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This note is written as a companion to §3 of our paper [BFM]. We put it on our
websites, without the intention of formal publication.

In [BFM] we relate numerical and theoretical results on the zeros of the Selberg
zeta-function for a special group, namely Γ0(4), and for a special one-parameter
group of characters.

The computations of these zeros forms the thesis work of Fraczek, [Fr]. It is
based on the Selberg zeta-function as a geometric object, connected to the length
spectrum of the closed geodesics in the quotient of the upper half-plane by the
discrete group Γ0(4). Fraczek computes the Selberg zeta function by approximating
the spectrum of a transfer operator. See Chapter 7 of [Fr], in particular equation
(7.21) and Proposition 7.4.9.

Many observations in Fraczek’s results ask for a theoretical explanation. In
[BFM] we present an explanation of the behavior of the zeros of the Selberg zeta-
function as the character approaches the trivial character. The Selberg trace for-
mula relates the geometric structure of Γ0(4)\H, namely the length spectrum of the
closed geodesics, to the spectral theory of the Hilbert space L2(Γ0(4)\H

)
, namely

the distribution of the eigenvalues of the Laplace operator. This gives a spectral
interpretation of the zeros of the Selberg zeta-function. That interpretation is the
basis of our explanations in [BFM].

The three sections of [BFM] have a very different nature. In the first one we
discuss observations concerning Fraczek’s data and formulate theorems explaining
these observations. In the second section we carry out analytic work to prove the
theorems. We base this analytic work on a list of facts from the spectral theory of
automorphic forms. Not all of these facts can be found directly in the literature in
the way we need. In Section 3 of [BFM] we discuss how these facts can be derived,
applying published results to the special situation we need. In this last section of
[BFM] we had to be concise. Here we give more details and work out some of the
computations.

1. The group Γ0(4)

By
[

a
c

b
d

]
∈ PGL2(R) = GL2(R)

/ {(
t
0

0
t

)
: t ∈ R∗

}
we denote the image in

PGL2(R) of
{(

ta
tc

tb
td

)
: t ∈ R∗

}
. The group PSL2(R) = SL2(R)/{I,−I} acts on the

upper half-plane H =
{
z ∈ C : Im z > 0

}
by fractional linear transformations
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Figure 1. Fundamental domain for Γ0(4)

[
a
c

b
d

]
z = az+b

cz+d . We have

(1.1) Γ0(4) =

{[a
c

b
d

]
∈ PSL2(R) ; a, b, d ∈ Z, c ∈ 4Z

}
.

The group Γ0(4) has index 6 in the modular group PSL2(Z). Figure 1 shows a
fundamental domain of Γ0(4) consisting of 6 translates of the standard fundamental
domain of the modular group PSL2(Z).

The genus of Γ0(4)\H is 0, and Γ0(4) has no elliptic elements. The setQ∪{∞} of
cusps of Γ0(4) consists of three Γ0(4)-orbits, for which we use the representatives
0,∞ and −1

2 , occurring in the closure of the fundamental domain in the figure. For
each cusp ξ ∈ P1

Q
we denote by Γξ the subgroup Γξ of Γ0(4) fixing ξ. This group

Γξ is generated by πξ = gξ
[

1
0

1
1

]
g−1
ξ , where gξ ∈ PSL2(R) satisfies ξ = gξ∞. The

matrices πξ and our choice of gξ are as follows:

(1.2)

ξ 0 ∞ − 1
2

πξ
[

1
−4

0
1

] [
1
0

1
1

] [
3
−4

1
−1

]
gξ

[
0
2
− 1

2
0

] [
1
0

0
1

] [
1
−2

0
1

]
The elements π0, π∞ and π−1/2 give the boundary identifications in the fundamental
domain sketched in Figure 1, hence they generate Γ0(4). They satisfy the relation
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π0π∞π−1/2 = 1. This is the sole relation between these generators, hence the group
Γ0(4) is free on π0 and π∞. So the character group Γ∨ consists of the characters
χα,α′ with (α, α′) ∈ C2 mod Z2 given by

(1.3) χα,α′(π∞) = e2πiα , χα,α′(π0) = e2πiα′ .

