Analysis in one complex variable Lecture 1 - Complex numbers

Gil Cavalcanti

Utrecht University

April 2020

Utrecht

The complex numbers

- \mathbb{C} is obtained from \mathbb{R} by adding a root, i, to the equation $x^{2}+1=0$.
- A complex number is always of the form $z=x+i y$, with $x, y \in \mathbb{R}$.
- x is the real part of $z, x=\operatorname{Re}(z)$
- y is the imaginary part of $z, y=\operatorname{Im}(z)$.
- We can add complex numbers componentwise:

$$
(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right)
$$

- We can multiply complex numbers using $i^{2}=-1$:

$$
(x+i y)\left(x^{\prime}+i y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime \prime}\right)+i\left(x y^{\prime}+y x^{\prime}\right) .
$$

The complex numbers

- the complex conjugate of $z=x+i y$ is

$$
\bar{z}=x-i y
$$

- z is real iff $\bar{z}=z$
- z is imaginary iff $\bar{z}=-z$

The complex numbers

- Basic properties:

$$
\begin{aligned}
\overline{\bar{z}} & =z \\
\overline{z w} & =\bar{z} \bar{w} \\
z \bar{z} & =\left(x^{2}+y^{2}\right)=\|z\|^{2} \\
z^{-1} & =\frac{\bar{z}}{\|z\|^{2}} \\
\|\bar{z}\| & =\|z\| \\
\|z w\| & =\|z\|\|w\| \\
\|z w\|^{2}=z w \overline{z w} & =z w \bar{z} \bar{w}=z \bar{z} w \bar{w}=\|z\|^{2}\|w\|^{2}
\end{aligned}
$$

The complex numbers

- We have

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}), \quad \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

The complex numbers

- If we use complex addition and restrict multiplication to $\mathbb{R} \subset \mathbb{C}$ we see that $\mathbb{C}=\mathbb{R}^{2}$ as a vector space.
- The only new thing is multiplication by i.

The complex numbers - Polar coordinates

- We write a complex number $z=x+i y$ in polar coordinates:

$$
z=r(\cos \theta+i \sin \theta)
$$

with $r=\|z\|, \cos \theta=\frac{x}{\|z\| \|}, \sin \theta=\frac{y}{\|z\|}$.

- Complex multiplication has a simple description:

$$
m_{z}: \mathbb{C} \rightarrow \mathbb{C}, \quad m_{z}(w)=z w,
$$

corresponsds to scaling by $\|z\|$ and rotation by the angle θ.

- The angle θ is the argument of z.

The complex numbers - Polar coordinates

- If we focus on the unitary circle, that is, numbers of the form

$$
z=\cos \theta+i \sin \theta, \quad w=\cos \varphi+i \sin \varphi
$$

then

$$
z w=\cos (\theta+\varphi)+i \sin (\theta+\varphi)
$$

Writing a number in polar coordinates transforms multiplication into sums.

The complex numbers - Polar coordinates

- $\frac{d(\cos t+i \sin t)}{d t}=-\sin t+i \cos t=i(\cos t+i \sin t)$.
- For $a \in \mathbb{R}$ the solution to $\frac{d f}{d t}=a f$ is given by $f(t)=e^{a t}$. So we define

$$
e^{i \theta}:=\cos \theta+i \sin \theta
$$

- Properties rephrased: $e^{i \theta} e^{i \varphi}=e^{i(\theta+\varphi)}$ and $\frac{d}{d t} t^{i t}=i e^{i t}$.
- We write in general $z=r e^{i \theta}$.

The complex numbers - Polar coordinates

- We define further $e^{x+i y}:=e^{x} e^{i y}$
- It follows that $e^{z} e^{w}=e^{z+w}$.

The complex numbers - Complex functions

Definition

A complex function is a function with values in \mathbb{C} :

$$
f: S \rightarrow \mathbb{C}
$$

- Here we will focus on the case when $S \subset \mathbb{C}$.
- Composing with Re and Im we obtain underlying real functions:

$$
u=\operatorname{Re}(f), \quad v=\operatorname{Im}(f), \quad f=u+i v
$$

The complex numbers - Complex functions

Example

$$
\begin{aligned}
& \text { - } f(z)=\|z\|^{2}=z \bar{z} \\
& \text { - } f(z)=\operatorname{Re}(z)=\frac{z+\bar{z}}{2} \\
& \text { f } f(z)=z^{2}+2 z+1 \\
& f(z)=e^{z} \\
& m_{z}(w)=z w \text { for a fixed } z \in \mathbb{C} .
\end{aligned}
$$

