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Abstract

We study the asymptotic behavior of zeros of the Selbergfogtetion
for the congruence subgrotijg(4) as a function of a one-parameter family
of characters tending to the trivial character. The maiivafor the study
comes from observations based on numerical computationme Sf the
observed phenomena lead to precise theorems that we prdveoarpare
with the original numerical results.

Introduction

This paper presents computational and theoretical resofiserning zeros of the
Selberg zeta-function. The thesis [Fr] shows that it is fipsgo use the transfer
operator to compute in a precise way zeros of the Selbergwetéion, and carries
out computations foFg(4) for a one-parameter family of characters. The results
show how zeros of the Selberg zeta-function follow curveth@ncomplex plane
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parametrized by the character. In this paper we observeagigenomena in the
behavior of the zeros as the character approaches thé ttiaeacter. Motivated by
these observations we formulate a number of asymptotittsdsuthese zeros, and
prove these results with the spectral theory of automorfirims. These asymp-
totic formulas predict certain aspects of the behavior efzbros more precisely
than we guessed from the data. We compare these predictitimshe original
data. In this way our paper forms an example of interactidwéen experimental
and theoretical mathematics.

In [Se90] it is shown that for the groupy(4) and a specific one-parameter
family of characters, the Selberg zeta-function not only t@untably many zeros
on the central line R@ = % but has also many zeros in the spectral plane situated
on the left of the central line, the so-called resonancesh Bpes of zeros change
when the character changes. As the character approacht#viddecharacter the
resonances tend to points on the IinesBF&-e% or Res = 0, or to the non-trivial
zeros ofZ(28) = 0, so presumably to points on the line Re %. Many of these
zeros have a real part tending-too as the parameter of the character approaches
other specific values.

In this paper we focus on zeros on or near the central ling Re%, and
consider their behavior as the character approaches viad tiharacter.

In Section 1 we describe observations in the results of thepotations. We
state the theoretical results, and compare predictiorts thé observations in the
computational results. The approach of Fraczek is baseteonge of a transfer
operator, which makes it possible to consider eigenvaluesrasonances in the
same way. See [F§7.4].

In Section 2 we give a short list of facts from the spectrabtii@f automorphic
forms, and give the proofs of the statement§in

In Section 3 we recall the required results from spectrabpheapplied to the
groupI'p(4). Not all of the facts needed §? are readily available in the literature,
some facts need additional arguments in the present situafihe spectral theory
that we apply uses Maass forms with a bit of exponential diattthe cusps. In
this way it goes beyond the classical spectral theory, wb@tsiders only Maass
forms with at most polynomial growth. We clo§8 with some further remarks on
the method and on the interpretation of the results.

We thank the referee for his remarks and suggestions. Theé&msed author
thanks D. Mayer for several invitations to visit Clausthatlahanks the Volkswa-
genstiftung for the provided funds.



1 Discussion of results

The congruence subgroiiig(4) consists of the elemen}§§ | € PSLo(Z) with ¢ =
0 mod 4. By 2 §] we denote the image in PG(R) of (25) € GLa(R). The group

I'o(4) is free on the generato[ ﬂ and[_ﬁ]. A family @ — y, of characters
parametrized by € C modZ is determined by

N Y ] S

The character is unitary if € R modZ. This is the family of characters &% (4)
used in [Fr]. See especial§§.5. Up to conjugation andlerences in parametriza-
tion, this is the family of characters considered in [Se$&], and in [PS92] and
[PS94].

For a unitary characterof a cofinite discrete groupthe Selberg zeta-function
Z(T', x;-) is a meromorphic function o€ with both geometric and spectral rele-
vance. As a reference we mention [He83, ChaptegZand§5]. One may also
consult [Fi], or [Ve90, Chapter 7].

The geometric significance is clear from the product reptasien

ZCx:p) = [ ] |@-xne® ) (Rep> 1), (1.2)

k=0 {y}

wherek runs over integers angdover representatives of primitive hyperbolic con-
jugacy classes. BY(y) is denoted the length of the associated closed geodesic.
This geometric aspect is used in the investigations in [Bylmeans of a transfer
operator, Fraczek is able to compute zeros of the Selbeagaettion forT'o(4) as

a function of the character,.

Via the Selberg trace formula, the zeros of functioff’, v;-) are related to
automorphic forms. This is the relation that we use in Seseti® and 3 for our
theoretical approach.

We denote by («, 8) the Selberg zeta-functigh— Z(I'o(4), x.;B) for a € R.

We consider its zeros in the region Bn- O.

For each value ofr € R the zeros oZ(«, -) form a discrete set. In Figure 1
we give the non-trivial zeros d(a, -) in the region [01] x i[0, 10] in thes-plane
for the trivial charactero = 0, [Fr, Table D.1], and the nearby value = 1—10
(interpolation of data discussed in [R8.2]). In the unperturbed situation,= O,
the zeros to the left of the central line, tresonancesare known to occur at the
zeros of¢(28), of which only one falls within the bounds in the figure. Teare

also zeros at point éz with ¢ € Z.



Figure 1: Zeros of the Selberg zeta-functiofa, -) = Z(y,, -) in the region [01] x
i[0, 10] of the spectral plane. On the left fer= 0, on the right forx = 1_10-



We call zerog3 of Z(«, ) = 0 with Reg = % eigenvaluesalthough we will see
in §3.3 that8— 82 qualifies better for that name. The lowest unperturbed gaaa
is.5+3.70331. Perturbation ta = 1—10 gives a more complicated set of zeros, many
of which are eigenvalues.

In [Fr, §8.2] itis explained how zeros are followed as a function efggarame-
ter. They follow curves that either stay on the central lorenove to the left of the
central line and touch the central line only at some pointaicEek has prepared
animations of the zeros gf— Z(«, ) as a function otr. See

http://homepages.warwick.ac.uk/staff/M.Fraczek/character.html

The computations for [Fr] were done with the author’'s ownkages. See
Appendix A "Project Morpheus” irloc. cit. The comparison of the theoretically
obtained asymptotic formulas with the data has been caaigdvith [Pari] and
[Sage]; for some of the pictures we used Mathematica.

1.1 Curves of eigenvalues

To exhibit curves of zeros of the Selberg zeta-function encéntral line Rg = %

we plot Img as a function ofr. The curves in Figure 2 were obtained in [Fr] by
first determining for the arithmetical cases: {3, 7. 3, 3} all zeros in a region of
the form% +i[0, T]. Here we display only those zeros which stay on the central
line ReB = % The computations suggest that all these zeros godc% asa | 0,
along curves that are almost vertical for small values.dDur first result confirms

this impression, and makes it more precise:

Theorem 1.1. For each integer k= 1 there are(y € (0, 1] and a real-analytic map
7k 1 (0, 4k) — (0, 00) such that Za, 5 + it(e)) = Ofor all e € (0, &).
For each k> 1

nk k2
“log2a/a) | O((Iog a)3)

So the theory tells us that there are infinitely many curveseods going down
asa | 0, and that for each curve the quantity " Im 8 log ”ZT“ tends to an integer.
In Figure 3 we plot this quantity against(on a logarithmic scale), and obtain the
integers 1-19 as limit values. This nice agreement condinsghat our numerical
and analytical results confirmed each other. The theorems doestate that all
zeros of the Selberg zeta-function on the central line ootthiese families. The
spectral theory of automorphic forms allows the possipifitat there are other
families.

Figure 2 shows also a regular behavior near many parts oretiieatline. By
theoretical means we obtain:

() = asa | 0. (1.3)



12

10 -

Figure 2: Zeros oZ(a, ) with 0 < @ < 1, 8 € 3 +i(0, 10). Horizontal:e; vertical:
Img.
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Figure 3: On the vertical axis the quantityr™Im g Iog”zT“ is given for those
curves in the data set of [Fr] for whighgoes to% along the central line as | 0.
The horizontal axis gives on a logarithmic scale. S@ | 0 means going to the
left in the graph.



Theorem 1.2. Let | c (0, ) be a bounded closed interval such that the interval
% + il on the central line does not contain zeros of the unperdriselberg zeta-
function 40, -).

Letfort>0

o 2 -1 4(—2it)) (L.4)

1
e-G+10 = arg(" 212t _1 7(2it)

with ¢ the Riemann zeta-function, be the continuous choice of ifiaraent that
takes the valuéfor t = 0.

For all sufficiently large ke Z there is a function @: I — (0, 1) inverting on |
the functionry of the previous theorenry(ax(t)) = t for t € 1. Uniformly fort e |
we have

ak(t) _ ﬂ—le‘p,(1/2+it)/2t+7rk| /2t e—nk/t (l + O(e—ﬂk/t)) (k N OO) i (15)
for some ke Z.

The theorem gives an assertion concerning the behavioeaitos on the cen-
tral line at given positive valugsof Im 3, and describes the asymptotic behavior as
the parametek from the previous theorem tendsda To compare this prediction
with the data we determine by interpolation the vadyé) for the curves used in
Figure 3. The theorem predicts that

k B e-(1/2+it) 7r_k|

— —rk/t
t - S+ 0E™ ). (1.6)

log(ma(t)) +
We used the data for the curves with<lk < 19 to compute an approximation
of the quantity on the left in (1.6). We consider this as a ot R'°, with co-
ordinates parametrized by and project it orthogonally on the line spanned by
(L 1,...,1) with respect to the scalar produst ) = 3+2; k2% yk, and thus ob-
tain approximations ofk; /2t, which are given in Table 1.

t: 1 2 3 4 5 6 7 8 9
-2.000 -2000 -2.000 -2.000 -2.000 2000 2000 4015 1017

Table 1: Approximation ok, in (1.6).

Figure 4 illustrates the approximation kffor more values of between @5
and 900. The intervals in the theorem should not contain zeros of the unperturbed
Selberg zeta-function. Actually, the proofs will tell usitmot all unperturbed zeros
are not allowed to occur in only those associated to Maass cusp forms that are odd
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Figure 4: Approximation ok, fort € (0,9] N %Z. The vertical lines indicate the
position of the unperturbed odd eigenvalues (from [Fr, @dhll]).

for the involution induced by — z/(2z- 1). We have indicated the corresponding
t-values by vertical lines in Figure 4.

The computational results suggest thgaits even. We have no clear theoretical
explanation of this observation.

1.1.1 Avoided crossings.

If one looks at the graphs of the functionsin Figure 2 (ignoring the coloring) it
seems that the graphs intersect each other. In the enlangj@émieigure 5 most of
these intersections turn out to be no intersections afitethis is the phenomenon
of avoided crossingthat is known to occur at other places as well; for instance in
the computations in [Str]. In the computations for [Fr] caras taken to decrease
the step length whenever curves of zeros approached eash aithall cases this
indicated that the curves of zeros do not intersect eactr.offteeoretically, we
know that no intersections occur for the zeros moving aldwegcentral line in the
region indicated in Lemma 2.8.

