# Analysis in one complex variable Lecture 1 - Complex derivative 

## Gil Cavalcanti

Utrecht University

April 2020
Utrecht

## The complex derivative

## Definition

The complex derivative of a continuous function $f: S \subset \mathbb{C} \rightarrow C$ defined on an open set $S \in \mathbb{C}$ at a point $z_{0} \in S$, is the limit

$$
\frac{d f}{d z}\left(z_{0}\right):=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

The function $f$ is holomorphic in $S$ if it has complex derivative at every $z \in S$.

The notion of convergence comes from the Euclidean distance in $\mathbb{R}^{2}$.

## Examples and non examples

- Any constant function is complex differentiable and has zero derivative.
- The identity function is complex differentiable and has derivative 1:

$$
\lim _{z \rightarrow z_{0}} \frac{z-z_{0}}{z-z_{0}}=\lim _{z \rightarrow z_{0}} 1=1
$$

## Lemma (Leibniz rule)

Iff, $g: S \rightarrow \mathbb{C}$ both have complex derivative at $z$ then their product also has a complex derivative at $z$ :

$$
\frac{d}{d z}(g f)(z)=g(z) \frac{d f}{d z}(z)+\frac{d g}{d z}(z) f(z)
$$

## Examples and non examples

## Example

Given $n \in \mathbb{N}$, the function $z \mapsto z^{n}$ is holomorphic and its derivative is

$$
\frac{d z^{n}}{d z}=n z^{n-1}
$$

Indeed, we already computed the derivative of the identity map and of products of maps. The result follows by induction on $n$.

## Example

Any complex polynomial is holomorphic.

## Examples and non examples

## Lemma

If $f, g: S \rightarrow \mathbb{C}$ both have complex derivative at $z$ and $g(z) \neq 0$, then $f / g$ has a complex derivative at $z$ :

$$
\frac{d}{d z}\left(\frac{f}{g}\right)(z)=\frac{g(z) \frac{d f}{d z}(z)-\frac{d g}{d z}(z) f(z)}{g(z)^{2}}
$$

## Example

The quotient of to polynomials, $f / g$ is a holomorphic function in the set $S=g^{-1}(\mathbb{C} \backslash\{0\}) \subset \mathbb{C}$.

## Examples and non examples

## Lemma (Chain rule)

If $f: S \rightarrow \mathbb{C}$ and $g: S^{\prime} \rightarrow \mathbb{C}$ are such that $g\left(S^{\prime}\right) \subset S, g$ has complex derivative at $z_{0}$ and $f$ has complex derivative at $g\left(z_{0}\right)$, then $f \circ g: S^{\prime} \rightarrow \mathbb{C}$ has derivative at $z_{0}$ given by

$$
\frac{d}{d z}(f \circ g)\left(z_{0}\right)=\frac{d f}{d z}\left(g\left(z_{0}\right)\right) \frac{d g}{d z}\left(z_{0}\right) .
$$

## Examples and non examples

## Example

Consider $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\bar{z}$. We claim that this function is not complex differentiable.
Compute it by taking specific paths approaching $z_{0}$. Taking the path $z_{0}+t$, with $t \in(-\varepsilon, \varepsilon) \subset \mathbb{R}$ we get

$$
\lim _{t \rightarrow 0} \frac{\overline{z_{0}+t}-\overline{z_{0}}}{t}=\lim _{t \rightarrow 0} \frac{t}{t}=1
$$

While taking the path $z_{0}+i t$, with $t \in(-\varepsilon, \varepsilon)$ we get

$$
\lim _{t \rightarrow 0} \frac{\overline{z_{0}+i t}-\overline{z_{0}}}{i t}=\lim _{t \rightarrow 0} \frac{-i t}{i t}=-1
$$

So the limit does not exist.

## Examples and non examples

## Example

The functions Re and Im are not complex differentiable. Indeed, we have, for example

$$
\bar{z}=-z+2 \operatorname{Re}(z)
$$

so if Re had a complex derivative, so would conjugation.

## Cauchy-Riemann equations

These previous examples show that being differentiable as a real function is not enough. To be complex differentiable seems to force a relation between partial derivatives of $f$.