The characters are unitary if and only if (α, α′) ∈ R2 mod Z2.
The group Γ0(4) is invariant under conjugation by elements of a subgroup of

PGL2(R) generated by
[

1
0

1
2
1

]
,
[

0
2
− 1

2
0

]
and

[
−1

0
0
1

]
, inducing symmetries of the charac-

ters described by (α, α′) 7→ (α,−α−α′), (α, α′) 7→ (α′, α), and (α, α′) 7→ (−α,−α′).
Conjugation with

(1.4) j :=
[
−1
−2

0
1

]
=

[
−1

0
0
1

] [
0
2
− 1

2
0

] [
1
0

1
2
1

] [
0
2
− 1

2
0

]
leaves χα,0 invariant.

In [BFM] we use the one-parameter family α 7→ χα := χα,0 of characters. It
is special since χα is trivial on π0. For special values of α and α′ the character
χα,α′ is “arithmetic”, which means that χα,α′

([
a
c

b
d

])
is determined by congruence

conditions on the matrix element a, b, c, d. This is in particular the case for χα
with α ∈ 1

8Z mod Z. See [PS]. For general values of α there seems no other way
to compute χα(γ) than by expressing γ ∈ Γ0(4) in terms of π0 and π∞. We do not
have a reason to actually carry this out, except in the proof in §3.6 in [BFM].

2. Maass forms

Maass forms of weight zero for Γ := Γ0(4) and the unitary character χα with
α ∈ R of Γ0(4) are functions u on H satisfying

i) Invariance: u(γz) = χα(γ) u(z) for all γ ∈ Γ.
ii) Eigenfunction of Laplace operator: ∆u = λ u, where ∆ = −y2∂2

y − y
2∂2

x is
the Laplace operator for the standard structure of H as a riemannian space.
(We write x = Re z and y = Im z throughout this note.) The complex
number λ is called the eigenvalue of u.

ii) Polynomial growth: u(gξz) = O(ya) as y → ∞ for all ξ ∈
{
0,∞,− 1

2
}

for
some a ∈ R.

One needs differentiability in some sense to impose condition ii). Since the dif-
ferential operator ∆ is analytic with analytic coefficients, its eigenfunctions are
automatically real-analytic.

It is convenient to parametrize the eigenvalue as λ = β(1 − β), with the spectral
parameter β ∈ C. By Maass(α, β) = Maass(α, 1 − β) we denote the linear space
of Maass forms for the character χ with eigenvalue β(1 − β).

It is known that Maass(α, β) has finite dimension. See, e.g., Theorem 28,
Chap. IV, §2 of [Ma], on p. 190. For most values of β it has a basis consist-
ing of Eisenstein series, corresponding to those cusps ξ ∈

{
0,∞,− 1

2
}

for which
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χα(πξ) = 1. This Eisenstein series is for Re β > 1 given by

(2.1) Eξ
α(z) =

∑
γ∈Γξ\Γ

χα(γ)−1 Im (g−1
ξ γz)β ,

and has a meromorphic continuation in β ∈ C.
For some values of β there are also cusp forms, for which the condition of poly-

nomial growth is replaced by the more strict condition of rapid decay: u(gξz) =

O(ya) as y → ∞ for all ξ ∈
{
0,∞,− 1

2
}

and all a ∈ R. The values of β for which
there are non-zero cusp forms form a discrete subset of the set (0, 1)∪

(1
2 + iR

)
. By

Maass0(α, β) we denote the linear space of cusp forms.
The differential operator ∆ in condition ii) induces a self-adjoint non-negative

operator Aα in the Hilbert space L2(Γ\H, χα) of classes of functions f on H satis-
fying f (γz) = χα(γ) f (z) for γ ∈ Γ and for which∫

Γ\H

∣∣∣ f (z)
∣∣∣2 dx dy

y2 < ∞ .

The non-zero cusp forms in Maass0(α, β) are eigenvectors of Aα with eigenvalue
β(1 − β). The continuous spectrum of Aα corresponds to a subspace spanned by
integrals of the Eisenstein series. Some residues of the Eisenstein series contribute
to the discrete spectrum as well.

Subsection 3.3 in [BFM] discusses the significance of the zeros of the Selberg
zeta-function for the spectral decomposition of the self-adjoint operator Aα and the
singularities of the Eisenstein series.