In Remark 2.10 we will discuss that for some of the- 0 with Z(0, % +itg) =0
there may be a curve throughin the (, t)-plane such that, () is relatively small
for the value ofx for which the graph of intersects the curve. We show this only
under some simplifying assumptions formulated in Projmsi2.9.

9



Figure 5: Enlargement of a subregion in Figure 2. Zerag(af8) with 0 < a < %
Bei+i(7.1,86).
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1.2 Curves of resonances

The zeros of(«, B) with 8 to the left of the central line are morefiiicult to depict,
since they form curves in the three-dimensional setagB)Y with a € (0, 1) and
peC.

Figure 6 gives a three-dimensional picture. We see one ¢y horizontal
plane, corresponding to Igh= 0. In this paper we do not consider real zeros of
the Selberg zeta-function. Many curves originatedot 0 fromg = % and move
upwards in the direction of increasing values ofAmOn the right we see also a
few more curves that wriggle up starting from higher valuesrog.

In Figure 7 we project the curves onto thglane. In this projection we cannot
see thex-values along the curve. We see again the curves startjig a} Many
of them seem to touch the central line at higher values @8.Irithe curves that
start higher up are not well visible in this projection.

We can confirm certain aspects of these computational sebultheoretical
results. We start with the behavior of the resonances (@eéy.

Theorem 1.3. There arezsq, £, €3 > 0 such that all(a, 8) that satisfy Za,5) = 0,
a € (0, &q], % —e2<Rep < % andO < Im B < &3 occur on countably many curves

t > (ak(t), ok(t) +it) O<t<ey),

parametrized by integers k 1. The functionsy, and o are real-analytic. The
values obry are in[3 — &5, 3). For each k> 1 the map is strictly increasing and
has an inversecton some intervaf0, /] c (0, £1]. Asa | O we have

nk 1
f = O 1.7
(@) |log n2a| " (llogﬂza/l“)’ (2.7
1 2(rklog 2y 1
tid@)) = 2 |logn2a? (llogﬂzal“)' (1.8)

The theorem confirms that there are many curves of resondmaeapproach
the point (O%) almost vertically asr | 0. To check this, one may consider the
three quantities

ki(a, ) = \/(% — Rep) | logn2al3/272(log 2%,

ko(a,B) = %|I0g(7r2cx)|lm,8, (1.9)
_ 2(log 2F (ImB)®

k3(a,’ﬁ) - ﬂ(% _ Reﬂ)

11



Figure 6: Zeros with Rg < % a > 0, in a 3-dimensional graph. On the vertical
axis Img runs from O to 10. The ‘horizontal’ axis running to the lefves the
coordinater € (0, %), and the *horizontal’ axis to the right gives Re (—%, 1).

12
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file name

Co,1

Co,2

Co,3

datan4-deform-S6.cfh
datgn4-deform-S8.cfy
datgn4-deform-S7.cfy
datan4-deform-S1-1.cd
datan4-deform-S3.cfh
datan4-deform-S16.cd
datan4-deform-S19.cb
datan4-deform-S23.cb
datan4-deform-S26.cd
datan4-deform-S11.cd
datan4-deform-S34.cd
datan4-deform-S43.cb
datan4-deform-S38.cd
datan4-deform-S46.cd

1.00000095599
1.99992137807
2.99968426317
3.98471080167
4.97736802384
5.99987178401
6.9671815617
8.10285518359
9.04510381727
10.1363876464
11.4927014007
11.9413495934
13.3191668844
14.0431747756

1.00000017452
2.00000702519
2.99999059707
3.99973024917
4.99941134657
5.99996232684
6.99744815359
7.99040140315
8.99230508624
9.9901573178
10.9860234485
11.9959052883
12.988532992
13.993197026

0.99999958137¢

2.00002268168
3.00014897712
4.00794474117
5.01294455984
6.00002349805
7.03093500105
8.02661700448
9.04177665474
10.0254416847
10.9219590835
12.0661799032
12.9785198908
14.0160494173

D

Table 2: Least square approximation of the lintgg of the quantities; in (1.9).
(The first column refers to the naming in [Fr] of the curves efas.)

which should each approximate the “re&lasa | 0. A graphical approach does
give less satisfactory results than those in Figure 3. Thgeaf values ot for
which we have data seems not to approachflicently closely to draw definite
conclusions concerning the limit behavior. In a non-graghapproach we approx-
imate the limit value by finding the céiecients in a least square approximation

C[’j
|log et

Ki(@B) ~

=

4
(1.10)

0

over the 500 data points with lowest valuesrain each of the curves of resonances

going to(0, %). The codficient ¢y ; should be an approximation of the limit. The

data are in Table 2. This gives a reasonable confirmation(ih@} and (1.8) de-

scribe the asymptotic behavior of the data. We also expaitisdewith direct least

square approximation of the déieients of the expansion ¢f(a) andok(tk(@)) as

a function of —= The results from the approximation of(tk(a)) were less

e llogn2al™
convincing than those in Table 2.

The next result concerns curves higher up ingh@ane.

Theorem 1.4. Let | be a bounded interval i(0, o) such that{0} x (3 + il ) does
not contain zeros of the unperturbed Selberg zeta-fun&ion.).
There are countably many real-analytic curves of resonamtehe form

ts (a(), o) +it)  withtel,

14
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Figure 8: Approximation ok, for t € (0,9] N %Z. The vertical lines indicate the
position of unperturbed even eigenvalues (from [Fr, TahlE)D

parametrized by integers ¥ k; for some integer K Uniformly for t e | we have
the relations

ay(t) = L eparzein/at gonig (1+ 0(})) , (1.11)
T k
% — o) = %( M(% +it) + o(k—12), (1.12)

as k— oo, where M1/2 + it) and A1/2 + it) are the real and imaginary part of a
continuous choice of

2it (oL 2it £(=2it)

If we would use a standard choice of the argument the fundiierould have
discontinuities. The parametkiis determined by the choice of the branch of the
logarithm. The theory does not provide us, as far as we sea@yaavrelate the
numbering of the branches forfiérent intervald .

We compare relation (1.11) with the data files in the same sayeaused for
Theorem 1.4. The theorem says that the relation holds foesdroiceA of the
argument. We picked a continuous choice. Then we expectar & /! in (1.11)
with k; constant on intervals as indicated in the theorem. Thissl¢adrigure 8.
The functionM in (1.12) has the simple fort(1/2+it) = log|[21+2* - 1. Figure 9
gives this function and the approximation of it based on2)l.Figures 8 and 9
show diferences that we do not understand well.

In Figure 7 it seems that @t ~ % + 4.5i many curves touch the central line.
Moreover, relation (1.12) suggests that there are infinitebny curves that are

15



Figure 9: The functiont — Iog|21+2it - 1| and its approximation based on (1.12).

tangent to the central line at the poir%t$ &f with £ € Z. In Figure 7 there seems
to be a common touching to the central lin@at %+9.0i as well. Figure 10 gives a

closer few at the resonances ngas %+ & for curves computed in [Fr]. Thereis

no common touching point, but a sequence of tangent poilpm)aphing% + @
See [Fr, Conclusions 8.2.32 and 8.2.33] for a further disioms Concerning this
phenomenon we have the following result:

Theorem 1.5. Suppose that an interval | as in Theorem 1.4 contains in teiior
apointt = % with an integerf > 1. Then there is k> ki such that for each
k > ko the curve t— o(t) + it in Theorem 1.4 is tangent to the central line in a
point 3 + it, + idk € 3 +il, and thesy satisfy

S = %ef\(l/sz)/tf o2k /te (1+O(k‘1)), (1.13)

for somen, € R. The function A is as in Theorem 1.4.

We do not get information concernimg from the theory. [Fr, Table 8.8] gives

approximated tangent points ne}af @ In Figure 11 we give the corresponding
approximations of logs.

Remarkl.6. Theorems 1.1-1.5 have been motivated by part of the obsmrgaif
Fraczek. In the next sections we present proofs that do metrakon the compu-
tations. The comparisons of the theoretically obtainedrgégtic results with the
computational data is in some cases convincing, and shothér cases discrep-
ancies that we do not understand fully.

Remarkl.7. Figure 6 shows curves of resonances that do not app;@acl% as
a | 0. One of these curves is depicted in Figure 12, with an eshaeyt of the part

16
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4.6 :777777 7
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4.56 |~ 7
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Figure 10: Enlargement of part of Figure 7 nga¢ % + &

0.2

-04fF

-0.61-

Figure 11: Approximation of» in Theorem 1.5 forf = 1, based on [Fr, Table 8.8].
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Figure 12: Curve of resonances starting at % +i5.4173. Values ofyr are given
in red.
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5.4184 -

5.4182

5.418 |-

5.4178 -

5.4176 -

5.4174

5.4172 - 4

5417 I I I I
0.498 0.4985 0.499 0.4995 0.5

Figure 13: Enlargement of the initial part of the curve inl¥ig12.

with small values ofr in Figure 13. The suggestion is that this curve forms loops
that repeatedly touch the central line.

We cannot prove that this type of behavior is bound to happeRroposition
2.20 we work under a number of assumptions, and then can p@ve of the
properties that can be seen in the data.

2 Proofs
In this section we prove the theoretical results state$llinThe ingredients from

the spectral theory of automorphic forms that we use aredatesing matrix and
a generalization of it.
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In §2.1-2.2 we summarize the facts we need§2r3—2.5 we prove the results
in §1.

2.1 Facts from spectral theory

We will need a restricted list of facts from the spectral tiyewf automorphic forms.
Table 3 gives a reference to a further discussion.

In the spectral theory of automorphic forms gwattering matrixplays an im-
portant role. For the unperturbed situatier= O it is explicitly known:

2% 1-2v¥ 12V
Co(B) = 1 AMB-D _m gz g : (2.1)
2% -1 A(Z:B) 1- 21—2,8 1- 21—2,8 21—2,8

whereA(s) = 77521 (s/2) £(s) is the completed Riemann zeta-function.

Fact 2.1. The zeros of @, -) in the regionReg < % andIm g > 0 are the values at
which one of the matrix elements of the scattering maghas a singularity.

The occurrence af(28) in the denominator of the matrix elements explains the
zeros ofZ(s,-) with Reg = %. The factor (¥ — 1)~! produces zeros on the line
Reg = 0.

