale, [27, (4)]. For
k € R \ Z the representation |, is not trivial on Z,. The operators |,,{(g) for
g € G are similar to the operators |rg in (2.3).

8.2. Discrete subgroup. We use the discrete subgroup I/ = AxI"of G’ = HeixG,
with the lattice
(8.12) A = Hei(Z) = {h(A,u,x) € Hei : A, u,x € Z},

and the inverse image of the modular group I' = pr ~'T, as defined in §2.3.

Suppose that a function f on G’ has index m and weight k as indicated in (8.5).
If f is left-invariant under A, then for g € G’:

f(® = f(h(0.0.1)g) = f(gh(0.0.1)) = e f(g).
So we need m to be integral for invariance under A.
- 0T\~ ~ - 4

The element S = ((1) _01) = k(-n/2) satisfies $* = k(=2x) # 1, although ((1) _01)

is the unit matrix. We have

f(8%) = f(g8*) = e ™ f(g).

Hence, if k € R \ Z, then a function cannot be left-invariant under .
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We restrict our attention to left-I'/-equivariant functions f on G’ of index m €
Zs1 and weight k € R satisfying

(8.13) flrg) = o) flg (yel’/,ged’)

for a character ¢: IV — C* that satisfies
(8.14) e(1) = 1fordeA, o(§h = 27k,

One such character is y; as defined in (2.26) and extended to T by taking
xx(1) = 1 for 2 € A. All other such characters are of the form ¢ = ¢,y with
a€Zmod 12

(8.15) @u(T) = 6 @, (§) = ™2,

The ¢, are trivial on Z, = kerpr; see (2.16). Hence the ¢, correspond to charac-
ters of I' = SL»(2).

For functions F on $ X C we define the action I; ) of T’ on functions on

k.k,m
$ x C by
J - -1 -1
(8.16) Fl‘ﬁa”bk,my = @a(y)” w(y) F|k,m7 foryeTl,
‘ Flsjaavk,k,m/l = F|/{,m/l forleA.

If F corresponds via ‘i’k,m (see (8.9) and (8.10)) to a function f satisfying (8.13),
then F is invariant under the action |4, xm Of I'’. To see this we use the relation
vk(y) = x1(€(y)) and the fact that ¢, is a character of T".

8.3. Lie algebra. The group G’ and its covering group G’ have the same Lie
algebra g’/. We use the notation of basis elements of g’ as indicated in [2, §1.3,
§1.4]. That are Z, X; and X_ in the Lie algebra of G, already used in (2.31), and
Zy, Y, and Y_ in the Lie algebra of Hei. Each element of the Lie algebra acts on
the functions in C*(G”) by right differentiation. For any function f of weight k
and index m we have

(8.17) Zof = 2xmf, Zf =kf.

Under the relation (8.9), the differential operator on G’ given by any X € g’
commutes with left translations. For given index and weight it corresponds to a
differential operator on $ X C by the relation in (8.10). We use Pitale’s notation
X*™ for this operator. He gives it explicitly in terms of the coordinates 7 € $ and
z€ C;see [27, p 91, 92]. We see for instance that the kernel of Y5 consists of the
functions F on $ X C that are holomorphic in z.

The elements X, and X_ in g C g’ shift the weight of functions on G by +2,
respectively. To get weight shifting operators on G’ from X, we need to calibrate
them by adding a correction term based on the elements Y. in the Lie algebra
of Hei, setting

(8.18) D, =X, +

1 2
—Y:.
T d4mm *
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These elements are not in the Lie algebra g’ itself, but non-commutative poly-
nomials in Lie algebra elements. Pitale gives the corresponding weight shifting
differential operators Xi’m on 9 x C.

More complicated is the Casimir operator C*, given in [27, (8)]. It corresponds
to a non-commutative polynomial of degree 3 in elements of the Lie algebra g’. It
has the advantage to commute not only with |/ g for all g € G”, but also with X*"
for all elements X of the Lie algebra. See also [2, Proposition 3.1.10]. Instead of
requiring functions to be eigenfunctions of C*™ we can require that functions are
eigenfunctions of D]i+2’lefr"" with prescribed eigenvalue depending on the weight.
This is similar to the relation (2.32) for SL,(R), which implies for functions of a
given weight that eigenfunctions of A are also eigenfunctions of X_X.

8.4. Jacobi Maass forms. Jacobi Maass forms can be defined as functions on
$ x C, as Pitale does. One may also view Jacobi Maass forms as function on the
Jacobi group, or on the universal covering group of the Jacobi group. Both points
of view are connected by the map ¥y ,, in (8.8). We formulate the definition in both
ways.

First we work on G:

Definition 8.1. Letk € R, m € Zs, s € C, and a € Z/12Z. The space A (s, @ax)
of Jacobi Maass forms on G’ consists of the functions f € C*(G) that satisfy

(@ f(h(0,0,ngk(®)) = ™+ f(g) forg e G/, r, ¥ € R.

