Analysis in one complex variable Lecture 3 – Open map theorem

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

L03P02 - Open map theorem

Cavalcanti

Definition

A map between topological spaces, $f : A \rightarrow B$, is *open* if f(U) is open in *B* for all *U* open in *A*.

Example

If f is a local homeomorphism, then f is open.

Example

For every k > 0, the map $f : \mathbb{C} \to \mathbb{C}$, $f(z) = z^k$ is open. Need to check at 0 and away from 0. Away from 0, it is a local homeomorphism. At 0, it maps the ball of radius *r* to the ball of radius r^k .

Lemma

Let $f(z) = a_n z^n + ...$ with $a_n \neq 0$. Then there is an analytic diffeomorphism φ of a neighbourhood of 0 such that $f \circ \varphi(z) = z^n$.

Proof.

Let
$$a = a_n^{1/n}$$
 and write

$$f(z) = a_n z^n (1 + \frac{a_{n+1}}{a_n} z + \dots) = (az(1 + zh(z))^{1/n})^n.$$
Notice that $(1 + zh(z))^{1/n}$ is analytic for z small, say
 $(1 + zh(z))^{1/n} = 1 + z\tilde{h}(z).$

So

$$f(z) = (az(1+z\tilde{h}(z)))^n.$$

L03P02 - Open map theorem

Proof.

$$f(z) = (az(1 + z\tilde{h}(z)))^{n}.$$

Consider $\psi(z) = az(1 + z\tilde{h}(z)) = az + az^{2}\tilde{h}(z)$, so that
 $f(z) = \psi(z)^{n}$
and IFT $\Rightarrow \varphi = \psi^{-1}$ exists and is analytic, hence
 $f(\varphi(z)) = (\psi(\varphi(z)))^{n} = z^{n}.$

L03P02 - Open map theorem

Cavalcanti

Theorem

Every nonconstant analytic map is open.

Proof.

- The composition of open maps is open,
- By the previous lemma, every analytic function is locally the composition of an isomorphism and *z* → *z*^{*n*},
- By the previous examples, isomorphism and *z* → *zⁿ* are open.

Theorem

Let $f: U \subset \mathbb{C} \to \mathbb{C}$ *be a nonconstant analytic on the open set U. Then* |f| *has no local maximum in U.*

Proof.

- Assume that |f| attains a local maximum at z_0 , that is $|f(z_0)| \ge |f(z)|$ for all z in some ball, B, around z_0 .
- OMT \Rightarrow *f*(*B*) is an open set containing *f*(*z*₀).
- For $\lambda > 1$ small $\lambda f(z_0) \in f(B)$ and hence there are points in f(B) with norm greater than $|f(z_0)|$

Theorem

Let $f : \mathbb{C} \to \mathbb{C}$ be a nonconstant polynomial. Then f has a root.

Proof.

- If $f = a_0 + a_1 z + ... a_n z^n$ had no roots, then $1/f : \mathbb{C} \to \mathbb{C}$ would be analytic.
- For |*z*| large, the term *a*_n*z*_n dominates the rest of the polynomial and goes to infinity.
- For |z| large, say, |z| > R, |1/f(z)| < 1/2f(0).
- In B_R , |1/f| is continuous in a compact, hence has a maximum: $|1/f(z_0)| \ge |1/f(z)|$ for all $z \in B_R$.
- Hence $|1/f(z_0)| \ge |1/f(z)|$ for all $z \in \mathbb{C}$.