The scattering matrix in (2.1) can be embedded in a meronmfpmily of

matrices
Coo(@.8)  Cowl(a.p) Co.o(@, B)

C(a,p) = [Cow(@.f) Cuwl(@,p) Cow-172(c,p) (2.2)
Co,oo(a’,ﬂ) Coo,—l/Z(a’ﬂ) Cw,w(a’aﬂ)

of 3 x 3-matrices orlJ x C, whereU is a neighborhood of«1,1) in C. We call
it the extended scattering matritts construction depends on functional analysis,
and is far from explicit. We will use its properties in 2.362.

The columns and rows are indexed byxﬁ)and—% (representatives of the cusp-
idal orbits ofT'g(4)). If all symmetries visible in the matrix in (2.1) wouldsdppear
under perturbation, there would be ninéeient matrix elements. However, some
of the symmetries survive perturbation

Fact 2.2. The extended scattering matrix satisfies the symmetrigsated by the
coinciding matrix entries irf2.2).
Fact 2.3.The restrictiond — C(0, 8) exists and is the scattering matgx— Cy(B)
in (2.1).

We note that a meromorphic function,8) — f(a,) on an open set of?
may have a singularity at(, 8¢) that is not visible as a singularity gf— f(ag,f).

20



(Consider for instancé(a, 8) = j—;ﬁ at (0 0).) Such singularities are said to be of
indeterminate type

Fact 2.4.Letgg € % +i[0, ). If the extended scattering matrix has a singularity
at (0, 80), then Z0,80) = 0 andpo # 3.

In (2.1) we see that such a singularity has necessarily enchate type.
There are functional equations:

Fact 2.5.We have

C(_a/’ﬁ)
C(a,1-p)

C(a’ﬂ)t > C(a/’ 1 _B) = C(aaﬂ)_l )
(Cle.p)™.

as identities of meromorphic families of matrices ox\C.

For the perturbed situation there is also a scattering ‘irfatvith size 1x 1.
Unlike the scattering matrix far = 0, we have no explicit formula for it. However
it can be expressed in the matrix elements of the extenddksng matrix.

Fact 2.6. Let X, C, and C_ be the meromorphic functions on,tk C, with U, =
{e¢ €U : Rea > 0}, given by

(2.3)

(VTG - AT - 3) (2.9
Coo,00(@: B) £ Coo,-1/2(, B) - (2.5)

X(a. )
Ci (a/’ ﬁ)

The meromorphic function

Coola, B) — X(a, B) (Coo(a. B) Ci(a. ) — 2Com(, B)?)
1- X(a/’ ﬂ) C+ (a/’ﬁ)

on U, x C, has a meromorphic restriction [Xo the complex linga} x C for each
a € (0,1).

For @ € (0,1) the zeros of the Selberg zeta-functiowZ3) with Img > 0
satisfyReB < 1. Those of these zeros that satiBfgs < % are the values of at
which D,(B) has a singularity.

We note that the existence of the restrictiondpx C is a non-trivial assertion.
It says that the meromorphic functiddy o has no singularity along this complex
line.

Fact 2.7.1f C_ is holomorphic af. ) € (0,1) x (3 +iR) and

X(@.f)C-(a.p) = 1,

Doo(a.B) = (2.6)

then Za,B) = 0.
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(2.1) [Hus4] 2.4 §35
2.1 §3.3 2.5 §3.1
2.2 (3.6)and3.6 | 2.6 §3.2 ands3.3
23 §3.1 2.7 §3.4

Table 3: The places i§i3 where a reference or a proof is given for the fact$dri.

2.2 The extended scattering matrix

The functional equations in 2.5 imply th@{a, 8) is a unitary matrix ifa € (-1, 1)

andg e % + iR. This implies that ifeg € (-1,1) then the matrix elements of
C(ao,B) are bounded. So the restrictign— C(ag, 8) cannot have singularities on
the line{ag} x (% + iR) as a function of the variablg. Nevertheless, the matrix

elements can have singularities ap,(80) with Regg = % as functions of the two
complex variablesd, B).
The extended scattering matrix can be partly diagonalized:

1
+
UCU‘lz(% g) u=10
_ o _

2.7)

ﬁll—\&l“ o
Slsl- o

ct = Coo V2Co
\/EC0,00 C+ .

For (@.B) € (-1,1) x (3 +iR) the matrixC*(e. 8) is unitary, andC_(a.8)| = 1.
The functional equations in 2.5 imply similar relations @¥. Fora = 0 we have

21-28 V2(1-21-%) 0
B A28 -1 21 2%_1
veput - M e L o | e
0 0 22(1-B) _1
2251

2.3 Curves of eigenvalues

For curves of eigenvalue se., zeros of the Selberg zeta-function that stay on the
central line, the fact 2.7 is important.

Lemma2.8. There is a simply connected set& (0, 1) x (% +1(0, )) in which C_
has no singularities. For each bounded intervat [0, o) there isg; c (0, 1) such
that(0,&)) x (3 +il) c S..
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Proof. If f andg are non-zero holomorphic functions on an open subset C?
without common factor in the ring of germs of holomorphicdtians atp € U then
their null sets intersect each other in an analytic subskl tifat has dimension 0O
nearp. (|[GR, Chap. 5§2.4] implies that the null sets have dimension Jpatlf
their intersection would also have dimension Jathen any prime component of
this intersection in the Lasker-Noether decompoasition [@R/9] would be given
by a common factor of andg in the ring of germs ap.) So the quotientf /g
can have singularities of indeterminate type only at a digcset of points itJ.
Applying this toC_ the set of points to avoid is discrete [i©, %] X (% + [0, o0)).
Lett, = maxl. We takeg| equal to the minimum of the for which (@, 8) is one
of the finitely many points of indeterminacy 6 in (0, 1] x (3 +i[0,t]). O

We consider the equatiohC_ = 1in 2.7 in the se§_. The function

rg-3) 1

I'(3 - p) C-(a.p) (9)

Y (.p) =

is holomorphic at all points 0&_, and has absolute value 1 at the pointsSof
The equatiorX C_ = 1 onS_ is equivalent to

(r)* ™t = Y (a.p).

We can choose a continuous argum@nta, 8) of Y_(a,8) on S_, since this set
is simply connected. The function@_ may have singularities (of indeterminate
type) at points of0} x (% + iR). If that occurs then the continuous extensioof

to {0} x (% + iR) minus the points where/C_ is singular does not have a constant
difference with a continuous argument of

2L+2t _ q é«(_zlt)

21-at 1 [(2it) -

1 . i
Y05 +1t) = ot
See (2.1). From 2.4 we see théatis holomorphic at (O%). It has value 1 at (,021).
We normalizeA_ such that its continuous extension has value Oa%)(O\Ne find
the Taylor approximation
1 . 4
A (a, S+ it) = 2tlog— + O(t?) + O() as @, t) - (0,0). (2.10)
T
With this preparation, we can reformulate the equakdb. = 1inS_ as
1 .
2t logra = A (a, > +it) — 27k, (kez). (2.11)

We have writteng =  + it.
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Proof of Theorem 1.1The formulation in (2.11) shows that the solution set of
X C_ = 1in S_ is the disjoint union of componentg,, parametrized by the in-
tegerkin (2.11).

We takes; > 0, &2 > 0 such thaQ = (0,1) x (3 +i(0.£2)) ¢ S_ and such
that|A_| < m on Q. In the course of the proof we will impose a finite number of
additional conditions og; andes.

Equation (2.11) implies that for(  + it) € Vic N Q we have

e—(C+7rk)/t C—-nk)/t

< na < €
for someC < %. On the basis of this first estimate we proceed more precigaty

obtain
2

2tlog % = 27k + O(t?) + O(a) = —2rk + O(t?), (2.12)

and conclude 4
o = ™ (1+0(). (2.13)
T

If k < 0 this does not allow small values effor t € (0, £2). Hencek > 1.

To show thatvx N Q is the graph of a function, we apply the implicit function
theorem. The seY is the level set-(e,t) = —2xk of the functionF(«,t) =
2tlogra — A_(, 3 + it), with derivatives

oF 2t oF o
% = E+O(1), E = 2logT+O(t)+O(a/)
So%E > 0and&: < 0 if we takee; ande, suficiently small. Sovk N Q is the
graph of an injective functionr — % + itk(@) on (Q &1). SinceF is a real-analytic
function, the analytic implicit function theorem showstthgis real-analytic. (See,
e.g, [KrPa, Theorem 6.1.2].)

From (2.12) it follows that forr € (0, £1), with g1 sufficiently small,

(@) = O(k/log(r?a/4)).

and then
-k + O 2
) = KOy - 7k (l+O(k2/Iog(7r2a/4)2)). (2.14)
log %+ —log 7+
This gives (1.3). O

Proof of Theorem 1.2Let| c (0, o) be an interval as in the theorem. Lemma 2.8
provides us withe; such that (Og|) x (% + il) c S_. Since{0} x (% + il) does not
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contain singularities o€_ the functionA_ is continuous and hence bounded on
[0, &1] x(% + iI)forO< £1<¢g.
The graphr is the level curvé= = —2rk of the function

F(a,t) = 2t logrna — A_(a,% +it), (2.15)

and hence the graphsnffor different values dt do not intersect each other$a.
The asymptotic relation (1.3) shows tha{a) < 7y, (@) if k < k; for suficiently
smalla. Since the graphs have no intersections this relation sspved throughout
the intersection of the domains of andry,. The Selberg zeta-function is not the
zero function, the eigenvalueg(e;) form a discrete set, with only finitely elements
under maxt. We takek(e;) such thatrg(e1) > maxl for all k > k(e1).

Taket € | andk > k(e1). The functionF is equal to—2rk along the graph of
7. We have lim o F(a,t) = —co, andF (e, t) is larger than-27k under the graph
of 7x. In particularFy(e1,t) > —2nk sincerg(e1) > maxl. Differentiation gives

iFk(a,t) = E + 0O(1).
da a

So the derivative ok — Fy(a, t) is positive fora € (0, 1] if we take e suficiently
small. So there is a uniqu(t) € (0, £1] such thatrg(ak(t)) = t. This functionay

invertstk onl.
F = -2nk
t /

&1 a

The estimate
2t logray(t) + 27k = A_(O, % +it) + O(a(t))
is uniform fort € I. It implies logax(t) = _ﬂTk + O(1) uniform fort e | and
k > k(e1), and hence
rat) = exp(—mk/t + A_(0,1/2 +it)/2t + OE™Y)).