(b) f(78) = wa(Pi(?) f(®) fory eI/, ge .

(c) f satisfies the following relations:

452 — 2k + 1)?

b-D.f = 16 ’
45% — (2k — 3)?
DiDf = ————f, and Y.f=0.

(d) fa(ng) = O@*) ast T oo, for some @ € R, uniform for g in compact
subsets of G. (We recall that 4(r) = (it), see (2.15).)

The subspace ﬂz’om(s, @axr) of Jacobi Maass cusp forms is determined by re-
placing (d) by the stronger condition

@) f(a(ng) = O *) ast T oo, for all @ € R, uniform for g in compact
subsets of G”.

With relation (8.10) we obtain the following reformulation:

Definition 8.2. Let k € R, m € Zsy, s € C, and a € Zmod 12. The space
ﬂ,{ (S5 Pabi) of Jacobi Maass forms on $ X C consists of the functions F' € C*(H X
C) that satisfy

(B) F|; wim? = Fforally e r’.
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(C) F satisfies the following relations:

452 — 2k + 1)?

pimplmp _ 25 7T
- + 16
4s* — (2k - 3)?
Dﬁ__z’lei’mF — %F, and YfamF =0.

(D) F(a(y) - (1,2)) = O(y®*) as y T oo for some @ € R, uniform for (r,z) in
compact sets of H X C. (Here a(y) = (” 10/2 y,? /2) €qG))

The subspace &Z{,{’?n(s, waby) of Jacobi Maass cusp forms is determined by re-
placing (D) by the stronger condition

(D) F(ay) - (1,2)) = O(y ) asy T oo for all @ € R, uniform for (7,z) in
compact sets of $ x C.

We note that there is no part (A) in Definition 8.2 corresponding to part (a) in
Definition 8.1. The weight and the index are properties of functions on G”, and
have to be fixed in the definition for G’. On the other hand, the weight and the
index are not properties of functions on $ X C, but parameters in the transformation
behavior. We also note that the character y; of I" in Definition 8.1 is replaced in
Definition 8.2 by the multiplier system v; on G given by vk(g) = xx(£(g)).

There are a number of differences in comparison with Pitale’s Definition 3.2 in
[27]:

(1) We allow the weight k to be real, instead of only integral.
(2) Pitale seems to allow the eigenvalue A of C*™ to depend on F. In that way,
Jl’(”;n is not a linear space.

(3) Our spaces of Jacobi Maass forms are in fZ’:ﬂ in [27, (30)].

Even if we fix the eigenvalue A, the space of Jacobi Maass forms has
infinite dimension. Pitale does not impose the condition Y*"F = 0 in the
definition, but imposes it later on.

(4) The characterization in (c) says that Jacobi Maass forms transform under
the Lie algebra action in the same way as a vector wg ® v in the principal
series representation described in [2, Proposition 3.1.6]. (There the weights
are integral, but the formulas describe a Lie algebra module if we let the
weight k run through a class in R mod 2Z.)

(5) We can show that D.D_f = D_D. f + (k — %) f on functions of weight k
and index m that satisfy Y_ f = 0. So we can omit the condition on D, D_f
in ¢) and C).

(6) We use the condition of quick decay to characterize Jacobi Maass cusp
forms. It takes a consideration of Fourier expansions to get the formulation
used by Pitale.
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8.5. Theta decomposition. Accordingto[27, Theorem 4.6], each F € ﬂi (85 00),
with k € Z and the trivial multiplier system vy, is of the form

F(r,2) = Z O, (1,2 F (1),

Jj mod 2m

L, )
(8.19) ®m,j(79 z) = (Im T)1/4 Z eme‘ra e4mmza
@=j/2m mod 1
= (Im T)1/4 Z eﬂi‘rr2/2m eln’irz

r=j mod 2m

with a vector (F ;) j mod 2m Which is a vector-valued Maass form of weight k— % This
opens the way to attach period functions to Jacobi Maass cusp forms by application
of Theorem 7.1. In this subsection we check that the decomposition goes through
in the case of real weight.

Theta functions on Hei. Let m € Zso and j € Z/2m. For each Schwartz function ¢
on R the theta function

(8.20) 19’|;|1’ejl(<p7 h(p, q, }")) — Z eZﬂim(r+tI(2a+p))‘p(p +a)
a=j/2m(1)
is in C*(A\Hei), and the subspace of functions in C*°(A\Hei) that transform ac-
cording to the character h(0,0,r) — e2Mimr consists of the finite sum of the form
2. j mod 2m 19,';'1‘3'.(90 ;) with Schwartz functions ¢ -
el

Actually, the map (¢;) = 3 ;mod 2m 19":'1 j(go ;) induces a unitary isomorphism

L*(R)>" — L*(A\Hei),,, where the subscript m indicates the subspace given by the
character h(0, 0, r) > e

Theta functions on G’. Let f € C®(A\G’). Then there are Schwartz function
£ (g, &) parametrized by g € G such that
(8.21) fhgy = > 0pig. k) heHei, geG.