There arises immediately the problem how the zeros behave when α approaches
0. For the trivial character, α = 0, the continuous spectrum has multiplicity 3.
As soon as α becomes positive, the multiplicity of the continuous spectrum drops
down to 1. So the spectral decomposition of the operator A0 is drastically different
from the spectral decomposition of Aα with α ∈ (0, 1). It seems hard to explain the
results in [Fr] on the basis of the classical spectral theory of automorphic forms.

3. Automorphic forms with a bit of exponential growth

Perturbation theory for this situation needs more tools. In [BFM] we use the
analytic perturbation theory as developed in [Br].

The concept of Maass forms is widened, by replacing the condition iii) of poly-
nomial growth by the less restrictive condition of exponential growth:

(3.1) u(gξz) = O
(
eay)

as y → ∞ for all ξ ∈
{
0,∞,− 1

2
}

for some a > 0. Furthermore we do not impose
that the character χα is unitary; we let α run through a neighborhood of (−1, 1)
in C. For non-real α the estimate (3.1) need not be uniform in x = Re z ∈ R, but
only uniform for x in compact sets. The resulting space of automorphic forms for
given α and β has infinite dimension. We can make it finite dimensional by putting
a bound on a in the exponential in (3.1).
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Actually, in [Br] the growth is not controlled by a bound like that in (3.1), but
by putting conditions on the Fourier expansion. Each automorphic form satisfying
conditions i) and ii) above has a Fourier expansion at each cusp η:

(3.2) u(gηz) =
∑

n≡κη(α) mod 1

Fη
nu(z) ,

with κ0 = 0, κ∞(α) = α and κ−1/2(α) = −α, where Fη
nu is a function on H satisfying

Fnu(z + x′) = e2πinx′ Fη
nu(z). So Fη

nu(z) = e2πinx h(y), and h satisfies a second order
linear differential equation inherited from property ii). This implies that Fη

nu is an
element of a two-dimensional linear solution space W(n, β) for which we can give
several bases in terms of special functions. For most cases such bases are given in
§4.2 of [Br]. If Re n , 0 there is a one-dimensional subspace W0(n, β) of functions
with exponential decay as y → ∞. In §4.3 the growth of automorphic forms is
controlled by prescribing a finite number of Fourier terms at the cusps 0, ∞ and
− 1

2 that are left free in W(n, β), and requiring that all other Fourier terms are in
W0(n, β).

In [BFM] we work with α such that −1 < Reα < 1. We define the space
A(α, β) of automorphic forms with eigenvalue β(1 − β) for the character χα by the
requirement that the Fourier terms Fη

nu with n , κη(α) are in W0(n, β).
We have χα+1 = χα. However, there is monodromy, and A(α, β) , A(α+1, β) for

−1 < Reα < 0. This presence of monodromy also forces us to stay in the region
|Reα| < 1, when using this present growth condition.

4. Eisenstein families

The main purpose of [Br] is the study of meromorphic families of automorphic
forms depending on (α, β) with value in A(α, β) at the points (α, β) at which the
family is holomorphic. In [Br] the scope is wider: families depending on (χ, β),
where χ runs through the character group of the discrete subgroup, or even through
the group of multiplier systems, in which case the weight of the automorphic forms
in the family may vary. This wider scope may complicate the specialization of
results in [Br] to the situation considered in [BFM].

The Eisenstein series E∞α and E−1/2
α disappear as soon as α ∈ (0, 1). The advan-

tage of the use of analytic perturbation theory is the fact that all three Eisenstein
series can be embedded in meromorphic families depending on α and β jointly. It
needs quite some work to do this. The essential tool is the pseudo Laplace op-
erator of Colin de Verdière, [CdV]. This leads to a family of operators to which
the analytic perturbation theory in Kato’s book, [Ka], can be applied. This family
has a compact resolvent, which is meromorphic in the character and the spectral
parameter.