The functiong_ in the theorem is continuous on [®). The argumen#&_(0, % +it)
differs from it by Zk, for some integer depending on the interval(More pre-
cisely, depending on the componentlah [0, «0) minus the singularities of_.)
This gives (1.5). O
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Avoided crossingFor (@,8) = (a/,% + it) in the setS_ in Lemma 2.8 the gradient

of Fis
2t/a

VF(e.t) = (2 logra

) - VA (a,1/2 +1it).
On the sets considered in Theorem 1.2 the gradienFLQ&,% +it) is O(1). If
t = 7¢(@), thenVF (e, B) is proportional tar, (), -1), and hence

2tet + O(1) B t
-2 logra + O(1)  «|logra

(@) = | (1+0O(1/logal)).
This confirms that the graphs of thgare steep for smait.

If we are near a singularity @@_ at (Q Bg) € {0} x (% + (0, oo) this reasoning
is no longer valid. In 2.4 we see that this can only occisifs an unperturbed
eigenvalue. Fordq, ) € S_ we havelC_(a, )| = 1. SoifC_ has a zero or a pole at
(@, ) near (05o) with « real, then R@ # 3.

It seems hard to analyze this precisely for a complicateglsamity. Hence we
work under simplifying assumptions.

Proposition2.9. LetBy = % + itg with o > 0. We assume that on a neighborhood
Q of (0, 80) in C2 the matrix element Cof the extended scattering matrix has the

form 55 (@)

— po — N
C@.f) = M) g—p—rs
where n and p are holomorphic functions on a neighborhoo@ iof C and A is
holomorphic onQ2 without any zeros. We suppose furthermore thi{@) & p(0) =
0, andRep”(0) # 0.

Then there areg > 0and ly > 1 such that for all k> kg there existsk € (0, £1]

such thatri(ak) = to + Im p(ax), and for theser, we have

(2.16)

T () = Imp'(ax) - %to Rep'(ax) + O(cxﬁ). (2.17)

Remark2.10 Suppose thgBg € % + (0, ) is an unperturbed eigenvaluee.,
Z(0,B0) = 0. Then it might be associated to a singularity apg) of the extended
scattering matrix, as in 2.4. This singularity might be viisias a singularity of the
codficientC_. For that case, the assumptions in the proposition seenstwibe
the most general situation. If these assumptions are satigfen there is the curve

Ks, - @ = (@, tg + Im p(a))

through (Qtp) such that the derivatives of the for all largek are relatively small
at the points where the graph of crosses the curvg,. (See also Remark 3.5
in §3.7.)
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Proof of Proposition 2.9.The assumption thaf_ has a singularity g8g implies

that the functionsp andn cannot be equal. From 2.5 and (2.5) it follows that
C_(a,pB) is even ina. This evenness is inherited by the zero set and the set of
singularities. Hencep andn are even functions. We also ha@ (a,1-8) =
C_(a,B)~L. This impliesn(a) = —p(@). For reala we write p;(¢) = Rep(e) and
pi(a) = Im p(a). Hence we have far € (0, £1) andt ~ tp:

11(1t) (=pr(e) +i(t - to - pi(e)))
I(=it) (pr (@) +i(t - to — pi(a)))

1 . 1 .
Y_((Y, E + |t) = /1(61’, E + |t)
So modulo 2Z:

1 .
A (a,= +it
(a,2+|)

2arg p(a) —i(t - to)) + O(1), (2.18)

where the term indicated by O(1) has also bounded deriwti®o the gradient
with respect to the variablesandt is

1 2p/(a)
VA (a, > +it) = O(1)+Im (p(“):'z(}“o)) . (2.19)
p(e)-i(t-to)
The functiona — F(a,to + pi(@)), with F as in (2.15), tends tec asa | O,
and has derivative

, 2(to + pi(@)) 2p'(a) -2,
2p{(a) logra + —Im o (@) —Im o (@ i (@) + O(1)
20+ 2pi(e) | —2p(@) + 2p(a) 2
= o + pr(a/) + O(l) = ; + O(l),

where we use thap(a) = O(e?) and p'(a@) = O(a) asa | 0, sincep is an even
function vanishing at 0. So there is an intervalgf) on whicha — F(a, to+ pi(@))

is increasing. Hence for all ficiently large integerk there arexy € (0, 1] such
that F(ax, to + pi(ak)) = —27k, and thenry(ak) = to + pi(ak).

We have Zry(ay) lograx = —2rk + O(1), since the argument in (2.18) stays
bounded in a neighborhood of,{8). So logray = %‘ + 0O(1) ask —» o, and
hencexy | O.

We have, again using(a) = O(e?) andp’(a) = O(),

1 2m(a) _ 2p' ()
VF(ak 5 + i) = (2 Igénak B lmp'(‘i(kgi )) +0(1)
Pr @k
2ty 2P (k)
:[agﬁmﬂ+oﬂj_
o O(logax)
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Since the graph ofy is a level curve ofF the gradientVF(ak,% + itk(ay)) is

orthogonal tc( ) We usep(e) = 3 p”(0)e? + O(@®) andp'(e) = p”(0)a +

1
T (k)
O(a?) asa — 0, and obtain:

2to/ak — 2 P (ax)/pr (k) + O(1)
- 2/pr(ax) + O(log ax)
—2tgak + 4ax P’ (0)/pf (0) + O(aﬁ)
4/p¢'(0) + O(erg log )

k(310 1 (0) + B'(0) + O@d) = p{(an) ~ () + Oe}).
(2.20)
O

71 ()

2.4 Curves of resonances originating a0, 1)

To find resonances far € (0, 1) we have to look for singularities of the scattering
“matrix” D, (B) in 2.6. If we work on a region where the extended scatteriagyis
has no singularities this means that we look for solutionX(ef, 8) C.(a,8) = 1
with the requirement that the resulting singularity@jo(a, 8) is not canceled by
a zero of the numerator in (2.6).

Proposition2.11 LetQ be a region in(0, 1)x {8 € C : Imp > O} that is invariant
under(a, B) — (a,1 - B) (reflection in the central line). Suppose that the matrix
C* in (2.7)is holomorphic on a neighborhood @&pin C2.

The denominator M= 1 — X C, in the expression for g in (2.6) vanishes at
(o, 1-p), if and only if the numerator N= Cg g — X (CQO C, - ZCS’OO) vanishes at
(. B).
Proof. The functionA = CooC, — 2C§’w is the determinant of the matri@*. It
follows from 2.5 thaC+*(e, 1 - B) = (C*(a, B)Y) X for (@, B) € Q. If Awould have a
zero at &, B) € Q, this would contradict the holomorphy 6f on Q. Furthermore,
X(,1-B) = X(@. ).

We have
Coola. )

A, B)

SinceA(w, 8) € C* we have equivalence of the following assertions:

X(a,1—B)Cy(a,1-p)
Coo(a, B)/Ala,B)

C.(a,1-p) = codiicient at position (2) of (C* (e, f)) ™} =

1, Ci(e,1-p) = X(a,1-p) 1,
X(Q’,ﬂ) ) CO,O(Q’B) = X(a’ﬂ) A(a/’ﬁ) .
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Remark2.12 So zeros and singularities 8fyo(e, ) are interchanged by the re-
flection in the central line. The meromorphic functibgy is not the zero function,
since its restriction to the complex lings} x C for « € (0, 1) are scattering “ma-
trices”, which are non-zero. So its sets of zeros and potessect each other only
in a discrete setit), x C.

We now consider the equation X C,, in a region where&C* has no singu-
larities. Analogously to (2.9), we put

re-3 1
I -p) Cul@p)’

Yi(@.B) = (2.21)
This is a meromorphic function dd x C, and the equatioX C, = 1 onU, xCis
equivalent to

(r)? ™ = Yo(@.B). (2.22)

A complication is that now we cannot restrict our considerato a subset of
(0,1)x (% +i(0, oo)), but have to allows to vary over a neighborhood of the central
line. The presence of singularities 6f. makes it impossible to choose a well
defined argument globally.

Lemma2.13 Let | c [0, ) be a bounded closed interval such that Bas no
singularities at points(O,% + it) with t € |I. There aree, &2 > 0 such that the
solution set 0f(2.22)in

Q(e1,82) = (0,&1] X ([% — &2, % + &2] X il) (2.23)

consists of sets\parametrized by k Z.
There exists ke Z such that Y is for all k > k; a real-analytic curve
t > (ax(t), ok(t) +it) (tel).

Proof. SinceC, is holomorphic at all points of the compact $@itx (3 + il ), it has
the value given by the restriction to = 0, which value we know explicitly from
(2.1) and (2.5):

=2 (it) £ (2it)
(2142t — 1)T(=it) £(=2it)

1 .
C.(0,=+1t) =
+(,2+|)

SoC, has also no zeros df} x (% +il). We can choose, &2 > 0 such thaC,
also has no singularities or zeros withe (0, £1], |Re,3 - %| < g,andImB e I.
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We take real-analytic functions d@® (g1, £2)

M+(Q’,ﬂ) = |Og|Y+((Y,ﬂ)| ’

A+((Y,ﬂ) = al’gY+(cx,/3) .
There is freedom in the choice of the argument. In this lemmaawnot choose a
normalization.

The solution set of (2.22) iR, (g1, &2) is the disjoint union of component4
given by

(2.24)

2t logrna = A (a,o +it) — 27k,
(200 —1) logna = Mi(a,0 +it).

Here and in the sequel we write= Reg andt = Im 8. Changing the choice @,
causes a shift in the parameter

We want to use the fixed-point theorem to show that for daehl, t > 0O,
and eachk > kj there is exactly one solution of (2.25). To do this, we write
a(X) = eY*/mandp(y,t) = 3 — y + it. Thene € (0, 1] corresponds toa € (0, xq]
with X, = —1/log ey, and|Reg — 1| < & to |y| < &p. We take

2t t M. (a(X), B(y. 1)) )
2k = A (@(X), By, 1)) 27k = A (a(X), By, 1))
By takingk; suficiently large, we can make the denominators in (2.26) ag lasg
we want, in particular non-zero. 39 is real-analytic on (0x;] x [—-&2, €2]. By
defininge(0) = 0 we extend~ k to aC*-function on [Q x;] X [—&2, &2].