Jj mod 2m

Let us define the following family ¢’ of Schwartz functions on R parametrized
by G:

(8.22) ¢ BOKD), &) = Im(1)/4e?/2 2mime? e R,
For each m € Z.q and j € Z the function in C*(G/) defined by
(8.23) I j(hg) = Oci(@’ (@, );h),  heHei, jeC

is left-invariant under the elements of A, has index m and weight % With (8.10)
the function ,, ; on G’ corresponds to the function on $ x C that is used in (8.19):
(1,2) > e—2ﬂimz Im (z)/Im (1) . ](h( -

,0)p(r
Imt Imt )P( ))
Z e4m’mozz e—47rima/‘rIm (2)/Im (1) e—27rimrlm (2)*/Im (1)?

Imz tlmz

a=j/2m(1)
¢’ (B(1), @ + Im (2)/Im (1))
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Im ( T)] /4 e4m’maz e—47rima‘rIm (2)/Im (1) e—ZHimTIm (2)?/Im (1)?

a=j/2m(1)

. e27rimr(a/+lm (2)/Im (1))

Im (T)1/4 Z e47rima'z eZm'maz‘r =0, j(T’ 2).
a=j/2m(1)
We start with the generalization of the theta decomposition (8.19) to real weights,
working on the group G’ and on the space $ x C.
We can check that #,, ; satisfies the conditions (a), (c) and (d) in Definition 8.1,
with spectral parameter s = 1 or —1 and weight % In particular, it satisfies

(8.24) Y_Omj = DiOmj = D_Unj = 0.

The behavior of ®,, ; under left-translation is clear for elements of A C Hei. It
suffices to consider the generators. From [11, p. 58, 59] we get for the correspond-
ing function on $ x C:

(825) ®m,j(T + ]’ Z) = e?rijz/Zm ®m,j(Ts Z) ,

1/4 .
©, (—1/7.2/7) = Im (1) T onim?jr 2] [2m O, (7,2)
e 712 2mi , Im (1)!/4
J’ mod 2m
(826) - (2m)—1/2 e—ﬂ'i/4 eiarg(r)/z eZm’mzz/T

—iii
o Tiii /m @m,j’ (T, Z) .
Jj/ mod 2m
2
So we have @m,j|{/2’m ((1) }) = "/ /2m@,, ; and
il Im

0-1 :
® G — /4 O ..
m,J|1/2,m(l 0) € ; m m.,j

For the functions ,,; on G’ this implies the transformation behavior under left
translation by elements of I'/. With the row vector

(8.27) G = Ot Omm)
the transformation behavior is determined by

LW, = ¥, forhe A,
(8.28) LTS, = &, M),

LSS, = ™4, M(S),
where M(T)) denotes the diagonal matrix with e™iJ’12m gt position (j, j), and M(S)
the symmetric matrix with (2m)~1/2 =™/ /™ at position (j, j).
We turn to an arbitrary function f € C®(G’) with weight k € R and index

m € Zs1. We can write f uniquely in the form

(8.29) fhg) = Fu(hd) k(@) (heHei, G ),
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with a column vector ﬁm(g) = (hi(@), ..., hom(g)) with h; € C*(G) of weight k —
1/2. We can vie~w h as a function on G’ depending only on the second factor in
g =hg e HeixG.

The transformation behavior L(y)f = ¢.(¥)xx(¥)f in Definition 8.1 takes the
form
(8.30) FnGDITE) = ed WD) Tn(@hn(®) (D).
Since the 4 ; depend only on the factor g € G in g = hi € Hei G, we do not get any
condition on ﬁm for y € A. For T and § we obtain

MDhu(Tg) = & “POhg), e MEMuSg) = P Ry(g).
This implies that 7 has to satisfy the transformation behavior

(8.31) h39) = Xe12DPam@ @ GeT, Geb),
with the representation p,, of I such that p,, ,,(T) is ™@/6+1/12) times the diagonal
matrix with entry e T 12m ¢ position (j, j) (with 1 < j < 2m), and pa,m(g) is
e~™4/2 times the symmetric matrix with &7/ / \/2m at position (j, j').

