Analysis in one complex variable Lecture 3 – Inverse map theorem

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

L03P01 - Inverse map theorem

Cavalcanti

Last lecture: Power series

Recall:

- Formal power series,
- Sums, products, multiplicative inverses (1/*f*) and composition,
- Convergent power series and *analytic functions*
- Derivatives. In particular

$$f = \sum a_n z^n \Rightarrow \frac{d^n f}{dz_n}(0) = n! a_n.$$

Given $f : \mathbb{C} \to \mathbb{C}$, analytic when does it have an analytic (right) inverse?

 $g \colon \mathbb{C} \to \mathbb{C}, \qquad f \circ g(z) = z, \text{ for all } z.$

Theorem (Inverse Function Theorem)

The following hold:

• Let $f = \sum_{i=1}^{\infty} a_i z^i$ be a formal power series. If $a_1 \neq 0$, there is a formal power series $g = \sum_{i=1}^{\infty} b_i z^i$ such that

$$f \circ g(z) = z$$

further $g \circ f(z) = z$.

- *If f is a convergent power series, so is g.*
- Suppose that $f: U \subset \mathbb{C} \to \mathbb{C}$ is an analytic function in an open set U and $z_0 \in U$. If $\frac{df}{dz}(z_0) \neq 0$, then f is a local analytic isomorphism in a neighbourhood of z_0 .

Proof.

Claim 1: We simply construct *g* term by term. **Degree 0**: Since both *f* and *g* have vanishing constant terms, it follows that no matter which further choices $f \circ g$ will have vanishing constant term.

Proof.

Degree 1: Write the series for $f \circ g$ module z^2 . It is just

$$\sum_{i=1}^{\infty} a_i (\sum_{j=1}^{\infty} b_j z^j)^i = a_1 b_1 z \qquad \text{mod } z^2$$

So if we choose $b_1 = 1/a_1$ further choices of values for b_j with j > 1 will not affect the equality

$$f \circ g(z) = z \mod z^2$$

Proof.

Degree 2: Write the degree two term of $f \circ g$:

$$(\sum_{i=1}^{\infty} a_i (\sum_{j=1}^{\infty} b_j z^j)^i)_2 = (a_1 (b_1 z^1 + b_2 z^2)^1 + a_2 (b_1 z^1 + b_2 z^2)^2)_2$$
$$= (a_1 b_2 + a_2 b_1^2) z^2.$$

So if we choose $b_2 = -a_2b_1^2/a_1$ further choices of values for b_j with j > 2 will not affect the equality

$$f \circ g(z) = z \mod z^3$$

L03P01 - Inverse map theorem

Proof.

Degree 3: Write the degree three term of $f \circ g$:

$$(\sum_{i=1}^{\infty} a_i (\sum_{j=1}^{\infty} b_j z^j)^i)_3 = (a_1 (b_1 z^1 + b_2 z^2 + b_3 z^3)^1 + a_2 (b_1 z^1 + b_2 z^2 + b_3 z^3)^2 + a_1 (b_1 z^1 + b_2 z^2 + b_3 z^3)^2 + a_2 (b_1 z^1 + b_2 z^$$

So if we choose $b_3 = -(2a_2b_1b_2 + a_3b_1^3)/a_1$ further choices of values for b_j with j > 3 will not affect the equality

$$f \circ g(z) = z \mod z^4$$

L03P01 - Inverse map theorem

Proof.

General case: Write the degree *k* term of $f \circ g$:

$$(\sum_{i=1}^{\infty} a_i (\sum_{j=1}^{\infty} b_j z^j)^i)_k = a_1 b_k + P_k(a_1, a_2, \dots, a_k, b_1, \dots, b_{k-1})$$

where P_k is a polynomial with positive integral coefficients (arising from binomial coefficients). Set

$$b_k = -\frac{P_k(a_1, a_2, \dots, a_k, b_1, \dots, b_{k-1})}{a_1}$$

Then

$$f \circ g(z) = z \mod z^{k+1}$$

Proof.

Claim: $g \circ f(z) = z$. Indeed, by first part, $g = \sum_{i=1}^{\infty} b_i z^1$ with $b_1 \neq 0$, hence also has a right inverse, *h*. Then

$$f(z) = f \circ (g \circ h)(z) = (f \circ g) \circ h(z) = h(z).$$

Proof.

Claim 2: If *f* converges, then *g* converges. This step is always very important. This step is always annoying and requires a trick or perseverance. Today we do a trick.

Proof.

Claim 3. By using translations, assume that $z_0 = 0$ and $f(z_0) = 0$, so

$$f(z) = \sum_{i=1}^{\infty} a_i z^i.$$

By the previous claims there is *g* analytic

$$g(z) = \sum_{i=1}^{\infty} b_i z^i.$$

for which $f \circ g = g \circ f =$ Id.

- Assume $a_1 = 1$.
- To prove that *g* converges in some region we need to show that $\limsup |b_n|^{1/n} < \infty$.
- We do so by cooking up another sequence b_n such that for which we can prove $|b_n| \le |\tilde{b_n}|$ and $\limsup |\tilde{b_n}|^{1/n} < \infty$.
- Since $\limsup |a_n|^{1/n} < \infty$, there is A > 0 such that $|a_n| < A^n$ for all n.
- Define

$$\tilde{f}(z)=z-\sum_{i\geq 2}A^iz^i=z-\frac{A^2z^2}{1-Az}$$

Properties of \tilde{f} :

- $|a_n| \leq A^n$ for all n and
- the coefficient of z^i in \tilde{f} is negative for all i > 1.

Let \tilde{g} be the formal inverse of \tilde{f} . Then compare the coefficients of \tilde{g} and g.

•
$$\tilde{b_1} = 1 = b_1$$

• $\tilde{b_2} = -\tilde{a_2}\tilde{b_1}^2 = A^2 > |a_2b_1^2| = |b_2|.$
•

$$\begin{split} \tilde{b_3} &= -(2\tilde{a_2}\tilde{b_1}\tilde{b_2} + \tilde{a_3}b_1^3) \\ &= 2A^2\tilde{b_2} + A^3 \\ &> |2a_2b_1b_2| + |a_3b_1^2| \\ &> |2a_2b_1b_2 + a_3b_1^2| \\ &= |b_3|. \end{split}$$

L03P01 - Inverse map theorem

Cavalcanti

Now we only have to prove the theorem for \tilde{f} , which has an explicit form. Plugging in \tilde{g} in \tilde{f} we must have

$$z = \tilde{f}(\tilde{g}(z)) = \tilde{g}(z) - \frac{A^2 \tilde{g}(z)^2}{1 - A \tilde{g}(z)}$$

Hence

$$(A^{2} + A)\tilde{g}(z)^{2} - (1 - Az)\tilde{g}(z) + z = 0$$

And

$$\tilde{g}(z) = \frac{1 + Az - \sqrt{(1 + Az)^2 - 4z(A^2 + A)}}{2(A^2 + A)}$$

L03P01 - Inverse map theorem

Now expand this last expression in power series to show that \tilde{g} is analytic.