SinceC, has no zeros or poles M0,(e1, e2) we haveM, = O(1) andA, =
O(1). So for all stiiciently largek we have

Rk([0, 1] X [e1,1]) € (0, %1) X (g2, £2). (2:27)

To show that k is contracting it stfices to bound the partial derivatives of the
two components. For the first component we h@sk — A,)? in the denominator,
which can be made large. In the numerator we have the dewgati

d
O, = d—‘f(a(,A+ < Vx4 < 1, 9A, = —0,A, = O(1)

The factora is due to the fact that,, and hencéd, is even ina. The factort is
bounded, sincee I. For the other component we proceed similarly.
Controlling k, we can make all partial derivatives small. Bg is contract-
ing for all k > k; with a suitablek;. So for a givert there is exactly one point
(a,B) € Q(e.¢2) satisfying (2.25). The fixed point is in the region whég is
real-analytic, jointly in its variables and in the parameateHence the fixed point
is a real-analytic function dfby the analytic implicit function theorem. (Semg.
[KrPa, Theorem 6.1.2].) O

(2.25)

R y) = ( (2.26)
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In this lemma, we do not get information concerning the Setwith k below
the boundk;. If 0 € | we can normalize the argumeft like we did in the previous
subsection.

Lemma2.14 For syjficiently smalles, &2, €3 > 0 the solution set 0{2.22)in the
set

Q(e1,82,83) = (0,&1] X ([% - &2, % +&2] x (0, 83])

is equal to the union of real analytic curves

te (ak(®), ok® +it) (e [0, e3]),
with k> 1.

Proof. If £1, €2 andes are sifficiently small, therC, has no singularities or zeros
in the closure of)(e1, &2, £3) in R X C. So logY, can be defined holomorphically
on a neighborhood db, %) in C2 that contain€(e1, €2, £3). We choose the branch
that has the following expansion @, %):

—2logn (B — %) —4(log 2f (B - %)2 +0((B - %)3) +0(a?). (2.28)

For the behavior alonf} x C we use (2.1). We also use th@{f is even ine. (See
2.5 and (2.7).) So in this lemma we can work with

M, (a,o +it) = -2 logn (o — %) —4(log 2F (o - %)2 + 4 (log 2/ t?
+0((8 - 3)%) + Oa?), (2.29)

A (a,o +it)

~2t logr — 8 (log 2Yt (o — %) +0((8 - %)3) +0O(a?).

Now the parametek in the previous lemma can be anchored to this choice of the
argument.

Fort € (0, e3] andk > 1 we defineR i as in (2.26), and revisit the estimates in
the proof of the previous lemma. We cannot ége make the denominator large.
By adapting the:’s we can makeM, andA, as small as we want (g1, &2, £3).
(See the expansions in (2.29).) In particular, we arrange

Ayl < 2r—-4 and |My| < 1.
Then the denominator satisfiBs:= 2rk— A, > 2r— A, > 2, hence D <t < &3,

andtM, /D < e3/(2r — 4). Arranginges < X3 = —1/logre; andes < (21 — 4)ey,
we get (2.27).
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To get all partial derivatives df x small, we have to work with the numerators
of the derivatives, since we have lost control over the denatars, except for the
lower bound 2. In the numerators we meet the following factor

0A, oM, 0A,
ox ’ "% tM, ox ’
oA, oM, 0A,
—_— t tM .
ay ) ay ’ + ay

We havet = O(g3) andM, = O(1), so we can concentrate on the derivative8 of
and M., with respect tax andy. Both derivativese: and Z%= are O@) by (2.29),
which is controlled bye;. Since® < x2e7V/* = O(1), all contributions in the
first line can be made small by decreasingndes.

We have% = —2 = Oft) = O(es). Further, 5(,"”; = -2% = O(1). This
derivative occurs only multiplied with= O(e3). So adapting:1 ande,, and then
g3, taking also into account the requiremests< —1/ log e andes < (27 — 4)eo,
we can arrange that all partial derivatives are very smafb@n, e, €3).

SoFk is contracting. Its fixed poinfay(t), ok(t)) gives the sole pointa, 8) €
Vi with Im 8 = t. It depends onin a real-analytic way.

Now letk < 0. Suppose that there is a sequenggfn) = (an, o + ity) € Vi
that tends tq0, %). The expansions in (2.29) imply that, (an, 8,) = o(1) and
M. (an,Bn) = 0(1). Then (2.25) implies that 2 logran tends to—2z7k. If we
ensure that;, < % we have logra,, < 0, which shows thak < —1 is impossible.
Letk = 0. We have by (2.22) and (2.29)

1
logra, = —|Og7r+O(0'n—§),

in contradiction to logy, — —oo. O

Proof of Theorem 1.3We have to prove the invertibility of they, the asymptotic
behavior, possibly further decreasing #ige Then the inequalityrk < % follows
from (1.8) (perhaps after adapting tke).

We consider one of the curves in Lemma 2.14. In the next coatipus we
omit the indexk. Differentiation of the relation (2.25) with respect feads to the

system
2t 0A, 0A, . 0A,
ol = )[“] _ [—2 '090”?)
20-1 _ oM, _ oM, . - oM., .
@ O 2 |0g7ra/ do ot

Here we consideA, and M, as functions of the three variableso andt. By a
dot we indicate dferentiating with respect tb The determinant of this system is

(E + O(a/)) (2 logra + O(1)) o how = M (
¢ a

1+0((loga)™)).
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Adapting thes’s we arrange that this quantity is negative. Then we have

& = W‘;m(uo«loga)*))

- ((2 loga + O(L)) (-2 loga + O(1)) + O() 0(1))

_ @llogzal (1+O(loga) ™).

So we can arrange thaf(t) = @ > 0. This shows that the real-analytic function
t — a(t) on [0, &3] has a real analytic inverdg on some intervald, Zk] < (0, &1].

In the proof of Lemma 2.14 we have already arranged|fat< 2r—4. Hence
2t logra < —4 and logra < —%. Soa | 0 ast | 0, which shows thafty = O for
allk > 1.

To derive the asymptotic expansions, we consideandt as functions ofw
along the curve parametrized lhy> 1. We omit again the subscriftin the
computations. We have along this curve

2(8 - %) logne = —2nik — 2 logn (B - %) — 4 (log 2¥ (B - %)2
L. (2.30)
+0((8 - 5) ) +0@?).

This implies tha(g - 3) logza = O(1), hence

B3 = Ol(logra)™) = Of(logr®a)™).

Next we get

2
(ﬁ - %) logna = —nik — 2 (log 2f (,3 - %) + O((|09 7720/)_3) .

We write L = logn?a, which is a large negative quantity. We obtain

1 -nik _2(log2f (8- 3)°
F 2 L L
__aik  2(log 2 (_7T2k2
L L L2
nik  2(rklog 2 a

+O(L™

+0(L™3))

Taking real and imaginary parts gives the asymptotic m@hat(1.7) and (1.8). O
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Proof of Theorem 1.4Lemma 2.13 gives curves of this type in a regi®i{e1, €2)
near{0} x (% +il). In this regionC, has no singularities or zeros, so Mgand

its argumentA, can be chosen in a continuous way. There seems no way to con-
nect the branches of 104 more globally, so we may as well normalizg by

A, (0,8) = A(B) for B % + il , whereA andM are as in the theorem. We have on
Qi (&1, €2)

M, (a, o + it)

M(% +it) + O(o — %) +0(?), o)

A (o, 0 +it) A(% +it) + O(o — %) +0(@?).

The relations (2.25) hold for points (o + it) on curves with numbek > k;(we
omit the indexk), and hence

1
—o = O(llognel™).

logra = O(t™Y), >

Working more precisely, we get
1 .
2t logna = -27k+ A(E +it) + O(llog el ™),

and hence loga < C kfor some positiveC. This gives

_ _°n -1
logra = " + > +0k™),

which is (1.11). We also have

ik )
2(0 - %)(—T + O(1)) = M(% +it) + Ok,
hence
M(3 +it) + O(k™*
% o) = (227;;1):0((1) ) _ %((M(% +it) + Ok 1) (1+ O/K))
_tM(3 +it) »
i +0(k™),
which is (1.12). =

Proof of Theorem 1.5First we consider several statements equivalent to the-stat
ment that a curve as in Theorem 1.4 touches the central limepatintt € |.

Of course, this is equivalent toy(t) = % In (2.25) we see that it implies that
M+(ak(t),% +it) = 0. And since each curve witk > k; hast as a parameter,
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touching the central line ig + it is equivalent toVl, (ax(t), 5 + it) = 0. By (2.24)
and (2.21) this is equivalent {6, (ax(t), 1 +it)| = 1. At points witha € (-1, 1) and
Reg = % the matrixC*(w, 8) in (2.7) is unitary. So the statement is also equivalent
to Co.(ak(t), 3 +it) = O.

In (2.1) we see thg8 — Cp(0,8) has a simple zero & = B, = % + itg.
Sincepg, is not a zero ofZ(0,-), we know from 2.4 that all matrix elements of
C are holomorphic at (®,), in particularCop is holomorphic at (03,). So we
haveCo (@, 8) = A(a,B) P(B — B¢, @) on a neighborhood of (B,), whereP is a
polynomial inB — B, with codficients that are holomorphic inon a neighborhood
of 0 in C, vanishing at 0, and whergis holomorphic without zeros. (This follows
from the Weierstrass preparation theorem. $eg, [Ho, Corollary 6.1.2].) The
restriction ofCp to the complex ling0} x C has a zero of order 1 &, hence
P(X, @) = X—in(a), with  holomorphic on a neighborhood of O@andn(0) = 0.
SinceCy.(a,B) is even ine, its zero set is also invariant under— —a. Hencen
is an even function. From 2.5 and (2.7) it follows thatf) — Co(a, 1 - ) has
the same zero set & ... This impliesy(a) = n(a). Son(e) € R for reala. The
power series expansion gfat 0 starts withy(a) = e + - - -, with 5 € R.

The asymptotic behavior afi in (1.11) shows that the curte— (ax(t),t) and
the curverx — (a, t; + n(a)) intersect each other for all ficiently largek. We call
the intersection poié, t; + dk). So we have

ax = ak(te+dk), ok = n(@a).

Furthermore Co.(ak, B¢ + i6k) = 0, hence the curve with numbgkrtouches the
central line a3, + idk.

Now we carry out estimates &s— . Theorem 1.4 givesy(t) < exp(O(1)—
nk/t) uniformly onl. In particular,ax, = O(k™") for eachn > 0. In particulara | O.
Thensy = n(ay) implies thats, = O(k~2") and also tends to zero.