The basic result thereby is Theorem 10.2.1 in [Br]. It gives the existence of
the families E0, E∞ and E−1/2 in (3.3) of [BFM]. Since the character group of Γ

contains not only the χα, we need the restriction discussed in 10.2.2 of [Br]. The
space Vr considered there is equal to R in the present situation, the element ϕ0
is 0, and the intersection J ∩ Vr is (−1, 1). The theorem gives three families Eξ,
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ξ ∈
{
0,∞,− 1

2
}

for which the Fourier terms Fη
κη(α)E

ξ of “order 0” have a prescribed
expression with respect to the basis vectors µ(κη(α), β) and µ(κη(α), 1 − β) in (3.4)
of [BFM]. We note that µ(0, β; z) = yβ, which is known from the Fourier expansion
of Eisenstein series. The nice fact is that these families have restrictions β 7→
Eξ(0, β) which are the meromorphic continuations of the Eisenstein series in (2.1).
It is not obvious that this restriction exist. Meromorphic families have singularities
along curves, and the line α = 0 might be one of these curves.

The coefficients in the expression for the Fourier coefficients of order zero of the
Eisenstein series Eξ

0(β) are meromorphic functions of β. These coefficients form the
scattering matrix; see [LP] for an explanation of this terminology. Theorem 10.2.1
in [Br] enables us to embed the scattering matrix in a family (α, β) 7→ C(α, β) of
matrices with similar properties. This makes it possible to follow the zeros of the
Selberg zeta-function in the region Re β < 1

2 , Im β > 0.

5. Poincaré series

It is known that the spaces of cusp forms Maass0(α, β) with α ∈ R are spanned
by residues of Poincaré series. (See Satz 6.9 in [Ne], or §11.3 in [Br].) To get hold
on the behavior of zeros of the Selberg zeta-function with Re β = 1

2 , we use the
Poincaré series in (3.8) of [BFM]. These Poincaré series also can be embedded in
families that are meromorphic in (α, β), with α in a neighborhood of (0, 1) in C. For
them we use another basis for the Fourier terms of order zero at ∞ and − 1

2 . This
basis is given in (3.4) and (3.7) of [BFM]. Another application of Theorem 10.2.1
and the specialization in §10.2.2 of [Br] gives the families Pξ in §3.2 of [BFM].

The uniqueness in Theorem 10.2.1 implies that we can express the Eisenstein
families and the Poincaré families Pξ in terms of each other, on the region in C2

where they are both defined. The approach is given in 10.3.4 of [Br]. In [BFM]
we leave the actual computations to the reader. In the next section we sketch the
computations for the present situation.

6. Relations

It is convenient to describe the Fourier terms of order zero as a column vector:

(6.1) Fα f =


F0

0 f
F∞α f

F−1/2
−α f

 for f ∈ A(α, β) .

6.1. Eisenstein families. We combine the three Eisenstein families into a row vec-
tor

(6.2) Eis(α, β) =
(
E0(α, β), E∞(α, β), E−1/2(α, β)

)
,

which defines a meromorphic family of vectors in A(α, β)3.
To describe the Fourier term of order zero we use the diagonal matrix

(6.3) m(α, β) =

µ(0, β) 0 0
0 µ(α, β) 0
0 0 µ(−α, β)

 ,
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with the meromorphic family µ(·, ·) of functions as given in (3.4) of [BFM]. Then

(6.4) FαEis(α, β) = m(α, β) + m(α, 1 − β) C(α, β) ,

as an identity between matrices of meromorphic functions. The matrix C(α, β) is
the extended scattering matrix in (2.2) of [BFM]. (We note that here and in the
sequel we often suppress the variable z ∈ H. All terms in (6.4) depend on z, except
the scattering matrix C(α, β).)

To get the functional equation for β 7→ 1 − β we use that A(α, 1 − β) = A(α, β).
So Eis(α, 1 − β) is a meromorphic family of automorphic forms in A(α, β)3 with

FαEis(α, 1 − β) = m(α, β) C(α, 1 − β) + m(α, 1 − β) .

The uniqueness statement in Theorem 10.2.1 of [Br] implies that

Eis(α, 1 − β) = Eis(α, β) C(α, 1 − β) ,

and hence

(6.5) Id = C(α, β) C(α, 1 − β) .

So C(α, β) is invertible as a matrix of meromorphic functions, with C(α, 1 − β) as
its inverse.

We leave to the reader the derivation, in a similar way, of the relation C(ᾱ, β̄) =

C(−α, β); for this one has to look at the effect of conjugation on µ(α, β; z). The
Maass-Selberg relations lead to the functional equation C(−α, β) = C(α, β)t (trans-
pose), in the same way as in §11.2.1 of [Br].

