Analysis in one complex variable Lecture 2 - Conformal structure

Gil Cavalcanti

Utrecht University

April 2020
Utrecht

Linear algebra is the best!

Yes, it is.

Inner product

Definition

An inner product on a vector space V is a bilinear map

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}
$$

which is symmetric and positive definite, that is

$$
\langle X, Y\rangle=\langle Y, X\rangle, \quad \text { and } \quad\langle X, X\rangle>0 \text { if } X \neq 0
$$

Inner product

Lemma (Cauchy-Schwarz inequality)

Given a vector space with inner product, $(V,\langle\cdot, \cdot\rangle)$, V we have

$$
\langle X, Y\rangle^{2} \leq\langle X, X\rangle\langle Y, Y\rangle
$$

Inner product

Proof.

$$
\begin{aligned}
0 & \leq\left\langle Y-\frac{\langle X, Y\rangle}{\langle X, X\rangle} X, Y-\frac{\langle X, Y\rangle}{\langle X, X\rangle} X\right\rangle \\
& =\langle Y, Y\rangle-2 \frac{\langle X, Y\rangle^{2}}{\langle X, X\rangle}+\frac{\langle X, Y\rangle^{2}}{\langle X, X\rangle} \\
& =\langle Y, Y\rangle-\frac{\langle X, Y\rangle^{2}}{\langle X, X\rangle} .
\end{aligned}
$$

Rearranging we obtain the result.

Norm

- Given a vector space with inner product, $(V,\langle\cdot, \cdot\rangle)$, we define

$$
\|X\|=\sqrt{\langle X, X\rangle} .
$$

- $\|\cdot\|$ is a norm, that is,
(1) $\|X\|>0$, if $X \neq 0$,
(2) $\|\lambda X\|=|\lambda|\|X\|$,
(3) $\|X+Y\| \leq\|X\|+\|Y\|$.

For the last:

$$
\begin{aligned}
\|X+Y\|^{2} & =\langle X+Y, X+Y\rangle=\langle X, X\rangle+2\langle X, Y\rangle+\langle Y, Y\rangle \\
& \leq\langle X, X\rangle+2 \sqrt{\langle X, X\rangle\langle Y, Y\rangle}+\langle Y, Y\rangle \\
& =(\sqrt{\langle X, X\rangle}+\sqrt{\langle Y, Y\rangle})^{2}
\end{aligned}
$$

Angle

- From the Cauchy-Schwarz inequality

$$
\langle X, Y\rangle \leq\|X\|\|Y\|
$$

there is a unique $\theta \in[0, \pi]$ such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cos \theta
$$

This is the unoriented angle between X and $Y(\theta=\measuredangle(X, Y))$

Angle

If we consider \mathbb{R}^{2} with its usual orientation we can further assign a sign to $\measuredangle(X, Y)$:

$$
\begin{aligned}
& \measuredangle(X, Y)>0 \text { if }\{X, Y\} \text { is a positive basis for } \mathbb{R}^{2} \\
& \measuredangle(X, Y)<0 \text { if }\{X, Y\} \text { is a negative basis for } \mathbb{R}^{2}
\end{aligned}
$$

Ambiguous for angles $\pm \pi$.
Fix this by declaring $\measuredangle \in(-\pi, \pi]$.

Angle

- If $\langle\cdot, \cdot\rangle$ is an inner product, so is $\langle\langle\cdot, \cdot\rangle\rangle:=\lambda\langle\cdot, \cdot\rangle$ for $\lambda>0$.
- $\langle X, Y\rangle=\|X\|\|Y\| \cos \theta$.
- For these inner products we have

$$
\measuredangle_{\langle\cdot, \cdot\rangle}=\measuredangle_{\langle\langle\cdot,\rangle\rangle}
$$

Definition

A conformal structure on a vector space is an inner product up to scaling on V.

A conformal structure is a way to measure angles.

Angle

Definition

Given a vector space V with a conformal structure, a conformal transformation of V is a linear transformation $A: V \rightarrow V$ that preserves angles.

Lemma

Given a conformal transformation A on V and an inner product which determines the conformal structure on V, there is a unique orthogonal transformation P and $r>0$ such that $A=r P$.

Angle

Proof.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for V.
Then $\left\{A e_{1}, \ldots, A e_{n}\right\}$ is a collection of pairwise orthogonal vectors in V.
We claim that $\left\|A e_{i}\right\|=\left\|A e_{j}\right\|$ for all i, j.
Indeed, $e_{i}+e_{j}$ and $e_{i}-e_{j}$ are orthogonal to each other, hence so are $A\left(e_{i}+e_{j}\right)$ and $A\left(e_{i}-e_{j}\right)$:

$$
0=\left\langle A\left(e_{i}+e_{j}\right), A\left(e_{i}-e_{j}\right)\right\rangle=\left\langle A\left(e_{i}\right), A\left(e_{i}\right)\right\rangle-\left\langle A\left(e_{j}\right), A\left(e_{j}\right)\right\rangle .
$$

Let $r=\left\|A e_{1}\right\|$. Then $P=\frac{A}{r}$ is orthogonal.

Angles in \mathbb{R}^{2}

From Linear Algebra/Group Theory we know that given $A \in O(2)$ there is $\theta \in(-\pi, \pi]$ such that

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

Angles in \mathbb{R}^{2}

Given a conformal transformation A of \mathbb{R}^{2} there are $x, y \in \mathbb{R}$ such that $x^{2}+y^{2} \neq 0$ and

$$
A=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{cc}
x & y \\
y & -x
\end{array}\right)
$$

A preserves orientations (and oriented angles) if and only if it is of the first type.

Angles in \mathbb{R}^{2}

Lemma

A linear transformation of \mathbb{R}^{2} preserves oriented angles if and only if it corresponds to multiplication by a complex number under the identification $\mathbb{R}^{2}=\mathbb{C}$.

Holomorphic functions and angles

Proposition

A function $f: S \subset \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic if and only if it has a real derivative and df preserves oriented angles whenever it is not zero.

Exercise

Exercise (Artwork)

In \mathbb{C} consider the collection of lines

$$
S=\{x+i y: x \text { or } y \in \mathbb{Z}\} .
$$

Draw $f(S)$ for the following functions:

- $f(z)=z^{2}$,
- $f(z)=z^{3}$,
- $f(z)=e^{z}$.

