Analysis in one complex variable Lecture 1 – Introduction

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

L01P01 - Introduction

Cavalcanti

The complex numbers

• Invented by Gerolano Cardano in the 1500's.

• They come about when trying to find solutions to polynomial equations.

The complex numbers

- Add to \mathbb{R} the solution to $x^2 + 1 = 0$: now $\sqrt{-1}$ exists!
- But where is it?

Complex Algebra

• We can manipulate $\sqrt{-1}$ formally:

$$(x + \sqrt{-1}y)(x' + \sqrt{-1}y') = (xx' - yy') + \sqrt{-1}(xy' + x'y)$$
$$= (x' + \sqrt{-1}y')(x + \sqrt{-1}y).$$

• If
$$z = (x + \sqrt{-1}y)$$
, the complex conjugate of z is $\overline{z} = x - \sqrt{-1}y$.

- We have $z\bar{z} = x^2 + y^2 = ||z||^2$, hence if $z \neq 0$, $z^{-1} = \frac{\bar{z}}{||z||^2}$.
- Hence we can divide by complex numbers!

$$zw^{-1} = z\frac{\bar{w}}{\|w\|^2}$$

Complex Algebra

• But be aware

$$1 = \sqrt{1} = \sqrt{(-1)^2} \neq (\sqrt{-1})^2 = -1$$

- This problem ultimately comes from the fact that å is not a function.
- Introduce $i = \sqrt{-1}$.

Where is *i*?

• One of the axioms for the real line is that it is complete: it has no holes.

Where is i? – A new dimension

• To introduce *i* we need an *extra dimension*.

• Geometric interpretation upshot: polar coordinates: $z = ||z||(\cos \theta + i \sin \theta).$

L01P01 - Introduction

Where is *i*?

• Geometric interpretation upshot: polar coordinates: $z = ||z||(\cos \theta + i \sin \theta).$

Calculus – Derivatives

• For $f : \mathbb{R} \to \mathbb{R}$ we have

$$\left.\frac{df}{dx}\right|_{x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

• Can do the same for a complex function, $f : \mathbb{C} \to \mathbb{C}$.

$$\left. \frac{df}{dz} \right|_{z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

• But $\mathbb{C} = \mathbb{R}^2$! Any relation between derivatives?

L01P01 - Introduction

Calculus – Integration

- Less obvious.
- Integrate over paths?
- Integrate over domains?
- What should be the answer?

$$\int_{?} f = ?$$

• Should integration and differentiation be "inverses" of each other?

Calculus – Why?

Because we can!

Theorem (Fundamental Theorem of Algebra)

Every complex polynomial of positive degree has a root.

Complex functions turn out to be very useful in analysis.

Transforms

• The Fourier transform of a function $f \colon \mathbb{R} \to \mathbb{C}$ is defined as

$$\hat{f}: \mathbb{R} \to \mathbb{R}, \qquad \hat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \xi} f(x) dx.$$

• Basic property (integration by parts):

$$(\hat{f}')(\xi) = 2\pi i \xi \hat{f}(\xi).$$

Changes differential equations into polynomial equations (easier to solve/tackle).

- $u_{tt} = u_{xx} \rightsquigarrow \hat{u}_{tt} = (2\pi i\xi)^2 \hat{u} \rightsquigarrow \hat{u} = ae^{2\pi i\xi t} + be^{-2\pi i\xi t}$
- Once we have \hat{u} , how do we get u?

Rerun of real analysis?

- Having complex derivatives is much more restrictive than having real derivatives.
- If *f* : C → C has complex derivatives at all points, then *f* has infinitely many derivatives and its Taylor series converges to *f*.

Exercises

Exercise

Let $z = r(\cos \theta + i \sin \theta)$ and $w = \rho(\cos \tau + i \sin \tau)$. Show that

$$zw = r\rho(\cos(\theta + \tau) + i\sin(\theta + \tau)).$$

Conclude that $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$.