Analysis in one complex variable Lecture 1 - Introduction

Gil Cavalcanti

Utrecht University

April 2020
Utrecht

The complex numbers

- Invented by Gerolano Cardano in the 1500's.

- They come about when trying to find solutions to polynomial equations.

The complex numbers

- Add to \mathbb{R} the solution to $x^{2}+1=0$: now $\sqrt{-1}$ exists!
- But where is it?

Complex Algebra

- We can manipulate $\sqrt{-1}$ formally:

$$
\begin{aligned}
(x+\sqrt{-1} y)\left(x^{\prime}+\sqrt{-1} y^{\prime}\right) & =\left(x x^{\prime}-y y^{\prime}\right)+\sqrt{-1}\left(x y^{\prime}+x^{\prime} y\right) \\
& =\left(x^{\prime}+\sqrt{-1} y^{\prime}\right)(x+\sqrt{-1} y) .
\end{aligned}
$$

- If $z=(x+\sqrt{-1} y)$, the complex conjugate of z is $\bar{z}=x-\sqrt{-1} y$.
- We have $z \bar{z}=x^{2}+y^{2}=\|z\|^{2}$, hence if $z \neq 0, z^{-1}=\frac{\bar{z}}{\|z\|^{2}}$.
- Hence we can divide by complex numbers!

$$
z w^{-1}=z \frac{\bar{w}}{\|w\|^{2}}
$$

Complex Algebra

- But be aware

$$
1=\sqrt{1}=\sqrt{(-1)^{2}} \neq(\sqrt{-1})^{2}=-1
$$

- This problem ultimately comes from the fact that $\sqrt{\bullet}$ is not a function.
- Introduce $i=\sqrt{-1}$.

Where is i ?

- One of the axioms for the real line is that it is complete: it has no holes.

Where is i ? - A new dimension

- To introduce i we need an extra dimension.

- Geometric interpretation upshot: polar coordinates: $z=\|z\|(\cos \theta+i \sin \theta)$.

Where is i ?

- Geometric interpretation upshot: polar coordinates: $z=\|z\|(\cos \theta+i \sin \theta)$.

Calculus - Derivatives

- For $f: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
\left.\frac{d f}{d x}\right|_{x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- Can do the same for a complex function, $f: \mathbb{C} \rightarrow \mathbb{C}$.

$$
\left.\frac{d f}{d z}\right|_{z_{0}}=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

- But $\mathbb{C}=\mathbb{R}^{2}$! Any relation between derivatives?

Calculus - Integration

- Less obvious.
- Integrate over paths?
- Integrate over domains?
- What should be the answer?

$$
\int_{?} f=?
$$

- Should integration and differentiation be "inverses" of each other?

Calculus - Why?

Because we can!

Theorem (Fundamental Theorem of Algebra)
 Every complex polynomial of positive degree has a root.

Complex functions turn out to be very useful in analysis.

Transforms

- The Fourier transform of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ is defined as

$$
\hat{f}: \mathbb{R} \rightarrow \mathbb{R}, \quad \hat{f}(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} f(x) d x
$$

- Basic property (integration by parts):

$$
\left(\hat{f}^{\prime}\right)(\xi)=2 \pi i \xi \hat{f}(\xi)
$$

Changes differential equations into polynomial equations (easier to solve/tackle).

- $u_{t t}=u_{x x} \leadsto \hat{u}_{t t}=(2 \pi i \xi)^{2} \hat{u} \leadsto \hat{u}=a e^{2 \pi i \xi t}+b e^{-2 \pi i \xi t}$
- Once we have \hat{u}, how do we get u ?

Rerun of real analysis?

- Having complex derivatives is much more restrictive than having real derivatives.
- If $f: \mathbb{C} \rightarrow \mathbb{C}$ has complex derivatives at all points, then f has infinitely many derivatives and its Taylor series converges to f.

Exercises

Exercise

Let $z=r(\cos \theta+i \sin \theta)$ and $w=\rho(\cos \tau+i \sin \tau)$. Show that

$$
z w=r \rho(\cos (\theta+\tau)+i \sin (\theta+\tau))
$$

Conclude that $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$.