6.2. Poincaré families. We put also the three Poincaré families into a row vector:

(6.6) Poinc(α, β) =
(
P0(α, β), P∞(α, β), P−1/2(α, β)

)
.

The special form of its Fourier expansion is computed with respect to another basis.
For the Fourier term F0

κ0(α)P
ξ = F0

0Pξ we are forced to use µ(α, µ) and µ(α, 1 − µ).
For Fη

κη(α)P
ξ with η = ∞ or − 1

2 we use the basis µ
(
κη(α), β

)
, ω

(
κη(α), β

)
, with ω as

given in (3.7) in [BFM]. This is summarized in the matrix

(6.7) w(α, β) =

µ(0, 1 − β) 0 0
0 ω(α, β) 0
0 0 ω(−α, β)

 .
Now we have a 3 × 3-matrix D(α, β) of meromorphic functions such that

(6.8) FαPoinc(α, β) = m(α, β) + w(α, β) D(α, β) .

6.3. Relation. The uniqueness of the Eisenstein families and of the Poincaré fam-
ilies implies that they can be related on their common domain.

We have to relate w(α, β) and m(α, β). For Re n , 0 we have the identity

(6.9)
ω(n, β) = v(n, β) µ(n, β) + v(n, 1 − β) µ(n, 1 − β) ,

v(n, β) = π−1/2(πn Sign n)β Γ
(1
2
− β

)
,
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which is just a relation between confluent hypergeometric functions. To put the
relation between the bases into matrix notation we put

(6.10) P =

0 0 0
0 1 0
0 0 1

 , V(α, β) =

1 0 0
0 v(α, β) 0
0 0 v(α, β)

 ,
and then arrive at

(6.11) w(α, β) = m(α, β) P V(α, β) + m(α, 1 − β) V(α, 1 − β) .

The uniqueness of Eis(α, β) implies that Poinc(α, β) = Eis(α, β) W(α, β) for
some meromorphic family of 3×3-matrices on a neighborhood of (0, 1) in C times
C. Uniqueness of Poinc implies that W(α, β) is invertible (as a meromorphic family
of matrices, where however invertibility may fail on a subset of lower dimension).
Hence

m(α, β) + w(α, β) D(α, β) =
(
m(α, β) + m(α, 1 − β) C(α, β)

)
W(α, β)

= m(α, β)
(
I − P V(α, β) V(α, 1 − β)−1C(α, β)

)
W(α, β)

+ w(α, β) V(α, 1 − β)−1 C(α, β) W(α, β) .

This implies

(6.12)
W(α, β) =

(
I − P V(α, β) V(α, 1 − β)−1 C(α, β)

)−1
,

D(α, β) = V(α, 1 − β)−1 C(α, β) W(α, β)

6.4. Parity. The map ι : z 7→ z̄/(2z̄ − 1) in (3.5) in [BFM] induces an involution J
in each of the spaces A(α, β). For the Fourier terms of order zero one then finds

(6.13) FαJ f (z) = JFα f (−z̄) , J =

1 0 0
0 0 1
0 1 0

 .
Hence

FαJEis(α, β)(z) = J
(
m(α, β;−z̄) + m(α, 1 − β;−z̄) C(α, β)

)
= J

(
m(−α, β; z) + m(−α, 1 − β; z) C(α, β)

)
= m(α, β; z) J + m(α, 1 − β; z) J C(α, β) .

So by uniqueness

(6.14) JEis(α, β) = Eis(α, β) J , J C(α, β) J = C(α, β) ,

leading to relations among the different matrix elements of the extended scattering
matrix C(α, β).
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6.5. Partial diagonalization. The eigenspaces of J in A(α, β) give a direct sum
decomposition into spaces of even and odd automorphic forms. With the unitary
matrix U in (2.7) of [BFM], the first and second coordinate of Eis(α, β) U−1 and
Poinc(α, β) U−1 are even and the third one is odd. Similarly, the first and second
coordinate of UFα f can be non-zero only if the automorphic form f is even; the
third coordinate can be non-zero only if f is odd.

