Analysis in one complex variable Lecture 1 – Complex numbers

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

L01P02 - Complex numbers

Cavalcanti

- \mathbb{C} is obtained from \mathbb{R} by adding a root, *i*, to the equation $x^2 + 1 = 0$.
- A complex number is always of the form z = x + iy, with $x, y \in \mathbb{R}$.
- *x* is the real part of *z*, x = Re(z)
- *y* is the imaginary part of *z*, y = Im(z).
- We can add complex numbers componentwise:

$$(x + iy) + (x' + iy') = (x + x') + i(y + y').$$

• We can multiply complex numbers using $i^2 = -1$:

$$(x + iy)(x' + iy') = (xx' - yy'') + i(xy' + yx').$$

L01P02 - Complex numbers

• the complex conjugate of z = x + iy is

$$\bar{z} = x - iy$$

•
$$z$$
 is real iff $\overline{z} = z$

• *z* is imaginary iff $\bar{z} = -z$

• Basic properties:

$$\bar{\overline{z}} = z$$

$$\overline{zw} = \overline{z}\overline{w}$$

$$z\overline{z} = (x^2 + y^2) = ||z||^2$$

$$z^{-1} = \frac{\overline{z}}{||z||^2}$$

$$||\overline{z}|| = ||z||$$

$$zw|| = ||z|| ||w||$$

$$\|zw\|^2 = zw\overline{zw} = zw\overline{z}\overline{w} = z\overline{z}w\overline{w} = \|z\|^2\|w\|^2.$$

L01P02 - Complex numbers

• We have

$$\operatorname{Re}(z) = \frac{1}{2}(z + \bar{z}), \qquad \operatorname{Im}(z) = \frac{1}{2i}(z - \bar{z}).$$

L01P02 - Complex numbers

Cavalcanti

- If we use complex addition and restrict multiplication to $\mathbb{R} \subset \mathbb{C}$ we see that $\mathbb{C} = \mathbb{R}^2$ as a vector space.
- The only new thing is multiplication by *i*.

• We write a complex number z = x + iy in polar coordinates:

$$z = r(\cos\theta + i\sin\theta),$$

with r = ||z||, $\cos \theta = \frac{x}{||z||}$, $\sin \theta = \frac{y}{||z||}$.

• Complex multiplication has a simple description:

$$m_z \colon \mathbb{C} \to \mathbb{C}, \qquad m_z(w) = zw,$$

corresponses to scaling by ||z|| and rotation by the angle θ .

• The angle θ is the *argument* of *z*.

• If we focus on the unitary circle, that is, numbers of the form

$$z = \cos \theta + i \sin \theta, \qquad w = \cos \varphi + i \sin \varphi,$$

then

$$zw = \cos(\theta + \varphi) + i\sin(\theta + \varphi),$$

Writing a number in polar coordinates transforms multiplication into sums.

•
$$\frac{d(\cos t + i\sin t)}{dt} = -\sin t + i\cos t = i(\cos t + i\sin t).$$

• For $a \in \mathbb{R}$ the solution to $\frac{df}{dt} = af$ is given by $f(t) = e^{at}$. So we *define*

$$e^{i\theta} := \cos\theta + i\sin\theta.$$

- Properties rephrased: $e^{i\theta}e^{i\varphi} = e^{i(\theta+\varphi)}$ and $\frac{d}{dt}e^{it} = ie^{it}$.
- We write in general $z = re^{i\theta}$.

- We define further $e^{x+iy} := e^x e^{iy}$
- It follows that $e^z e^w = e^{z+w}$.

The complex numbers - Complex functions

Definition

A complex function is a function with values in \mathbb{C} :

 $f\colon S\to\mathbb{C}$

- Here we will focus on the case when $S \subset \mathbb{C}$.
- Composing with Re and Im we obtain underlying real functions:

$$u = \operatorname{Re}(f), \quad v = \operatorname{Im}(f), \quad f = u + iv$$

The complex numbers - Complex functions

Example

•
$$f(z) = ||z||^2 = z\bar{z}$$
,

•
$$f(z) = \operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
,

•
$$f(z) = z^2 + 2z + 1$$
,

•
$$f(z) = e^z$$
,

•
$$m_z(w) = zw$$
 for a fixed $z \in \mathbb{C}$.