Analysis in one complex variable Lecture 2 – Power Series

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

L02P03 - Power Series

Cavalcanti

Algebra is the best!

Kidding, of course it is not.

L02P03 - Power Series

Cavalcanti

- A formal power series is an algebraic gadget.
- Given any ring *R*, we can consider the formal power series in one variable in *R*, denoted by *R*[[*x*]].
- Elements of R[[x]] are of the form $a = \sum_{n=0}^{\infty} a_i x^i$, with $a_i \in R$.
- *R*[[*x*]] is a purely algebraic object.
- We can add, multiply, invert and even compose power series (sometimes), but we can not evaluate them at a point *x* ∈ *R*.

$$(\sum a_i x^i) + (\sum b_i x^i) = \sum (a_i + b_i) x^i$$
$$(\sum a_i x^i) (\sum b_i x^i) = \sum_{i=0}^{\infty} \sum_{j=0}^{i} (a_j b_{i-j}) x^i$$

In particular, for $a \in R[[x]]$, a^2, a^3, \cdots are also in R[[x]].

$$\left(\sum_{i=0}^{\infty} a_i x^i\right) \circ \left(\sum_{j=1}^{\infty} b_j x^j\right) = \sum_{i=0}^{\infty} a_i \left(\sum_{j=1}^{\infty} b_j x^j\right)^i$$

Notice that because the sum $\sum_{j=1}^{\infty} b_j x^j$ starts at j = 1, the expression on the right has finitely many contributions to the coefficient of x^i for any fixed *i*.

L02P03 - Power Series

Definition

The *order* of a power series a, ord(a), is the index of the first nonzero coefficient in a

If *R* is a field (e,.g. \mathbb{R}), we have that $\operatorname{ord}(a\alpha) = \operatorname{ord}(a) + \operatorname{ord}(\alpha)$. In particular, if *a* has an inverse, α , we have that

$$0 = \operatorname{ord}(1) = \operatorname{ord}(a\alpha) = \operatorname{ord}(a) + \operatorname{ord}(\alpha)$$

hence both *a* and α must have order 0.

Lemma

A formal power series is invertible iff it has order zero.

Definition

Two power series, *a* and *b* agree modulo x^n if $a_i = b_i$ for all i < n. We denote this by

 $a \equiv b \mod x^n$.

- Given a power series *a* ∈ ℝ[[*x*]] or ℂ[[*x*]], it becomes a valid question to ask with which real or complex numbers we can substitute *x* and get a convergent series.
- We are led to the world of convergent series/sequences as well as convegent series/sequence of functions.

Definition

A series $\sum a_i$ with $a_i \in \mathbb{C}$ converges absolutely if $\sum |a_i|$ converges.

Definition

A sequence of complex functions $\{f_n\}$ converges uniformly if there is a complex function f with the property that for any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that $||f_n - f|| < \varepsilon$ for all $n > n_0$. Here $|| \cdot ||$ is the supremum norm of the function inside.

Theorem

Given $a = \sum a_i x^i \in \mathbb{C}[[x]]$, there is $r_0 \in [0, \infty]$ such that the series $\sum a_i z^i$ converges uniformly and absolutely in D_r , the disc of radius r, for every $r < r_0$ and diverges for all z with |z| > r.

Definition

The number r_0 above is the *radius of convergence* of the power series.

Lemma

Let $a = \sum a_n z^n$ be a power series and r be its radius of convergence. Then $\frac{1}{r} = \limsup |a_n|^{1/n}.$

Proof.

Let $t = \limsup |a_n|^{1/n}$. We will only do the case $0 < t < \infty$. For any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that $|a_n| < (t + \varepsilon)^n$, for $n > n_0$, by definition of \limsup .

If $|z| < 1/(t + \varepsilon)$, say $|z| = |1/(t + \varepsilon + \delta)$ then

$$|a_n z^n| < (t+\varepsilon)^n \frac{1}{(t+\varepsilon+\delta)^n} = \left(\frac{t+\varepsilon}{t+\varepsilon+\delta}\right)^n$$

hence $\sum |a_n z^n|$ converges by comparing with the geometric series.

Therefore, the radius of converge, *r*, is bigger than $1/(t + \varepsilon)$ for every ε . Hence $r \ge \frac{1}{t}$

Proof.

Conversely, given $\varepsilon > 0$, there is an infinite set $S \subset \mathbb{N}$ such that for all $n \in S$, $|a_n| > (t - \varepsilon)^n$, by definition of \limsup . If $|z| > \frac{1}{t-\varepsilon}$, then for every $n \in S$,

$$|a_n z^n| > (t-\varepsilon)^n \frac{1}{(t-\varepsilon)^n} = 1,$$

hence the series does not converge as the general term does not converge to 0. Therefore $r < \frac{1}{t-\varepsilon}$ for all $\varepsilon > 0$. Hence $r \le \frac{1}{t}$.

Corollary

Given a series $a = \sum a_n z^n$, if $t = \lim |a_n|^{1/n}$ exists, then r = 1/t.

Formal vs Convergent Power Series

Lemma

The operations of sum, product, inversion and composition of functions agree with the same operations for power series.

Analytic functions

Definition

A function $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ is *analytic* if for every point $x \in S$ the power series expansion of f centered at x has positive radius of convergence and converges to f.

Remark

If the power series expansion of f has positive radius of convergence, say it converges on $D_r(x)$, the disc of radius r around x, then for any $x' \in D_r(x)$ the corresponding series also converges at least in the disc of radius r - |x - x'|. In particular, if the power series expansion of f at x has infinite radius of convergence, then f is analytic.

Analytic functions

Example

We are familiar with the expressions

$$e^x = \sum \frac{x^n}{n!}$$

$$\sin x = \sum \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\cos x = \sum \frac{(-1)^n x^{2n}}{(2n)!}$$
$$\frac{1}{1-x} = \sum x^n, \quad \text{for } |x| < 1$$

showing that each of these functions is analytic.

L02P03 - Power Series

Analytic functions

Example

The series $\sum n! x^n$ has zero radius of convergence since $\lim(n!)^{1/n} = \infty$. The function $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & \text{if } x > 0, \\ 0 & \text{if } x \le 0, \end{cases}$$

has infinitely many derivatives at zero and they all vanish. Hence, the power series expansion of f at 0 converges, but does not converge to f.

Derivatives of analytic functions

Theorem

If $f(z) = \sum a_n z^n$ with $z \in \mathbb{C}$ has radius of convergece r, then on the interior of $D_r f$ is holomorphic and its derivative is

$$\frac{df}{dz} = \sum na_n z^{n-1},$$

which also has radius of convergence r.

Exercise

Exercise

Let $f : \mathbb{C} \to \mathbb{C}$ be given by

$$f(z) = \sum \frac{z^n}{n!}.$$

Show that

f has infinite radius of convergence
for x, y ∈ ℝ f(x) = e^x and f(iy) = cos y + i sin y
f(z + w) = f(z)f(w).