We have

1 ey
A(5 + it +idk) — 27k 1 (1 + O(5k/t,g)) (A(% +ity) — 2k + O(6k))

2(t,g + 5k) B Zt[
A(3 +it;) — 2rk
= (% +0(34) (1+ O@W))
A5 +it) - 27k Lo
Sl — + O(k*™M).
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Hence
A(% +it,) — 27k
ac = axlte +6K) = 1 exp((z—") +O(K2M) (1+ 0k ™))
T
— EeA(:—ZLHt[)/Zt/—nk/t/ (1 + O(k1—2n)) (1 + O(k—l))
T
1 A1l
— _eA(—+It/)/2t[—7Tk/t[ l O k—l .
—e (1+0%™)
We obtain
S = n(@a) = nal +O(@f) = 12 eAFit)-2ki (14 ok d) + Ok ).
T

This gives (1.13).
We know thato(t) < 5 for all t € I, by 2.6. So the points where the real-
analytic curves touch the central line are tangent points. O

2.5 Curves of resonances originating higher up on the centtdine

We turn to a tentative explanation of curves of resonanéesttiose in Figure 12
and 13. We cannot prove that these loops necessarily ergstiave to be content
with a result that depends on a number of assumptions

Assumption®.15 (1) Letpg = % + itg with tg > 0. We assume that the con-
jugated scattering matri* in (2.7) has a singularity a0, 89). Sopfy is a zero

of the unperturbed Selberg zeta-functié(o, -) on the central line. (Not all such
unperturbed eigenvalues need to be related to a singutdriy .)

(2) The singularity ofC* at (Q 8p) is as simple as possible, with a common de-
nominator for all matrix elements. To make this precige,assume that there are
holomorphic functions p,ol, o~ and r, on a neighborhood od in C that all
vanish at0, such that on a neighborhodd of (0, 8o) in C?

_ B —Bo—Tool@)
Coo(@.B) = voo(e.p) B Bo—p@)
ﬁ _,80 - rOoo(a)
Cowo(@B) = Yowol®.B) ——F— 5> 2.32
00(@.8) = Yoeo(a.B) 5= o~ p(a) (2.32)
B=PBo-r(a)
Ci(@.f) = y+(@.f)——F—~
(@.B) = vi(a.p) B o pla)

where they’s are holomorphic o2 without zeros ir.
(3) SinceC*(a,p) is even ina, the sets of zeros of the matrix elements and the set
of singularities are invariant under — —«. Sop and ther’s are even functions.
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We assume that already the first terms in their power seripansons are non-
zero and all dierent: p”’(0), r()fo(O), rafoo(O) and r7/(0) are four djferent non-zero
complex numbers.

(4) The restriction ofZ* to the complex lind0} x C is equal to

100(0.8)  V2y0.(0, ,3))
\/EYO,DO(O’B) 7+(O’B) ‘

(See also (2.8) YVe assume that f@ = S all elements of this matrix are non-zero.

Most of these assumptions mean that “nothing special hapand hence
seem not too unreasonable. Only the assumption that alixedéments have the
same set of singularities might be considered to be realyicéve.

Lemma2.16 Under the assumptions 2.15 the neighborh@daf (0, 3p) can be
chosen such that

Qn (R x (5 +iR) = (060

Proof. Leta; € R and Re8; = 3, (@1.81) € Q. The restrictions — C*(a1.p)
on % + iR is a family of unitary matrices, hence any singularity israféterminate
type. Such singularities occur discretely, so takédguticiently small the sole

possibility is @1, 81) = (0, Bo). O
Lemma2.17. Under the assumptions 2.15 there is a neighborhod@linfC such
that for all @ in that neighborhood:

ry(a@) = —roo(a), roe(@) = —row(@). (2.33)

Proof. We have de€* = CooC, — ZCS’M. Hence

(8- Bo - p(e))® detC*(a. )
= yo,0(@,B) y+(a,B) (B —Bo — roo(@)) (B8 —pBo —r+(a)
~ 2y0.00(@. B (B~ Bo — Fo.(@))?

is holomorphic onQ2, and its restriction to the complex line = 0 has a zero of
at most order 2 g8 = Bo. We use the Weierstrass preparation theorem to write
it in the form §(a, B) Q(8 — Bo, @), with 6 holomorphic without zeros of and
Q a polynomial in its first variable of degree at most 2 with fie&nts that are
holomorphic functions ofr vanishing atx = 0, and with highest cdgcient equal
to 1. So we have

QB - fo.0)

detC*(a,8) = 6(a,pB) PG~ Bo. )2
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whereP(T, a) = T - p(a). We define an involutiofk — K* in the space of polyno-
mials inT with holomorphic co#ficients ina by K*(T, ) = (—1)degreX K (_T, @).
SoP*(T,a) =T + p(a). Lemma 2.16 implies tha®* + P.

The relationdetC+(a, 1 - ) = detC*(a,8)"1, from 2.5 and (2.7), implies

(LT RQ (B foa) 4 PB—B—0,a)?
PG —foa? P0G poa)

6(&’ 1 - ﬁ)
and hence

(~1)%9eR 5(a, 1 - B) 8(v, B) Q" (B — Bo, @) Q(B — fo. @)
= P*(8 - Bo,a)> P(B — Bo, @)?.

On the right is a fourth degree polynomial fn— B9 with highest cofficient 1.
This means that on the left we have also a polynomial of defgnae and that the
highest cofficient is also equal to 1. So the product of the sign and thestsvis
equal to 1. (We note that not ondja, 3) but alsos(a, 1 — B) is non-zero for ¢, )
suficiently close to (08p).) HenceQ* Q = P?(P*)?, and sinceQ* andQ have the
same degree, this degree is equal to 2.

The polynomials® andP* are irreducible, henc® is equal to one oP?, P P*,
and P*)?. Hence

P*(8 - Bo, @) )"

detC* (@) = 0B (g5

with ¢ € {0, 1, 2}.

We also defin@yo(T, @) = T—roo(a), soRg’O(T, @) = T+rgo(a), and similarly
for ro. andr,. Considering the relatio6*(a, 1 - 8) = C*(a, ) ! itself we arrive
at

R(*)D (P*)t’—l — Pf—l R+ , Raoo (P*)t’—l — RO,oo Pf—l ) (234)

If £ =0 we find RyoP = R P Assumption (3) implies thaP andR, are
different polynomials of the first degree with highestfGogent 1. SoP = P*, but
we have already shown that that is impossible£ &d1, 2}.

If ¢ =2 thenRg’O P* = PR,, andP divides RS,ov and henceP? = Rao, and
then alsoP* = R,.. We obtainR, = (Rao)* = P* = Ry, in contradiction with
assumption (3). Hencé= 1, anng’O = R,, which gives the relatiomgo(a@) =
—r(a). From (2.34) we now also &), = Row, hencerg (@) = —ro(@). O

Lemma2.18 Under the assumptions 2.15 there are 0 and a neighborhood U
of Bp in C such that for eactr € (0, £] there is exactly oné&(a) € U such that

X(a,{(@)) Ci(a, {(a)) = 1.
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We havdim, o {(a) = Bo, and as the poin(a) — So moves to zero it passes
the line segment between(«r) and fa) infinitely often, circling around () in
negative direction or around(p) in positive direction.

Proof. We write8 = Bp + z. OnQ, the equatiorX C, = 1 becomes

z-r(a)
z-pla)

with ¥(a, f) = T(3 - B)T(B - 3) . (e, B). We takes > 0 and a simply connected,
connected neighborhodd of By such that (Qg] x U c Q. In the course of the
proof we adapt andU. For suficiently smalle > 0 the two points , (@) and p(«)
are diferent points ofJ for all @ € (0, &]. The corresponding poin{g, 8o + . (a))
and(ea, Bo + p(a)) cannot be in the solution set ®fC, = 1.

Taking a logarithm, we get the equation

(ra)?**%5(a, Bo + 2)

’

z-r,(a)
z- p(a)

2(itg + 2) logma + log ¥(a, Bo + 2) + log = 0 mod ZiZ,

where for logy(«, zZ) we use a continuous choice of the logarithm. The logarithm
of the quotientzz‘_rg is multivalued on (Qg] x U and has branch points. We go over
to the covering space by the parametrization

e p(a) — (@)™ (0, o) r+(a)

zZ = u) = - 235
2 & (70 5(0,fo) (2:39)

The variableu runs over a suitable subset©f The equation becomes
22z(u) logna + log w +u = 0. (2.36)

(0. o)

On the covering space the ambiguity modutoZ2is hidden in the choice of the
variableu.

To make precise what is a suitable set in thelane, we use assumption (4).
With 8 € % + iR all elements of the unitary matrix are non-zero, and henge ha
absolute value between 0 and 1. This implies that §(0,8)] < 1, and we can
take - < O such thate’- > |5(0,80)l. We consider the region determined by
6- < Reu < 6, with somes, > 0. For these values afthe denominator of(u)
satisfies

e - () 7(0,80)| > &1 = ¢1(6-) > 0. (2.37)

Hence we find
&+ |p(a)| + 17(0, Bo)l Ir 4 ()|

C1

lZ(u)] < < cpa? = cy(6-,6,)a?. (2.38)
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We have _
(ma)?' (0, Bo) (v (@) — p(a)) €

Z(u) = _ (2.39)
(" — (ra) %0 7(0, o))
which can be estimated in the following way:
~ 2 +
2 < YOPolla?e"
ct
IZ(U)| < cza? = c3(6-,6.)a?. (2.40)
We consider on the regiai < |Reu| < 6, the holomorphic function
FU) = -22u) logrma  log 2%:P0+ 2W) (2.41)
¥(0,80)
We have
¥(a, Bo + 2(U)) N (0% 2, 0¥
log —————= 0] —=(0 . —(0 .
00 =05 < FOA) T (555(080) o + 55(0.60) - )

< a?+|Au) < .

(We have used that i$ even ina.) We get|F(u)] < 2c¢,a?|lognal + O(e), and
hence there is; = ¢(6_, 6,) such that

[F(u)| < csa?. (2.42)
Takinge such that? ¢4 € [6_, 6,] we arrange thaE maps the set
E ={ueC : 6_<Reu<s,, —s°cs <Imu< £’cy) (2.43)

into itself.
The solutions of (2.36) irE are precisely the fixed points & in E. The
guestion is whethe is contracting orE.

F(W) = -22( logre - 2 (a.fo+ 20) 20
< a? logra + O(1)a?.

