
8b. Preliminary routines

We have two bases of the Lie algebra. We use the complex basis Zlist to the general routine R of right

differentiation, and the basis XWlist for the routine M of interior differentiation based on the Iwasawa

decomposition

In[]:= Zlist

XWlist

Out[]= {Z13, Z23, Z12, CKi, WW0, Z21, Z32, Z31}

Out[]= {XX0, XX1, XX2, HHr, HHi, WW0, WW1, WW2}

In[]:= Clear [inlist, FreeLie, nofunction]

Lielist = Union [Zlist, XWlist];

inlist [a_, lst_] := Module [{in}, in = False;

Do[If[lst〚j〛 ⩵ a, in = True;

Break []], {j, 1, Length [lst]}]; in]

FreeLie [a_] := Module [{fr}, fr = True;

Do[If[! FreeQ [a, Lielist 〚j〛], fr = False;

Break []], {j, 1, Length [Lielist]}]; fr]

fctlist = {Phi, f, g, bt};

nofunction [f_] := Module [{fr}, fr = True;

Do[If[! FreeQ [f, fctlist 〚j〛], fr = False;

Break []], {j, 1, Length [fctlist]}];

fr]

The routine inlist[a,lst] checks whether the symbol a occurs in the list lst.

The routine FeeLie[a] gives true if the expression a does not contain an element in the bases of the Lie

algebra.

In the differentiations only the symbols in fctlist are considered as functions with non-zero derivatives.

If more functions are used, add them to fctlist.

The routine nofunction[f] gives true if f is not recognized as a function.

In[]:=

Multiplication relations

The routine mult carries out the multiplication of basis functions of k by the factors that occur in the

transition from right differentiation to interior differentiation.

The routine uses definitions in section 4c of this notebook.

The substitution rule recognizes products only if all brackets in expressions are expanded. To enlarge

the probability of catching all products the routine Expand is used twice.

In[]:= Clear [mult]

multsub =

{Phi[eta_, 1, eps_, zt_] × Phi[h_, p_, r_, q_] ⧴ Phiprod [eta, eps, zt, h, p, r, q]};

mult [xx_] := Module [{x}, x = Expand [xx] /. multsub; Expand [x] /. multsub]

(* See 4d *)

In[]:=

2