In this way we arrive at the partial diagonalization of the extended scattering
matrix

U C(α, β) U−1 =

 C0,0(α, β)
√

2 C0,∞(α, β) 0
√

2 C∞,0(α, β) C+(α, β) 0
0 0 C−(α, β)

(6.15)

=

(
C+(α, β) 0

0 C−(α, β)

)
,

C±(α, β) = C∞,∞(α, β) ±C∞,−1/2(α, β) .(6.16)

The 2 × 2-matrix C+ and the 1 × 1-matrix C− inherit the properties of C in (2.3) of
[BFM].

6.6. Further computations.

(6.17)

U P V(α, β) V(α, 1 − β)−1 C(α, β)U−1

= P V(α, β) V(α, 1 − β)−1
(
C+(α, β) 0

0 C−(α, β)

)

=


0 0 0

√
2XC∞,0 XC+ 0

0 0 XC−

 ,
with

(6.18) X = X(α, β) = v(α, β) v(α, 1 − β)−1 ,

as in (2.4) in [BFM]. Hence

(6.19) U W(α, β)−1 U−1 =


1 0 0

−
√

2XC∞,0 1 − XC+ 0
0 0 1 − XC−

 ,
and

(6.20) U W(α, β) U−1 =


1 0 0

√
2XC∞,0

1−XC+

1
1−XC+

0
0 0 1

1−XC−


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This leads to

(6.21)

U D(α, β) U−1

= V(α, 1 − β)−1
(
C+ 0
0 C−

) 
1 0 0

√
2XC∞,0

1−XC+

1
1−XC+

0
0 0 1

1−XC−


= V(α, 1 − β)−1


C0,0 +

2XC0,∞C∞,0
1−XC+

√
2C0,∞

1−XC+
0

√
2C∞,0 +

√
2XC∞,0C+

1−XC+

C+

1−XC+
0

0 0 C−
1−XC−

 .
The element in the upper left corner is

C0,0 − X det C+

1 − XC+

=
C0,0 − X(C0,0C+ − 2C2

0,∞)

1 − XC+

,

where we use the equality C0,∞ = C∞,0, proved in §3.6 in [BFM]. We arrive at

(6.22) U D(α, β) U−1 =


C0,0−X det C+(α,β)

1−XC+

√
2 C0,∞

1−XC+
0

√
2 C∞,0

ṽ(1−XC+)
C+

ṽ(1−XC+) 0
0 0 C−

ṽ (1−X C−)

 ,
with ṽ = v(α, 1 − β).

Under the conjugation D(α, β) 7→ UD(α, β)U−1 the matrix element in the upper
left corner does not change. This gives equation (2.6) in [BFM].

7. Singularities of the extended scattering matrix

Fact F4 in §2 of [BFM] concerns a singularity of the extended scattering matrix
on the central line 1

2 + iR for the unperturbed character, α = 0. It states that such
a singularity leads to a zero of the unperturbed Selberg zeta-function Z(0, ·), and
cannot occur at (α, β) =

(
0, 1

2 ).
The proof of this fact, as briefly sketched in §3.5 of [BFM], shows that if C is

singular at (0, β0) with β0 ∈
1
2 + i[0,∞) then the space Maass0(0, 1

2
)

is non-zero.
Now we can use a) in §3.3 of [BFM]. By [Hu] we know that Maass0(0, 1

2
)

= {0},
hence β0 ,

1
2 .

First we give the reasoning in the case that β0 ∈
1
2 + iR. By the functional

equations in §6.1 it suffices to consider β0 ∈
1
2 + i(0,∞). In this case the functions

(α, β) 7→ µ(α, β) and (α, β) 7→ µ(α, 1 − β) form a basis of W(α, β) for all (α, β) in a
neighborhood of (0, β0) in C2.

So if the extended scattering matrix is singular at (0, β0) at least one of the com-
ponents of the vector Eis =

(
E0, E∞, E−1/2) has a singularity at (0, β0). There are

non-zero holomorphic functions ψ on a neighborhood of (0, β0) in C2 such that
ψ · Eis is holomorphic on a neighborhood of (0, β0). We choose ψ minimal with
respect to divisibility in the germ of holomorphic functions at (0, β0) to have ψ ·Eis
not identically zero along the zero set of ψ. Since β 7→ Eis(0, β) is holomorphic at
β0 the zero set of ψ intersects {0} × C discretely. In such a situation §12.1 of [Br]
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shows that we have a “local curve” through (0, β0) along the zero set of ψ: this is a
map w 7→

(
wp, β0 + h(w)

)
, with p ∈ N and h holomorphic on a neighborhood of 0

in C, h(0) = 0, such that w 7→ ψ
(
wp, β0 + h(w)

)
is identically zero.