We turn to the differential relations in condition (c) in Definition 8.1. The dif-
ferentiation by Y_ only involves the factor Hei of G’, and sends the components £ i

of ﬁm to zero. In view of remark (5) after Definition 8.1 we have to look only at the
condition

(8.32) D_D,f =

We have
Dy (O jhj) = (X + @am) " Y2) (O jh))

(s—k=1/2)(s+k+1/2)
4 f

1
= (Xy O ) b + O j(Xsh)j) + %((Yfﬁm DI+ 200 B Y hj) + D Y Thj)

(dD_'_ﬁm’j) hj + l?m’j(XJrhj) +0

O, j (X1h)),

where we have used that Y. h; = 0 and, by (8.24), D,9,, ; = 0. Proceeding in a
similar way, we obtain

D_D, (9 jhj)

(D-O,j) (Xihj) + O j (XX h))

O, j (X_X1hj).

This means that condition (8.32) is equivalent to the condition
s—(k-=1/2)-1s+(*k-1/2)+1 =

(8.33) X_Xih; = 7 > h;.
With s = % this becomes and k; = k — % this becomes

ki ki
(8.34) X_X.hj = (s1+ 5)(s1 ~1- 5)}1]».

In view of (2.32) this is just the differential relation that Maass forms on G of
weight ky = k - % have to satisfy.
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Theorem 8.3. Letm € Zs1, k € R, a € Z/12, s € C, Res > 0, and put s' = £,
kK =k-— % There is a bijective linear map

(835) Vm,k,s: ﬂ]{,m(s, ‘;Da/\/k) - ﬂk’(s/a pa,mvk’) s

where pgm is the 2m-dimensional unitary representation of T’ = T/ | Z, determined
by

pa,m(h) = IZm fOl‘h € A,
(8.36) Pam(D)jy =6, i@l6+1/12= 2 2m)

pa,m(g )j,j’

(2m)—1/2 e—m’(a/2+jj’/m) ,

for jand j' running from 1 to 2m. Furthermore,
0
Vm,k,s ﬂ]{,m(s’ ‘)Da/\/k) = ﬂgf(s/,pa,mvk’) .

Proof. We have seen already how the equivariance of f € ﬂ,{m(s, ©YaXk) 1S equiva-

lent to the transformation behavior of the vector / of functions on G in (8.29); and
also that the relations (c) in Definition 8.1 are equivalent to the differential equa-
tions in Definition 2.1. What remains to be done is the relation between the growth
conditions in both definitions.

The theta series

P, j((p, g, NP(DK())
(8.37) = Im (7)//4i? Z eZﬂ'im(r+q(2(t+p)) p2rimt(pta)’
a=j/2m mod 1
has polynomial growth. Hence polynomial growth of all 4; implies polynomial
growth of f, and quick decay of all &; implies quick decay of f.
Consider a fixed value of j. With p = —ﬁ the theta series has one term that is
a non-zero multiple of Im7!/4. Hence polynomial growth of f implies that this /;

has at most polynomial growth. If f is a Jacobi Maass cusp form, then this /; has
quick decay. Doing this for all 2m values of j, we get the desired equivalence. O

In combination with Theorem 7.1 we obtain:

Corollary 84. Let m € Zsy, s € C, k € R, such that 0 < Res < 1 and s #
+k mod 2, and put s’ = %, kK =k-— % There is a bijective linear map

AL (s, paxi) — FEY

a,mUK’ 87k

Finally, we give an explicit formulation of the period map in terms of Jacobi
Maass forms as functions on $ x C.

Proposition 8.5. Let F € ﬂ,{’&(s, ©aUy) as in Definition 8.2, and put

1
(8.38) Ci(7) =Im(r)""/* f 7R dr (JEZ, TE€D).
z=0
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Then Fi(t) = i T 2m Ci(t) depends only on the class of jin Z/2mZ. It is the j-th
Maass form in the theta decomposition in (8.19). The period function associated
to F is given by

(8.39) ( f [Fi(D), Ry s (2, T)]k) :

1<j<2m

. ’ _ 1 77 _ 1
with s —%,k =k— 5.
Proof. The theta decomposition (8.19) can be formulated in terms of the Jacobi
Maass form F on $ x C and the components of the associated vector-valued Maass
form (F ;) mod 2m:

2m
(8.40) F(1,2) = ) Ope(t, )Fe(D).
c=1

Expanding the theta functions this becomes

2m
i 2 ..
F(r,z) = Z F (1) Z & T2mim (T)1/4€2m]z
c=1 j€z

Jj=c mod 2m

Z Fj(t)Im (T)l /4 i 21/2m o2z
JEZ

Here, for j € Z, the map F; refers to the unique map F, with ¢ = j mod 2m with
¢ € [1,2m]. This formula can be viewed as a Fourier expansion in z. The Fourier
expansion has only terms that are holomorphic in z. This corresponds to Y*mE = 0;

see [27, p. 91].
In (8.38) we defined Im (1)/4C /(1) as the Fourier coefficient of order j. So
Cj(r) = i T/2m Fi(1).

This implies the proposition. O
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