Analysis in one complex variable Lecture 3 - Inverse map theorem

Gil Cavalcanti

Utrecht University

April 2020
Utrecht

Last lecture: Power series

Recall:

- Formal power series,
- Sums, products, multiplicative inverses $(1 / f)$ and composition,
- Convergent power series and analytic functions
- Derivatives.

In particular

$$
f=\sum a_{n} z^{n} \Rightarrow \frac{d^{n} f}{d z_{n}}(0)=n!a_{n}
$$

Functional inverse

Given $f: \mathbb{C} \rightarrow \mathbb{C}$, analytic when does it have an analytic (right) inverse?

$$
g: \mathbb{C} \rightarrow \mathbb{C}, \quad f \circ g(z)=z, \text { for all } z
$$

Functional inverse

Theorem (Inverse Function Theorem)

The following hold:

- Let $f=\sum_{i=1}^{\infty} a_{i} z^{i}$ be a formal power series. If $a_{1} \neq 0$, there is a formal power series $g=\sum_{i=1}^{\infty} b_{i} z^{i}$ such that

$$
f \circ g(z)=z
$$

further $g \circ f(z)=z$.

- Iff is a convergent power series, so is g.
- Suppose that $f: U \subset \mathbb{C} \rightarrow \mathbb{C}$ is an analytic function in an open set U and $z_{0} \in U$. If $\frac{d f}{d z}\left(z_{0}\right) \neq 0$, then f is a local analytic isomorphism in a neighbourhood of z_{0}.

Functional inverse

Proof.

Claim 1: We simply construct g term by term.
Degree 0: Since both f and g have vanishing constant terms, it follows that no matter which further choices $f \circ g$ will have vanishing constant term.

Functional inverse

Proof.

Degree 1: Write the series for $f \circ g$ module z^{2}. It is just

$$
\sum_{i=1}^{\infty} a_{i}\left(\sum_{j=1}^{\infty} b_{j} z^{j}\right)^{i}=a_{1} b_{1} z \quad \bmod z^{2}
$$

So if we choose $b_{1}=1 / a_{1}$ further choices of values for b_{j} with $j>1$ will not affect the equality

$$
f \circ g(z)=z \quad \bmod z^{2}
$$

Functional inverse

Proof.

Degree 2: Write the degree two term of $f \circ g$:

$$
\begin{aligned}
\left(\sum_{i=1}^{\infty} a_{i}\left(\sum_{j=1}^{\infty} b_{j} z^{j}\right)^{i}\right)_{2} & =\left(a_{1}\left(b_{1} z^{1}+b_{2} z^{2}\right)^{1}+a_{2}\left(b_{1} z^{1}+b_{2} z^{2}\right)^{2}\right)_{2} \\
& =\left(a_{1} b_{2}+a_{2} b_{1}^{2}\right) z^{2}
\end{aligned}
$$

So if we choose $b_{2}=-a_{2} b_{1}^{2} / a_{1}$ further choices of values for b_{j} with $j>2$ will not affect the equality

$$
f \circ g(z)=z \quad \bmod z^{3}
$$

Functional inverse

Proof.

Degree 3: Write the degree three term of $f \circ g$:

$$
\begin{aligned}
\left(\sum_{i=1}^{\infty} a_{i}\left(\sum_{j=1}^{\infty} b_{j} z^{j}\right)^{i}\right)_{3} & =\left(a_{1}\left(b_{1} z^{1}+b_{2} z^{2}+b_{3} z^{3}\right)^{1}+a_{2}\left(b_{1} z^{1}+b_{2} z^{2}+b_{3} z^{3}\right)^{2}+\right. \\
& =\left(a_{1} b_{3}+2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{3}\right) z^{3}
\end{aligned}
$$

So if we choose $b_{3}=-\left(2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{3}\right) / a_{1}$ further choices of values for b_{j} with $j>3$ will not affect the equality

$$
f \circ g(z)=z \quad \bmod z^{4}
$$

Functional inverse

Proof.

