Analysis in one complex variable Lecture 2 - Complex derivative II

Gil Cavalcanti

Utrecht University
April 2020
Utrecht

Last lecture: Cauchy-Riemann equations

Recall

Theorem

Let $f: S \subset \mathbb{C} \rightarrow \mathbb{C}$ be a function and $z \in S$ and write it in terms of its real and imaginary parts: $f=u+i v$. Then f is holomorphic at z if and only if the derivative of f as a function from \mathbb{R}^{2} to \mathbb{R}^{2} at z exists and satisfies the Cauchy-Riemann equations

$$
\left.u_{x}\right|_{z}=\left.\left.v_{y}\right|_{z} \quad u_{y}\right|_{z}=-\left.v_{x}\right|_{z}
$$

Last lecture: Cauchy-Riemann equations

Example

Consider $f(z)=\bar{z}$. Then, as a function in \mathbb{R}^{2} we have

$$
f(x, y)=(x,-y)
$$

so $u_{x}=1, u_{y}=0, v_{x}=0$ and $v_{y}=-1$.
We see that $u_{x} \neq v_{y}$ hence this function is not holomorphic.

Last lecture: Cauchy-Riemann equations

- The Cauchy-Riemann equations phrase a new property (holomorphicity) in familar terms (differentiability of functions of many variables).
- They have computational value, but do not shed little light into the holomorphic condition.
- What would be the complex derivative of a function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$?

Linear algebra

Consider $m_{z}: \mathbb{C} \rightarrow \mathbb{C}$. We see that it is a real linear transformation:

$$
m_{z}(a+\lambda b)=z(a+\lambda b)=z a+z \lambda b=m_{z}(a)+\lambda m_{z}(b)
$$

Linear algebra

Determine the matrix for m_{z} for the usual basis of $\mathbb{R}^{2},\{1, i\}$: If $z=x+i y$, then

$$
m_{z}(1)=x+i y \quad m_{z}(i)=-y+i x
$$

Hence, as a matrix,

$$
m_{z}=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)
$$

Compare this to the CR-equations.

Cauchy-Riemann equations v2

Theorem

Let $f: S \subset \mathbb{C} \rightarrow \mathbb{C}$ be a function and $z \in S$. Then f is holomorphic at z if and only if the real derivative of f at z exists and corresponds to multiplication by a complex number.

Any ideas of what it means for $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ to be complex differentiable?

Linear algebra

The only difference between \mathbb{R}^{2} and \mathbb{C} is that the latter has the operation "multiplication by i ".
We have

$$
m_{i}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Lemma

A linear transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponds to complex multiplication by some number $z \in \mathbb{C}$ if and only if A commutes with m_{i}.

Linear algebra

Proof.

We perform a direct computation. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
\begin{aligned}
& m_{i} \circ A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-c & -d \\
a & b
\end{array}\right) \\
& A \circ m_{i}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
b & -a \\
d & -c
\end{array}\right) .
\end{aligned}
$$

Hence $m_{i} \circ A=A \circ m_{i}$ iff $a=d$ and $c=-b$.

Cauchy-Riemann equations v3

Theorem

Let $f: S \subset \mathbb{C} \rightarrow \mathbb{C}$ be a function and $z \in S$. Then f is holomorphic at z if and only if the real derivative of f at z exists and commutes with multiplication by i :

$$
d f \circ m_{i}=m_{i} \circ d f .
$$

Definition

Let $f: S \subset \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ be a function and $z \in S$. Then f is holomorphic at z if and only if the real derivative of f at z exists and corresponds to matrix in $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right) \subset \mathcal{L}\left(\mathbb{R}^{2 n}, \mathbb{R}^{2 m}\right)$ or, equivalently, if $d f$ commutes with multiplication by i :

$$
d f \circ m_{i}=m_{i} \circ d f .
$$

The pedantic stuff

- Does m_{i} make sense?
- Originally m_{i} was defined as a linear transformation $\mathbb{C} \rightarrow \mathbb{C}$, but derivatives should be applied to tangent vectors.
- Notice that m_{i} induces an operation on $T_{z} \mathbb{C}$ as follows.

The pedantic stuff

- We normally distinguish the linear transformation m_{i} from the induced operation on tangent spaces, which denote by I.
- So f is holomorphic iff $d f \circ I=I \circ d f$.