## Lemma (Cauchy-Riemann equations)

Let $f=u+i v: S \subset \mathbb{C} \rightarrow C$ be a function. If $f$ is complex differentiable at $z_{0} \in S$ we have

$$
\frac{\partial u}{\partial x}\left(z_{0}\right)=\frac{\partial v}{\partial y}\left(z_{0}\right), \quad \frac{\partial u}{\partial y}\left(z_{0}\right)=-\frac{\partial v}{\partial x}\left(z_{0}\right) .
$$

## Cauchy-Riemann equations

## Proof.

Just as for $\bar{z}$, we assume that $f$ is complex differentiable and compute its limit using two different paths.
First use the path $t \mapsto z+t$, for $t \in(-\varepsilon, \varepsilon)$ :

$$
\begin{aligned}
\frac{d f}{d z}(z) & =\lim _{t \rightarrow 0} \frac{f(z+t)-f(z)}{t} \\
& =\lim _{t \rightarrow 0} \frac{u(x+t+i y)-u(x+i y)+i(v(x+t+i y)-v(x+i y))}{t} \\
& =\frac{\partial u}{\partial x}(x, y)+i \frac{\partial v}{\partial x}(x, y) .
\end{aligned}
$$

## Cauchy-Riemann equations

## Proof.

Next we use the path $t \mapsto z+i t$, for $t \in(-\varepsilon, \varepsilon)$ :

$$
\begin{aligned}
\frac{d f}{d z}(z) & =\lim _{t \rightarrow 0} \frac{f(z+i t)-f(z)}{i t} \\
& =\lim _{t \rightarrow 0} \frac{u(x+i(y+t))-u(x+i y)+i(v(x+i(y+t))-v(x+i y))}{i t} \\
& =-i \frac{\partial u}{\partial y}(x, y)+\frac{\partial v}{\partial y}(x, y) .
\end{aligned}
$$

Comparing real and imaginary parts of the two expressions we obtain the relations.

## Cauchy-Riemann equations

Rephrasing, if $f=u+i v$ is holomorphic, and we regard it as a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, then its derivative is of the form

$$
D f=\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right) .
$$

## Cauchy-Riemann equations

## Theorem <br> Let $f: S \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a continuous function with continuous partial derivatives. If the derivative of $f$ satisfies the Cauchy-Riemann equations, then $f$ is holomorphic using the identification $\mathbb{R}^{2}=\mathbb{C}$.

## Cauchy-Riemann equations

## Proof.

Since the partial derivatives of $f$ exist and are continuous, $f$ is differentiable, that is, for every $z_{0}$

$$
f(z)=f\left(z_{0}\right)+\left.D f\right|_{z_{0}}\left(z-z_{0}\right)+o\left(z-z_{0}\right)
$$

where

$$
\lim _{z \rightarrow z_{0}} \frac{\left\|o\left(z-z_{0}\right)\right\|}{\left\|z-z_{0}\right\|}=0
$$

## Cauchy-Riemann equations

## Proof.

Since $f$ satisfies the Cauchy-Riemann relations,

$$
\left.D f\right|_{z_{0}}=\left(\begin{array}{cc}
\left.u_{x}\right|_{z_{0}} & -\left.v_{x}\right|_{z_{0}} \\
\left.v_{x}\right|_{z_{0}} & \left.u_{x}\right|_{z_{0}}
\end{array}\right)
$$

and we see that under the identification $\mathbb{R}^{2}=\mathbb{C}$ we have $\left.D f\right|_{z_{0}}\left(z-z_{0}\right)=\left.\left(u_{x}+i v_{x}\right)\right|_{z_{0}}\left(z-z_{0}\right)$.
Therefore

$$
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\left.u_{x}\right|_{z_{0}}+\left.i v_{x}\right|_{z_{0}}+\frac{o\left(z-z_{0}\right)}{z-z_{0}} .
$$

And $f$ is complex differentiable at $z_{0}$ with derivative $u_{x}{\mid z_{0}}+\left.i v_{x}\right|_{z_{0}}$.