General case: Write the degree k term of $f \circ g$:

$$
\left(\sum_{i=1}^{\infty} a_{i}\left(\sum_{j=1}^{\infty} b_{j} z^{j}\right)^{i}\right)_{k}=a_{1} b_{k}+P_{k}\left(a_{1}, a_{2}, \ldots a_{k}, b_{1}, \ldots, b_{k-1}\right)
$$

where P_{k} is a polynomial with positive integral coefficients (arising from binomial coefficients).
Set

$$
b_{k}=-\frac{P_{k}\left(a_{1}, a_{2}, \ldots a_{k}, b_{1}, \ldots, b_{k-1}\right)}{a_{1}}
$$

Then

$$
f \circ g(z)=z \quad \bmod z^{k+1}
$$

Functional inverse

Proof.

Claim: $g \circ f(z)=z$. Indeed, by first part, $g=\sum_{i=1}^{\infty} b_{i} z^{1}$ with $b_{1} \neq 0$, hence also has a right inverse, h. Then

$$
f(z)=f \circ(g \circ h)(z)=(f \circ g) \circ h(z)=h(z)
$$

Functional inverse

Proof.

Claim 2: If f converges, then g converges. This step is always very important. This step is always annoying and requires a trick or perseverance.
Today we do a trick.

Functional inverse

Proof.

Claim 3. By using translations, assume that $z_{0}=0$ and $f\left(z_{0}\right)=0$, so

$$
f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}
$$

By the previous claims there is g analytic

$$
g(z)=\sum_{i=1}^{\infty} b_{i} z^{i}
$$

for which $f \circ g=g \circ f=\mathrm{Id}$.

The trick

- Assume $a_{1}=1$.
- To prove that g converges in some region we need to show that $\lim \sup \left|b_{n}\right|^{1 / n}<\infty$.
- We do so by cooking up another sequence $\tilde{b_{n}}$ such that for which we can prove $\left|b_{n}\right| \leq\left|\tilde{b_{n}}\right|$ and $\lim \sup \left|\tilde{b_{n}}\right|^{1 / n}<\infty$.
- Since limsup $\left|a_{n}\right|^{1 / n}<\infty$, there is $A>0$ such that $\left|a_{n}\right|<A^{n}$ for all n.
- Define

$$
\tilde{f}(z)=z-\sum_{i \geq 2} A^{i} z^{i}=z-\frac{A^{2} z^{2}}{1-A z}
$$

The trick

Properties of \tilde{f} :

- $\left|a_{n}\right| \leq A^{n}$ for all n and
- the coefficient of z^{i} in \tilde{f} is negative for all $i>1$.

Let \tilde{g} be the formal inverse of \tilde{f}. Then compare the coefficients of \tilde{g} and g.

The trick

- $\tilde{b_{1}}=1=b_{1}$
- $\tilde{b_{2}}=-\tilde{a_{2}} \tilde{b}_{1}^{2}=A^{2}>\left|a_{2} b_{1}^{2}\right|=\left|b_{2}\right|$.

$$
\begin{aligned}
\tilde{b_{3}} & =-\left(2 \tilde{a_{2}} \tilde{b_{1}} \tilde{b_{2}}+\tilde{a_{3}} b_{1}^{3}\right) \\
& =2 A^{2} \tilde{b_{2}}+A^{3} \\
& >\left|2 a_{2} b_{1} b_{2}\right|+\left|a_{3} b_{1}^{2}\right| \\
& >\left|2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{2}\right| \\
& =\left|b_{3}\right| .
\end{aligned}
$$

The trick

Now we only have to prove the theorem for \tilde{f}, which has an explicit form.
Plugging in \tilde{g} in \tilde{f} we must have

$$
z=\tilde{f}(\tilde{g}(z))=\tilde{g}(z)-\frac{A^{2} \tilde{g}(z)^{2}}{1-A \tilde{g}(z)}
$$

Hence

$$
\left(A^{2}+A\right) \tilde{g}(z)^{2}-(1-A z) \tilde{g}(z)+z=0
$$

And

$$
\tilde{g}(z)=\frac{1+A z-\sqrt{(1+A z)^{2}-4 z\left(A^{2}+A\right)}}{2\left(A^{2}+A\right)}
$$

The trick

Now expand this last expression in power series to show that \tilde{g} is analytic.