Thus, f(w) := (ψ ·Eis)
(
wp, β0 +h(w)

)
defines a holomorphic family of vectors of

automorphic forms on a neighborhood of 0 in C, with values in A
(
wp, β0 + h(w)

)3.
It is not the zero family, by the minimal choice of ψ. It may have a zero at w = 0.
However, there is k ∈ Z≥0 such that the principal part

f0 := lim
w,0

w−k f(w)

is a non-zero element of A
(
0, 1

2
)3

= Maass
(
0, 1

2
)3. We have

Fwpf(w) = 0 ·m
(
wp, β0 + h(w)

)
+ m

(
wp, 1 − β0 − h(w)

) (
ψC

)(
wp, β0 + h(w)

)
.

So the three Fourier terms of order 0 of any component of f0 are multiples of
µ(0, 1−β0; z) = y1−β0 . Hence these components are not in the linear space spanned
by the Eisenstein series Eξ

0(β0), since µ(0, β0) occurs in their Fourier term Fξ
0Eξ

0(β0).
The Maass-Selberg relations, as discussed in, e.g., §4.6 of [Br], induce a non-
degenerate bilinear form on the space Maass(0, β0)/Maass0(0, β0); the Eξ

0(β0) in-
duce a basis of this space. So f0 is a cusp form. This is what we want.

In the case β0 = 1
2 the µ’s do not give a basis of W

(
0, 1

2
)
. We use the family λ

given by

λ(α, β; z) =
µ(α, β; z) − µ(α, 1 − β; z)

2β − 1
for β , 1

2 . It extends as a holomorphic family on a neighborhood of
(
0, 1

2
)

in C2,
with value y1/2 log y at (α, β) =

(
0, 1

2
)
. The functions λ(α, β) and µ(α, 1 − β) form

a basis of W(α, β) for all (α, β) in a neighborhood of
(
0, 1

2
)
. See, e.g., Lemma

7.6.14 i) in [Br]. With

(7.1) l(α, β) =

λ(0, β) 0 0
0 λ(α, β) 0
0 0 λ(−α, β)


and m(α, β) as in (6.3) we have

(7.2) FαEis(α, β) = (2β − 1) l(α, β) + m(α, 1 − β)
(
I + C(α, β)

)
.

The family of matrices β 7→ I + C(0, β) is holomorphic at β = 1
2 , and is the zero

matrix at β = 1
2 , as we see from the explicit expression for the scattering matrix

in equation (2.1) of [BFM]. So F0Eis(0, β) tends to zero as β → 1
2 . Proposition

10.2.14 implies that then also Eis(0, β) tends to the zero vector of automorphic
forms. We consider then

(7.3) eξ = lim
β→1/2

1
2β − 1

Eξ
0(β)

(
ξ ∈

{
0,∞,− 1

2
})
.

This gives three Maass forms in Maass
(
0, 1

2
)

with Fourier terms of order zero of
the form

(7.4) Fη
0eξ(z) = δη,ξ λ

(
0, 1

2 ; z
)

+ cη,ξ µ
(
0, 1

2 ; z
)

=
(
δη,ξ log y + cη,ξ

)
y1/2 .
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Hence the eξ span a three-dimensional subspace of Maass
(
0, 1

2
)
, which is all of

Maass
(
0, 1

2
)

by the Maass-Selberg relations and Huxley’s eigenvalue estimate in
[Hu], which implies that Maass0(0, 1

2
)

= {0}.
The extended scattering matrix C, and hence I+C, might still have a singularity

at
(
0, 1

2
)
. We proceed as in the case β0 ∈

1
2 + i(0,∞), now however with the

basis λ(α, β), µ(α, 1 − β). This leads to a non-zero vector of Maass forms f0 ∈

Maass
(
0, 1

2
)3 for which all Fourier terms of order zero are multiples of µ

(
0, 1

2 ; z
)

=

y1/2. It cannot be expressed in the basis {eξ}, which gives a contradiction to what
we arrived at in the previous paragraph.
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