Hence there iss = c5(6_, 6.) such thatF’(u)| < ¢csa? |log el on E. We can adapt
e such thats ? |logma| < ¢ with somecs € (0, 1). SoF is contracting orE, and

we find a unique fixed poini(a) € E. Projecting back we find a unique solution
(@) = Bo + Z(u(a)) of the equatiorX C, = 1.
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The denominator in (2.35) stays away from zero, by (2.37nc&iReau is
bounded we havEa) := z(u(a)) = O(a?). Soz(e) tends to 0, and(«) tends tQBo.
The relation 2a) - 1. ()

— _ @) ~2ito 2 -1
o) o & 3060 (2.44)
shows that the argument éf—g tends too asa | 0. Soz(a) crosses betweep(a)
andr. (@) infinitely often, such that a continuous choice of the argomncreases.
This means that(a) turns around . (@) in positive direction, or aroung(a) in
negative direction. O

Lemma2.19 Under the assumptions 2.15 there is a decreasing sequeR)gk,
of positive numbers with limit zero such that for alk (0, ay,)

X(a,Bo + ro.(@)) Ci(a, Bo + Fow(@) = 1 (2.45)
if and only ifa is one of they.
Theay satisfy
o = = e (@ke20 (1 1 O(k e (2.46)
T

for some real numbergs

The value ofsy mod 2r Z depends on the functions ., r. andp. We do not
know it explicitly. The choice of in its class and the choice of the paramdter
are related.

Proof. We consider the function

f(@) = X(a,Bo + roe(a)) Ci(a,Bo + roe(a))

on an interval (Oe1] such that(e, 8o + ro(@)) € Q. For small real values af
the values of g (@) are purely imaginary. Fact 2.5 and (2.7) imply that the atr
C*(a,Bo + row(@)) is unitary. In (2.32) we see th@ly (@, Bo + ro..(@)) = 0. So
C*(a,Bo + ro(@)) is a unitary diagonal matrix. This implies thdi(e)| = 1 for
a € (O, 81].

We make a continuous choice @f— s(a) for « € [0, £1) such that

. (3 - Bo—roe(a
s = (21 fo~Tom(@)) (o o+ rou(@))
['(=3 + Bo + ro.(@))
We note thasis an even function. The numbsyin the statement of the lemma is
equal tos(0). Now

roeo(@) —14(a)
roe(@) — @) -

(2.47)

a(a) = 2t logra — 2irg (@) logra + () for @ € (0, &1) (2.48)
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is a continuous choice of the argumentfdf). We havea(a) = 2ty logra + O(1)
asa | 0. The derivatives of the three term in (2.48) are

2t
7" , Ofalogra), O().

So for suficiently smalle; the argument off (@) is monotonously decreasing to
—oo asa | 0, and there is a sequenag )ik, of elements of (%) decreasing to
zero such that for eadh> kg

2ty logmay — 2irg.(ak) logmak + S(ak) = —2rK. (2.49)

So the pointgay, Bo+ o, (ak)) are solutions oK C, = 1, and thex’s between two
successiver, do not satisfy this equation.
Sinceay = O(1), we have directly; e ™/ < ) < ¢, /% with positivec;
andc,. This gives
-2nk—Say) = 2nk+ s

lo = — 1 = + O(k g Zk/toy |
g7k 2ty + O(a?) 2ty ( )

This gives (2.46). O

Proposition2.20. Under the assumptions 2.15 there is one curve («, {(a)) on
an interval(0, £1) with limit (0, Bo) for which Z«, {(@)) = O for all @ € (0, &1).

The curve touches the central line (i, (ak)) for a monotone sequence of
ak in (0, 1] with limit 0. Hence the/(ax) are eigenvalues. They satisfy the
relation (2.46)

Asa runs through(ay, 1, @) the point(a, {(«)) describes a curve in the region
Reg < % The corresponding(a) are resonances, angd{ax) — Bo is proportional
to aﬁ.

Proof. The (a, (@) in Lemma 2.18 are solutions of C, = 1. They satisfy
Co.(@, {(@)) = 0 precisely for the sequencey in Lemma 2.19. Proposition 2.11
shows that at these points the scattering ‘matixp has a singularity of indeter-
minate type. Hence th&«y) are eigenvalues. For the otheythe functionDgpg
has values at(a, {(@)), S0 RS < 3 by 2.6, and;(a) is a resonance. O

Remark2.21 The computations reported in [Fr] provide us with six cureés
resonances tending to a point on the central line with pesithaginary part. For
two of these curves [Fr, Figure 8.26] suggests that indé®g — 3o is proportional
to a2.

k
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3 Spectral theory of automorphic forms

We still have to indicate how the facts §2.1 can be derived from published re-
sults. There is a vast literature on the spectral theory aigddorms. A thorough
discussion can be found in [Roe]; however the continuatibEisenstein series
was not yet fully known at that time. Of later literature wentien [Ve90], [Iw95],
and [Bu98]. The material we need is also present in the tremttfiiie83, Chapters
VI and VII] of the Selberg trace formula. For the extendedttecang matrix we
use results from analytic perturbation theory as discussfgro4].

3.1 Eisenstein series and scattering matrix

The group’o(4) has three cuspidal orbits, which we represent by and—%. The
corresponding Eisenstein series (for the trivial charagge= 1) areEC, Ey and

E, "%, each with Fourier expansions at all cusps of the form

ESBi 902 = Seqif + Con.&B) v + - (3.1)

By --- we indicate the rapidly decreasing terms (aszlm o) corresponding

1
to the Fourier terms of non-zero order. We take = [g‘g], Joo = (1,2]. and

g-12 = [_33|, such thatg; 0 = £ The scattering matriCo(8) in (2.1) has

Co(n, &;B) at position §, £).
These Eisenstein series can be embedded in families of agpbin forms of

a slightly more general type than is considered usually. Hok Rea < 1 and
B € C we use the spack(a, B) of functionsf that satisfy

1. f(y2) = yo(y) £(2) for all y € To(4),
2. P (@%+ 32T =pA-P) 1,

3. for each cusp € {0, oo, —%} there is a Fourier expansion

fgd = >, (FINE, (3.2)

n=k;,(a) mod 1
whereF]f(2) is the product o™ = e¥""ReZ gnd a function depending
only ony = Imz and whereg(a) = 0, k(@) = @, andk_1/2 = —c.

We require that the other Fourier ternfsy f(2) with n # «,(a) are rapidly
decreasing ag — .
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We callF3f, F f andFZ)/*f theFourier terms of order zetoForé « {0, oo, 3

the Eisenstein serieEg can be embedded in a family,(3) — E¢(a,) of auto-
morphic forms that are meromorphic in the variahies) for « in an open neigh-
borhood of £1,1) in C andB € C. See [Br94, Theorem 10.2.1]. These families
are uniguely determined by the form of their Fourier termsroler zero:

F,T(In(a) Ef(a,ﬁ; 2 = 56,77 ﬂ(K,,(CY),,B; Z) + Cn,é‘(aaﬂ)ﬂ(’(ﬂ(a’)a 1-5 Z) > (3.3)
with u(n, 8; 2) a meromorphic extension gf of the form
un,B;2) = " yf Fi(B; 28, 4nnim 2) . (3.4)

The restrictions — E¢(0, 8) exists as a meromorphic family of automorphic forms
and is equal tcE‘g. The scattering matri€(e, 8) is formed by theC, :(a, 8). Thus,
we obtain fact 2.3.

With the methods of [Br94, 10.3.5] we obtain the functiongliationC(a, 1 —
B)C(a,p) = |, as an equality between matrices of meromorphic functiofise
Maass-Selberg relation, as discussed in, e.g., [Bro4, rehed.6.5], implies that
C(-a,B) = C(a,B)! (transpose). An analysis of thé&ect of conjugation on the
Fourier expansion gives the relati@{a, 8) = C(-a, ). This leads to fact 2.5.

The charactey,, is invariant under conjugation by= [j ‘1)] It is compatible
with the involution: : z+ z/(2z - 1) on the upper half-plang:

y2) = (jyi Hwz  fory eTy(4). (3.5)

Hence this involution induces an involutiahy given by gf)(2 = f(:2), in the
spaceA(a,8), and leads to a decomposition into subspa&®gr, 3) of odd and
even automorphic forms. We had&® = EC and JE® = E~Y/2, This implies the
equalities

C_120,

Cow = Co-1/2, Cwo0 (3.6)

Cooo = C_12-1/2, Coo-1/2 = CL1/200,

and leads to the partial diagonalization$ia 2.

3.2 Poincaie series

The basiqu(n, B; 2), u(n, 1 — B; 2)} for the space of Fourier terms used in (3.3) has
the drawback that, for general combinationgr@ndg, it consists of exponentially
growing functions. For Re # 0 we may also use the basis consisting.of, 3; 2)
and the rapidly decreasing element

w(nB;2) = 2(en)2 ™ \JyKg_1/2(2neny), (3.7)
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with & = Sign Ren. Of coursegn = |n| if nis real. The factor 2(1)¥/? allowsn to
be non-real complex, and keeps the notation consistenBig, §4.2.8] (except
thatBhere = Sthere + :‘QL)

Applying [Br94, Theorem 10.2.1] with this basis, we obtaianemorphic fam-
ilies P(a, B), P°(a, B) and P~Y2(a, B) of automorphic forms taking values in the
spacesA(a, B), wherea runs over a neighborhood of,(0) in C andg € C. For
fixed a € (0, 1) the restrictiorn — P%(a, 8) exists, and is the meromorphic exten-
sion ing of a Poincaré series convergent forfRe 1.

PABiD = D xa) M ulke(e). 595 v2). (3.8)

’)/EFSC\F

Fora € (0,1) only the cusp O stays open, aBf(8) := P%(3) is the corresponding
Eisenstein series. Also the famili® are characterized by their Fourier terms of
order zero, which for = co andn = —% have the following form:

FZ”(Q)Pg(a’nB; 2) = Ogqu(ky(@).B;2)
+ Dr],f((laﬂ) ‘U(Kn(a’)aﬂ; Z) .
With the method of [Br94, 10.3.4] the meromorphic functiddss(«,8) can be
expressed in terms of tt®, :(«, 8). The scattering matrix for the caaes (0,1) is

a 1x 1-matrix, given by3 — Dgo(e, 8). Its explicit expression in terms of t@&,
is given in (2.6) in fact 2.6.

(3.9)

3.3 Zeros of the Selberg zeta-function

The geometric description of the Selberg zeta-funciémn 8) = Z(T'o(4), x;B) in
(1.2) is important for the computations in [Fr]. For this pathe relation o¥(«, 8)
to automorphic forms is important. We quote [He83, Theore®i®d Chapter X,
p. 498] as far as this concerns the regiorslm O for @ € R.

a) At pointsg on the central Iin% + (0, o0) the functionZ(«, -) has a zero of
order equal to the dimension of the spataass®(«,8) c A(a,B) of cusp
forms. This space consists of the automorphic forms for tteractery,
that have rapid decay at all cusps.

These values @8 are calleceigenvaluesn §1 and§2, although the cumber-
some description ‘spectral parameters of cusp forms’ wbalthore correct.
For the groufo(4) it is known that ifMaass®(0, 8) # {0} thenp € 1 + iR,
B# % The theorem of [Hu85, p. 250] gives this 1dt(4), which is conjugate
toI'g(4).
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b) At points with Rg3 < % and ImB > 0 the functionZ(e, -) has a zero of the
same order as the singularity of the determinant of theexiadgt matrix aj3.
These are the2sonances

Fora € (0, 1) the scattering “matrix” is the quantiy,(8) in 2.6, hence this
gives the last statement in fact 2.6. (Actually, Hejhal &geaf a zero of the
determinant of the scattering matrix at-J3. This is equivalent to what we
need by the functional equations.)

There are no zeros with Be> % and Img > 0.

3.4 Cusp forms and singularities of Poincae series

A Poincaré serieE’fy(ﬁ) with @ € (0, 1) has a singularity g € % + (0, o0) if and
only if there exists a cusp forri € Maass®(a, Bp) for which the Fourier term of
orderng(«) at the cusg is non-zero. Sees.g, [Br94, Proposition 11.3.9].

The Fourier term of order at co of the family of Poincaré series

L
V2

contains the facta€_/(1- XC.), in the notation of (2.4) and (2.5). If far € (0, 1),
Be % + iR we haveX(a, 8) C_(a,8) = 1 andC_ is holomorphic atd, 8), then this
Poincaré series has a singularitygatand hence there is a cusp form with this
spectral parameter. This cusp form arises as a residuesobdai Poincaré series,
and hence it is an odd cusp form. This implies fact 2.7.

(Py() - P.Y2())

35 Fact2.4

Suppose that the extended scattering mafrikas a singularity at (@) with
ReBy = % From [Br94, Proposition 10.2.14] we conclude that thispgeays if
and only if the vecto(E®, E*, E-Y/2) has a singularity at (Bo). If o # 5 we
apply [Br94, Proposition 12.4.2, i)] to conclude tig(1 — Bo) is an eigenvalue,
and hence&(0,3y) = 0.

We still have to consider the possibility thé§ = 3. The spaceA(0, 3) is
spanned by the derivativ@Ef(O,ﬁ)[le/z for & € {0,00,~1/2}. Near(0,3) the
basisu(a, B8), u(a, 1 — B) for the Fourier terms of order zero is unsuitable. We can
use the basig(«, 8), u(a, 1 - B) in [Bro94, Lemma 7.6.14 i)]. The derivative &
has at the cusp a Fourier term in whichi(1, %) occurs with non-zero factor. If we
suppose that the vectgis = (E°, E*, E~Y/2) has a singularity 40, 3) then we can
follow its principal part along a local curve throu¢b %) contained in the singular
set ofEis. See the discussion in [Br9812.1]. This gives a non-zero meromorphic
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family of automorphic forms along a one-dimensional cuiMee principal part of
this family ate = 0 gives a non-zero vectd# in A(0, 3)°.

A closer examination of the Fourier expansions shows theitéhms of order
zero can be expressed througf®, %). So V is not a linear combination of the
derivatives of theEé. Hence it is a cusp form. However fow,(3) = (O, %) the
space of cusp forms is zero as shown by [Hu84]. So we get theachctory
conclusion thaV is the zero vector if(0, 3)°.

3.6 Fact2.2

We have already obtained the equalities in (3.6). We stiéldnto establish the
equalityCpo = Cwp. From 2.5 we hav€,, o(a, 8) = Co(—a,B). So it sufices
to show thatCo (e, B) is even ina.

The formulas in [Br94§5.2] give fora € (0,1) and Rg8 > 1

P Pt
DO,OO(a/’ﬁ) = F—(ﬂ) (DO,OO(a’ﬁ)’ (310)
with an absolutely convergent series
Dow(@.f) = D C# Y xaly)t e, (3.12)
c>0 dmodc

in which the variables run over = [23] € PSLy(R) such thaty, = |53 %3] =

[2‘3 gal e I. In particular,c runs over the positive numbers satisfying 2 mod 4
andd over the even numbers modu@atisfying (21, c/2) = 1.

Right multiplication ofg by [ § 7] does not changg, and multipliesy, by|
on the right; hence it leaveg,(y,) invariant as well. So the terms are functions of
d modc. Left multiplication ofg with | 1| gives a factor=21 in y,(y,) ™. This
is compensated bg?" ¥/ sincea is changed t@ + c. So the terms in the sum are
well defined.

We havey,(y) = €220 whereQ : I'o(4) — Z is the group homomorphism de-
termined byQ([ 1 ]) = 1 andg([_ﬁ ) = 0. The value OQ([_MZ(;S ) is determined
by the upper row of the matrix, and we have

Q(1,0) = 0, Q(-r,—-s) = Q(r,9), (3.12)
Qr,s) = Q(r-4s9), Qr,s) = Qr,s—r)+1, '
wherer,se Z,r =1 mod 2 andr s) = 1. With induction we obtain
|o(r,9)| < 19, and Q(r,-9) = -Q(,s). (3.13)
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The inner sum in (3.11) for a given positice= 2 mod 4 has the form

e—2nia Q(-2b,a/2) e271ia/c )

d modc, d=0 mod 2 (2d,c/2)=1

Conjugation Wiﬂ{(l) _‘1)] has the ffect @, b, ¢, d) — (-a, b, ¢, —d). Under this trans-
formation the set ofl in the sum is unchanged, while we ha@¢-2b,a/2)
Q(-2b,-a/2) = -Q(-2b,a/2) and2 - -2. Hence

Do co(-.B) = Po.0o(e: ) (3.14)

fora € R and Re3 > 1.
For otheré, n € {0, o, —%} we can carry out similar computations. (See [Bro4,
§4.2].) In all cases we have fare (0,1), Re8 > 1

Bab-1
Dy e, B) = TG
with @, «(a, 8) holomorphic in3 on the region Rg > 1 and continuous i € R
(not necessarily even). It is given by a more complicategesehan that fog .,
since the factoc™% is replaced by a more complicated expression involving &ess
functions.
The relation between the famili&s in §3.1 and the familie®* in §3.2 implies

q)n,f(a,’ ﬁ) s

CO,OO(a/’B) = (1 - X(Cx,/i’)C+(a,,3)) DO,OO(Q/’ﬂ) > (315)

with X andC, asin (2.4) and (2.5). Furthermore, forc (0,1) and Rgg > 1

m20(3 - 3) @, (a. B)
T(B) + nY2(na)#1T(5 - B) @1 (@.B)

Ci(@.p) = (3.16)

whered, is a linear combination of functiond,, ..
; ; k+1
For a given integek > 2 we conclude for Rg > ==

Ci(a.f) = n’T(B~1/2)T(B) ™ @4(.f) + O@") = O(1),
asa | 0. Since we have als¥(a, 8) = O(¥), we obtain
Com(@.B) = (1+0(") x> (B - 1/2)1(8) ™ Dol ).

Now takepB € C with Reg > klzl such thatC is holomorphic at ((3). The
holomorphic functione — Cy(e,B) has a Taylor expansion at = 0 of any
order. So the continuous functien— @ (e,S) onR has a Taylor expansion of
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orderk — 1. Since it is an even function the terms of odd order less khamish.
Soa - Cy(a,B) has only even terms in its Taylor expansionvat O of order
k — 1. This holds for a dense set@fvith Reg > % hence for odadh < k we have

82C0,00(a/aﬂ)|a,:0 = 05 (317)

as an identity of meromorphic functions @fe C. Since we can takk arbitrarily
large the conclusion is th&élp (@, 8) is an even function of.

3.7 Concluding remarks

In the preceding subsections we have explained those datte theory of auto-
morphic forms that we needed to discuss some observatiahe icomputational
results in [Fr].

Remark3.1 An essential point enabling us to get some hold on the behafio
the zeros of the Selberg zeta-function is the fact that thedace series for the
perturbed character can be expressed in the Eisensteiliei&i, which leads
to (2.6).

In all cases ir§2 we have an equation wherea)?*~1 or (7%)#~1 is equal to
some meromorphic function on a neighborhood@fx C in C2. This causes a
proportionality relation betweem ande™/'m5 in many cases.

Remark3.2 The full result of 2.2 is not needed for the proofs. We coulgeha
managed with the estimate & for the matrix elements of the extended scattering
matrix.

Remark3.3. All zeros of the Selberg zeta-function with the spectrabpaster on
the central line that are visible in the computations in g related to properties
of the extended scattering matrix. The spectral theory tafraarphic forms allows
the existence of cusp fornfse Maass®(e, 8) with « € (0, 1) for which the Fourier
terms of order zero at all cusps vanish. The presence of sigfhforms has not
been detected in the computations.

Remark3.4. In Theorem 1.1 we have stated that the functienare defined on an
interval (Q &) c (0,1). Actually, one can prove, that the families of cusp forms
associated with the eigenvalae % + 7(e)? are real-analytic on (@). They

belong to a so-called Kato basis. Compare [PS24,

Remark3.5. All automorphic forms fo g(4) with the family of characters —
Yo SpPlit completely in an even and an odd part. The zeros of thieeBpzeta-
function are related to eigenfunctions of a transfer oper#d which also a parity
is associated. In [FM] it is shown that this parity corresg®rio the parity of
automorphic forms. It turns out that zeros of the Selberg-agtction in§1.1 are
odd, and those i§1.2 even.
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Remark3.6. All odd cusp forms observed in the computations occur in liesi
on an interval contained in (@) and have no real-analytic extension act@ssO0.
Such an extension would be allowed by the theory, and wowld gia = 0 an
unperturbed odd cusp form. All odd unperturbed cusp fornferied from the
computations do not occur in such families, but make théiuémce noticeable by
the phenomenon of avoided crossing.

Remark3.7. All inferred even cusp forms for a nontrivial character,e (0, 1),
occur discretely as cusp forms. Their parametet@) occur on curves of reso-
nances, where they touch the central line.

The limit point (QA3p) for a curve of resonances as| 0 is equal to (O%)
for countably many curves. All inferred unperturbed cuspri® with parameters
(0,80) # (O, %) are approached by a curve of resonances. Such a curvel#sscri
infinitely many loops, giving rise to a sequeneg,{3x) — (0, Bg) of parameters of
even perturbed cusp forms.

Remark3.8. The considerations in this paper concern a special situatiamely
the cofinite discrete subgrotijp(4) of PSLy(R) and the 1-parameter family of char-
actersa — y,. We have tried to make use of all special properties of thizifio
situation that we could obtain. It remains to be investigdiew much of the re-
sults of this paper are valid more generally. Computatiar{§i] indicate that for
I'o(8) similar phenomena occur.
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